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6 Procedural Abstraction
6.1 Chapter Introduction
Chapter 2 introduced the concepts of procedural and data abstraction. This
chapter (6) focuses on procedural abstraction. Chapter 7focuses on data abstrac-
tion.

The goals of this chapter are to:

• illustrate use of procedural abstraction, in particular of the top-down,
stepwise refinement approach to design

• introduce modular programming using Haskell modules

6.2 Procedural Abstraction Review
As defined in Chapter 2, procedural abstraction is the separation of the logical
properties of an action from the details of how the action is implemented.

In general, we abstract an action into a Haskell function that takes zero or more
arguments and returns a value but does not have other effects. In later chapters,
we discuss how input, output, and other effects are handled in a purely functional
manner. (For example, in Chapter 10 we examine simple input and output.)

We also collect one or more functions into a Haskell module with appropriate
type definitions, data structures, and local functions. We can explicitly expose
some of the features and hide others.

To illustrate the development of a group of related Haskell procedural abstractions
in this chapter, we use top-down stepwise refinement.

6.3 Top-Down Stepwise Refinement
A useful and intuitive design process for a small program is to begin with a
high-level solution and incrementally fill in the details. We call this process
top-down stepwise refinement. Here we introduce it with an example.

6.3.1 Developing a square root package

Consider the problem of computing the nonnegative square root of a nonnegative
number x. Mathematically, we want to find the number y such that

y ≥ 0 and y2 = x.

A common algorithm in mathematics for computing the above y is to use
Newton’s method of successive approximations, which has the following steps
for square root:

1. Guess at the value of y.
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2. If the current approximation (guess) is sufficiently close (i.e., good enough),
return it and stop; otherwise, continue.

3. Compute an improved guess by averaging the value of the guess y and x/y,
then go back to step 2.

To encode this algorithm in Haskell, we work top down to decompose the problem
into smaller parts until each part can be solved easily. We begin this top-down
stepwise refinement by defining a function with the type signature:

sqrtIter :: Double -> Double -> Double

We choose type Double (double precision floating point) to approximate the real
numbers. Thus we can encode step 2 of the above algorithm as the following
Haskell function definition:

sqrtIter guess x -- step 2
| goodEnough guess x = guess
| otherwise = sqrtIter (improve guess x) x

We define function sqrtIter to take two arguments—the current approximation
guess and nonnegative number x for which we need the square root. We have
two cases:

• When the current approximation guess is sufficiently close to x, we return
guess.

We abstract this decision into a separate function goodEnough with type
signature:

goodEnough :: Double -> Double -> Bool

• When the approximation is not yet close enough, we continue by reduc-
ing the problem to the application of sqrtIter itself to an improved
approximation.

We abstract the improvement process into a separate function improve
with type signature:

improve :: Double -> Double -> Double

To ensure termination of sqrtIter, the argument (improve guess x)
on the recursive call must get closer to termination (i.e., to a value that
satisfies its base case).

The function improve takes the current guess and x and carries out step 3 of
the algorithm, thus averaging guess and x/guess, as follows:

improve :: Double -> Double -> Double -- step 3
improve guess x = average guess (x/guess)

Function application improve y x assumes x >= 0 && y > 0. We call this a
precondition of the improve y x function.
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Because of the precondition of improve, we need to strengthen the precondition
of sqrtIter guess x to x >= 0 && guess > 0.

In improve, we abstract average into a separate function as follows:

average :: Double -> Double -> Double
average x y = (x + y) / 2

The new guess is closer to the square root than the previous guess. Thus the
algorithm will terminate assuming a good choice for function goodEnough, which
guards the base case of the sqrtIter recursion.

How should we define goodEnough? Given that we are working with the limited
precision of computer floating point arithmetic, it is not easy to choose an
appropriate test for all situations. Here we simplify this and use a tolerance of
0.001.

We thus postulate the following definition for goodEnough:

goodEnough :: Double -> Double -> Bool
goodEnough guess x = abs (square guess - x) < 0.001

In the above, abs is the built-in absolute value function defined in the standard
Prelude library. We define square as the following simple function (but could
replace it by just guess * guess):

square :: Double -> Double
square x = x * x

What is a good initial guess? It is sufficient to just use 1. So we can define an
overall square root function sqrt' as follows:

sqrt' :: Double -> Double
sqrt' x | x >= 0 = sqrtIter 1 x

(A square root function sqrt is defined in the Prelude library, so a different
name is needed to avoid the name clash.)

Function sqrt' x has precondition x >= 0. This and the choice of 1 for the
initial guess ensure that functions sqrtIter and improve are applied with
arguments that satisfy their preconditions.

6.3.2 Making the package a Haskell module

We can make this package into a Haskell module by putting the definitions in a
file (e.g., named Sqrt) and adding a module header at the beginning as follows:

module Sqrt
( sqrt' )

where
-- give the definitions above for functions sqrt',
-- sqrtIter, improve, average, and goodEnough
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The header gives the module the name Sqrt and lists the names of the features
being exported in the parenthesis that follows the name. In this case, only
function sqrt' is exported.

