
Exploring Languages with Interpreters
and Functional Programming

Chapter 8

H. Conrad Cunningham

02 April 2022

Contents
8 Evaluation Model 2

8.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2
8.2 Referential Transparency Revisited . . . . . . . . . . . . . . . . . 2
8.3 Substitution Model . . . . . . . . . . . . . . . . . . . . . . . . . . 3
8.4 Time and Space Complexity . . . . . . . . . . . . . . . . . . . . . 7
8.5 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
8.6 What Next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.9 Terms and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Copyright (C) 2016, 2017, 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu


8 Evaluation Model
8.1 Chapter Introduction
This chapter (8) introduces an evaluation model applicable to Haskell programs.
As in the previous chapters, this chapter focuses on use of first-order functions
and primitive data types.

The goals of this chapter (8) are to:

• describe an evaluation model appropriate for Haskell programs

• enable students to analyze Haskell functions to determine under what
conditions they terminate normally and how efficient they are

Building on this model, Chapter 9 informally analyzes simple functions in terms
of time and space efficiency and termination. Chapter 29 examines these issues
in more depth.

How can we evaluate (i.e., execute) an expression that “calls” a function like the
fact1 function from Chapter 4?

We do this by rewriting expressions using a substitution model, as we see in this
chapter. This process depends upon a property of functional languages called
referential transparency.

8.2 Referential Transparency Revisited
Referential transparency is probably the most important property of modern
functional programming languages.

As defined in Chapter 2, referential transparency means that, within some
well-defined context (e.g., a function or module definition), a variable (or other
symbol) always represents the same value.

Because a variable always has the same value, we can replace the variable in an
expression by its value or vice versa. Similarly, if two subexpressions have equal
values, we can replace one subexpression by the other. That is, “equals can be
replaced by equals”.

Pure functional programming languages thus use the same concept of a variable
that mathematics uses.

However, in most imperative programming languages, a variable represents an
address or “container” in which values may be stored. A program may change
the value stored in a variable by executing an assignment statement. Thus these
mutable variables break the property of referential transparency.

Because of referential transparency, we can construct, reason about, and manip-
ulate functional programs in much the same way we can any other mathematical
expressions. Many of the familiar “laws” from high school algebra still hold;
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new laws can be defined and proved for less familiar primitives and even user-
defined operators. This enables a relatively natural equational style of reasoning
using the actual expressions of the language. We explore these ideas further in
Chapters 25, 26, and 27.

In contrast, to reason about imperative programs, we usually need to go outside
the language itself and use notation that represents the semantics of the language
{[2]; [4]].

For our purposes here, referential transparency underlies the substitution model
for evaluation of expressions in Haskell programs.

8.3 Substitution Model
The substitution model (or reduction model) involves rewriting (or reducing) an
expression to a “simpler” equivalent form. It involves two kinds of replacements:

• replacing a subexpression that satisfies the left-hand side of an equation
by the right-hand side with appropriate substitution of arguments for
parameters

• replacing a primitive application (e.g., + or *) by its value

The term redex refers to a subexpression that can be reduced.

Redexes can be selected for reduction in several ways. For instance, the redex
can be selected based on its position within the expression:

• leftmost redex first, where the leftmost reducible subexpression in the
expression text is reduced before any other subexpressions are reduced

• rightmost redex first, where the rightmost reducible subexpression in the
expression text is reduced before any other subexpressions are reduced

The redex can also be selected based on whether or not it is contained within
another redex:

• outermost redex first, where a reducible subexpression that is not contained
within any other reducible subexpression is reduced before one that is
contained within another

• innermost redex first, where a reducible subexpression that contains no
other reducible subexpression is reduced before one that contains others

We will explore these more fully in a Chapter 29. In most circumstances, Haskell
uses a leftmost outermost redex first approach.

In Chapter 4, we defined factorial function fact1 as shown below. (The source
code is in file Factorial.hs){type=“text/plain”}.)

fact1 :: Int -> Int
fact1 n = if n == 0 then

1
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else
n * fact1 (n-1)

Consider the expression from else clause in fact1 with n having the value 2:

2 * fact1 (2-1)

This has two redexes: subexpressions 2-1 and fact1 (2-1).

The multiplication cannot be reduced because it requires both of its arguments
to be evaluated.

A function parameter is said to be strict if the value of that argument is always
required. Thus, multiplication is strict in both its arguments. If the value of an
argument is not always required, then it is nonstrict.

The first redex 2-1 is an innermost redex. Since it is the only innermost redex,
it is both leftmost and rightmost.

The second redex fact1 (2-1) is an outermost redex. Since it is the only
outermost redex, it is both leftmost and rightmost.

Now consider the complete evaluation of the expression fact1 2 using leftmost
outermost reduction steps. Below we denote the steps with =⇒ and give the
substitution performed between braces.

fact1 2

=⇒ { replace fact1 2 using definition }

if 2 == 0 then 1 else 2 * fact1 (2-1)

=⇒ { evaluate 2 == 0 in condition }

if False then 1 else 2 * fact1 (2-1)

=⇒ { evaluate if }

2 * fact1 (2-1)

=⇒ { replace fact1 (2-1) using definition, add implicit parentheses }

2 * (if (2-1) == 0 then 1 else (2-1) * fact1 ((2-1)-1))

=⇒ { evaluate 2-1 in condition }

2 * (if 1 == 0 then 1 else (2-1) * fact1 ((2-1)-1))

=⇒ { evaluate 1 == 0 in condition }

2 * (if False then 1 else (2-1) * fact1 ((2-1)-1))

=⇒ { evaluate if }

2 * ((2-1) * fact1 ((2-1)-1))

=⇒ { evaluate leftmost 2-1 }
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2 * (1 * fact1 ((2-1)-1))

=⇒ { replace fact1 ((2-1)-1) using definition, add implicit parentheses }

2 * (1 * (if ((2-1)-1) == 0 then 1
else ((2-1)-1) * fact1 ((2-1)-1)-1))

=⇒ { evaluate 2-1 in condition }

2 * (1 * (if (1-1) == 0 then 1
else ((2-1)-1) * fact1 ((2-1)-1)-1))

=⇒ { evaluate 1-1 in condition }

2 * (1 * (if 0 == 0 then 1
else ((2-1)-1) * fact1 ((2-1)-1)-1))

=⇒ { evaluate 0 == 0 }

2 * (1 * (if True then 1
else ((2-1)-1) * fact1 ((2-1)-1)-1))

=⇒ { evaluate if }

2 * (1 * 1)

=⇒ { evaluate 1 * 1 }

2 * 1

=⇒ { evaluate 2 * 1 }

2

The rewriting model we have been using so far can be called string reduction
because our model involves the textual replacement of one string by an equivalent
string.

A more efficient alternative is graph reduction. In this technique, the expressions
are represented as (directed acyclic) expression graphs rather than text strings.
The repeated subexpressions of an expression are represented as shared compo-
nents of the expression graph. Once a shared component has been evaluated
once, it need not be evaluated again.

In the example above, subexpression 2-1 is reduced three times. However, all
of those subexpressions come from the initial replacement of fact1 2. Using
graph reduction, only the first of those reductions is necessary.

fact1 2

=⇒ { replace fact1 2 using definition }

if 2 == 0 then 1 else 2 * fact1 (2-1)

=⇒ { evaluate 2 == 0 in condition }

if False then 1 else 2 * fact1 (2-1) }
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=⇒ { evaluate if }

2 * fact1 (2-1)

=⇒ { replace fact1 (2-1) using definition, add implicit parentheses }

2 * (if (2-1) == 0 then 1 else (2-1) * fact1 ((2-1)-1))

=⇒ { evaluate 2-1 because of condition (3 occurrences in graph) }

2 * (if 1 == 0 then 1 else 1 * fact1 (1-1))

=⇒ { evaluate 1 == 0 }

2 * (if False then 1 else 1 * fact1 (1-1))

=⇒ { evaluate if }

2 * (1 * fact1 (1-1))

=⇒ { replace fact1 ((1-1) using definition, add implicit parentheses }

2 * (1 * (if (1-1) == 0 then 1 else (1-1) * fact1 ((1-1)-1))

=⇒ { evaluate 1-1 because of condition (3 occurrences in graph) }

2 * (1 * (if 0 == 0 then 1 else 0 * fact1 (0-1))

=⇒ { evaluate 0 == 0 }

2 * (1 * (if True then 1 else 0 * fact1 (0-1))

=⇒ { evaluate if }

2 * (1 * 1)

=⇒ { evaluate 1 * 1 }

2 * 1

=⇒ { evaluate 2 * 1 }

2

In general, the Haskell compiler or interpreter uses a leftmost outermost graph
reduction technique. However, if the value of a function’s argument is always
needed for a computation, then an innermost reduction can be triggered for that
argument. Either the programmer can explicitly require this or the compiler can
detect the situation and automatically trigger the innermost reduction order.