Other Haskell modules that import the Sqrt module can access the features
named in its export list. In the case of Sqrt, the other functions—sqrtIter,
goodEnough, and improve)— are local to (i.e., hidden inside) the module.

In this book, we often call the exported features (e.g., functions and types) the
module’s public features and the ones not exported the private features.

We can import module Sqrt into a module such as module TestSqrt shown below.
By default, the import makes all the definitions exported by Sqrt available
within module TestSqrt. The importing module may select the features it
wishes to export and may assign local names to the features it does import.

module TestSqrt
where

import Sqrt -- file Sqrt.hs, import all public names

main = do
putStrLn (show (sqrt' 16))
putStrLn (show (sqrt' 2))

In the above Haskell code, the symbol “-- ” denotes the beginning of an end-
of-line comment. All text after that symbol is text ignored by the Haskell
compiler.

The Haskell module for the Square root case study is in file Sqrt.hs. Limited,
smoke-testing code is in file SqrtTest.hs.

6.3.3 Reviewing top-down stepwise refinement

The program design strategy known as top-down stepwise refinement is a rel-
atively intuitive design process that has long been applied in the design of
structured programs in imperative procedural languages. It is also useful in the
functional setting.

In Haskell, we can apply top-down stepwise refinement as follows.

1. Start with a high-level solution to the problem consisting of one or more
functions. For each function, identify its type signature and functional
requirements (i.e., its inputs, outputs, and termination condition).

Some parts of each function may be incomplete—expressed as “pseudocode”
expressions or as-yet-undefined functions.

2. Choose one of the incomplete parts. Consider the specified type signature
and functional requirements. Refine the incomplete part by breaking
it into subparts or, if simple, defining it directly in terms of Haskell
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expressions (including calls to the Prelude, other available library functions,
or previously defined parts of the algorithm).

When refining an incomplete part, consider the various options according to
the relevant design criteria (e.g., time, space, generality, understandability,
and elegance).

The refinement of the function may require a refinement of the data being
passed.

If it not possible to design an appropriate function or data refinement,
back up in the refinement process and readdress previous design decisions.

3. Continue step 2 until all parts are fully defined in terms of Haskell code
and data and the resulting set of functions meets all required criteria.

For as long as possible, we should stay with terminology and notation that is
close to the problem being solved. We can do this by choosing appropriate
function names and signatures and data types. (In other chapters, we examine
Haskell’s rich set of builtin and user-defined types.)

For stepwise refinement to work well, we must be willing to back up to earlier
design decisions when appropriate. We should keep good documentation of the
intermediate design steps.

The stepwise refinement method can work well for small programs , but it may
not scale well to large, long-lived, general purpose programs. In particular,
stepwise refinement may lead to a module structure in which modules are tightly
coupled and not robust with respect to changes in requirements.

A combination of techniques may be needed to develop larger software systems.
In the next section (6.4), we consider the use of modular design techniques.

6.4 Modular Design and Programming
In the previous section, we developed a Haskell module. In this section, let’s
consider what a module is more generally.

Software engineering pioneer David Parnas defines a module as “a work assign-
ment given to a programmer or group of programmers” [17]. This is a software
engineering view of a module.

In a programming language like Haskell, a module is also a program unit defined
with a construct or convention. This is a programming language view of a module.

In a programming language, each module may be stored in a separate file in the
computer’s file system. It may also be the smallest external unit processed by
the language’s compiler or interpreter.

Ideally, a language’s module features should support the software engineering
module methods.
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6.4.1 Information-hiding modules and secrets

According to Parnas, the goals of modular design are to [14]:

1. enable programmers to understand the system by focusing on one module
at a time (i.e., comprehensibility).

2. shorten development time by minimizing required communication among
groups (i.e., independent development).

3. make the software system flexible by limiting the number of modules
affected by significant changes (i.e., changeability).

Parnas advocates the use of a principle he called information hiding to guide
decomposition of a system into appropriate modules (i.e., work assignments).
He points out that the connections among the modules should have as few
information requirements as possible [14].

In the Parnas approach, an information-hiding module:

• forms a cohesive unit of functionality separate from other modules

• hides a design decision—its secret—from other modules

• encapsulates an aspect of system likely to change (its secret)

Aspects likely to change independently of each other should become secrets of sep-
arate modules. Aspects unlikely to change can become interactions (connections)
among modules.

This approach supports the goal of changeability (goal 2). When care is taken
to design the modules as clean abstractions with well-defined and documented
interfaces, the approach also supports the goals of independent development
(goal 1) and comprehensibility (goal 3).

Information hiding has been absorbed into the dogma of contemporary object-
oriented programming. However, information hiding is often oversimplified as
merely hiding the data and their representations [19].

The secret of a well-designed module may be much more than that. It may include
such knowledge as a specific functional requirement stated in the requirements
document, the processing algorithm used, the nature of external devices accessed,
or even the presence or absence of other modules or programs in the system
[14–16]. These are important aspects that may change as the system evolves.