Haskell exhibits lazy evaluation. That is, an expression is not evaluated until its
value is needed, if ever. An outermost reduction corresponds to this evaluation
strategy.

Other functional languages such as Scala and F# exhibit eager evaluation. That
is, an expression is evaluated as soon as possible. An innermost reduction
corresponds to this evaluation strategy.
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8.4 Time and Space Complexity
We state efficiency (i.e., time complexity or space complexity) of programs in
terms of the “Big-O” notation and asymptotic analysis.

For example, consider the leftmost outermost graph reduction of function fact1
above. The number of reduction steps required to evaluate fact1 n is 5*n + 3.

We let the number of steps in a graph reduction be our measure of time. Thus,
the time complexity of fact1 n is O(n), which means that the time to evaluate
fact1 n is bounded above by some (mathematical) function that is proportional
to the value of n.

Of course, this result is easy to see in this case. The algorithm is dominated by
the n multiplications it must carry out. Alternatively, we see that evaluation
requires on the order of n recursive calls.

We let the number of arguments in an expression graph be our measure of the
size of an expression. Then the space complexity is the maximum size needed for
the evaluation in terms of the input.

This size measure is an indication of the maximum size of the unevaluated
expression that is held at a particular point in the evaluation process. This is a
bit different from the way we normally think of space complexity in imperative
algorithms, that is, the number of “words” required to store the program’s data.

However, this is not as strange as it may at first appear. As we in later chapters,
the data structures in functional languages like Haskell are themselves expressions
built by applying constructors to simpler data.

In the case of the graph reduction of fact1 n, the size of the largest expression
is 2*n + 16. This is a multiplication for each integer in the range from 1 to n
plus 16 for the full if statement. Thus the space complexity is O(n).

The Big-O analysis is an asymptotic analysis. That is, it estimates the order of
magnitude of the evaluation time or space as the size of the input approaches
infinity (gets large). We often do worst case analyses of time and space. Such
analyses are usually easier to do than average-case analyses.

The time complexity of fact1 n is similar to that of a loop in an imperative
program. However, the space complexity of the imperative loop algorithm is
O(1). So fact1 is not space efficient compared to the imperative loop.

We examine techniques for improving the efficiency of functions below. In
Chapter 29, we examine reduction techniques more fully.

8.5 Termination
A recursive function has one or more recursive cases and one or more base
(nonrecursive) cases. It may also be undefined for some cases.
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To show that evaluation of a recursive function terminates, we must show
that each recursive application always gets closer to a termination condition
represented by a base case.

Again consider fact1 defined above.

If fact1 is called with argument n greater than 0, the argument of the recursive
application in the else clause always decreases to n - 1. Because the argument
always decreases in integer steps, it must eventually reach 0 and, hence, terminate
in the first leg of the definition.

If we call fact1 with argument 0, the function terminates immediately.

What if we call fact1 with its argument less than 0? We consider this issue
below.

8.6 What Next?
This chapter (8) introduced an evaluation model applicable to Haskell programs.
It provides a framework for analyzing Haskell functions to determine under what
conditions they terminate normally and how efficient they are.

Chapter 9 informally analyzes simple functions in terms of time and space
efficiency and termination.

Chapter 29 examines these issues in more depth.

8.7 Exercises
1. Given the following definition of Fibonacci function fib, show the reduction

of fib 4.

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n | n >= 2 = fib (n-1) + fib (n-2)

2. What are the time and space complexities of fact6 as defined in the
previous exercise?

3. Given the following definition of fact6, show the reduction of fact6 2.

fact6 :: Int -> Int
fact6 n = factIter n 1

factIter :: Int -> Int -> Int
factIter 0 r = r
factIter n r | n > 0 = factIter (n-1) (n*r)

4. What are the time and space complexities of fact6 as defined in the
previous exercise?
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In Spring and Summer 2018, I divided the previous Evaluation and Efficiency
chapter into two chapters in the 2018 version of the textbook, now titled Exploring
Languages with Interpreters and Functional Programming. Previous sections
3.1-3.2 became the basis for new Chapter 8, Evaluation Model (this chapter),
and previous sections 3.3-3.5 became the basis for Chapter 9, Recursion Styles
and Efficiency. I also moved the discussion of preconditions and postconditions
to the new Chapter 6.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.
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8.9 Terms and Concepts
Referential transparency, reducible expression (redex), reduction strategies (left-
most vs. rightmost, innermost vs. outermost), string and graph reduction models,
time and space complexity, termination preconditions, postconditions, contracts.
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