Secret of square root module The secret of the Sqrt module in the previous
section is the algorithm for computing the square root.

6.4.2 Contracts: Preconditions and postconditions

Now let’s consider the semantics (meaning) of functions.
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The precondition of a function is what the caller (i.e., the client of the function)
must ensure holds when calling the function. A precondition may specify the
valid combinations of values of the arguments. It may also record any constraints
on any “global” state that the function accesses or modifies.

If the precondition holds, the supplier (i.e., developer) of the function must
ensure that the function terminates with the postcondition satisfied. That is,
the function returns the required values and/or alters the “global” state in the
required manner.

We sometimes call the set of preconditions and postconditions for a function the
contract for that function.

Contracts of square root module In the Sqrt module defined in the
previous section, the exported function sqrt' x has the precondition:

x >= 0

Function sqrt' x is undefined for x < 0.

The postcondition of the function sqrt' x function is that the result returned is
the correct mathematical value of the square root within the allowed tolerance.
That is, for a tolerance of 0.001:

(sqrt x - 0.001)ˆ2 < (sqrt x)ˆ2 < (sqrt x + 0.001)ˆ2

We can state preconditions and postconditions for the local functions sqrtIter,
improve, average, and goodEnough in the Sqrt module. These are left as
exercises.

The preconditions for functions average and goodEnough are just the assertion
True (i.e., always satisfied).

Contracts of Factorial module Consider the factorial functions defined in
Chapter 4. (These are in the source file Factorial.hs.)

What are the preconditions and postconditions?

Functions fact1, fact2, and fact3 require that argument n be a natural number
(i.e., nonnegative integer) value. If they are applied to a negative value for n,
then the evaluation does not terminate. Operationally, they go into an “infinite
loop” and likely will abort when the runtime stack overflows.

If function fact4 is called with a negative argument, then all guards and pattern
matches fail. Thus the function aborts with a standard error message.

Similarly, function fact4' terminates with a custom error message for negative
arguments.

Thus to ensure normal termination, we impose the precondition

n >= 0
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on all these factorial functions.

The postcondition of all six factorial functions is that the result returned is the
correct mathematical value of n factorial. For fact4, that is:

fact4 n = fact’(n)

None of the six factorial functions access or modify any global data structures,
so we do not include other items in the precondition or postcondition.

Function fact5 is defined to be 1 for all arguments less than zero. So, if this is
the desired result, we can weaken the precondition to allow all integer values,
for example,

True

and strengthen the postcondition to give the results for negative arguments, for
example:

fact5 n = if n >= 0 then fact’(n) else 1

Caveat: In this chapter, we ignore the limitations on the value of the factorial
functions’ argument n imposed by the finite precision of the computer’s integer
arithmetic. We readdress this issue somewhat in Chapter 12.

6.4.3 Interfaces for modules

It is important for an information-hiding module to have a well-defined and
stable interface. What do we mean by interface?

According to Britton et al [2], an interface is a “set of assumptions . . . each
programmer needs to make about the other program . . . to demonstrate the
correctness of his own program”.

A module interface includes the type signatures (i.e., names, arguments, and
return values), preconditions, and postconditions of all public operations (e.g.,
functions).

As we see in Chapter 7, the interface also includes the invariant properties of
the data values and structures manipulated by the module and the definitions of
any new data types exported by the module. An invariant must be part of the
precondition of public operations except operations that construct elements of
the data type (i.e., constructors). It must also be part of the postcondition of
public operations except operations that destroy elements of the data type (i.e.,
destructors).

As we have seen, in Haskell the module not provide direct syntactic or semantic
support for preconditions, postconditions, or invariant assertions.

Interface of square root module The interface to the Sqrt module in the
previous section consists of the function signature:

10



sqrt' :: Double -> Double

where sqrt' x has the precondition and postcondition defined above. None of
the other functions are accessible outside the module Sqrt and, hence, are not
part of the interface.

6.4.4 Abstract interfaces for modules

An abstract interface is an interface that does not change when one module imple-
mentation is substituted for another [2,17]. It concentrates on module’s essential
aspects and obscures incidental aspects that vary among implementations.

Information-hiding modules and abstract interfaces enable us to design and
build software systems with multiple versions. The information-hiding approach
seeks to identify aspects of a software design that might change from one version
to another and to hide them within independent modules behind well-defined
abstract interfaces.

We can reuse the software design across several similar systems. We can reuse
an existing module implementation when appropriate. When we need a new
implementation, we can create one by following the specification of the module’s
abstract interface.

Abstract interface of square root module For the Sqrt example, if we
implemented a different module with the same interface (signatures, precondi-
tions, postconditions, etc.), then we could substitute the new module for Sqrt
and get the same result.

In this case, the interface is an abstract interface for the set of module imple-
mentations.

Caveats: Of course, the time and space performance of the alternative modules
might differ. Also, because of the nature of floating point arithmetic, it may be
difficult to ensure both algorithms have precisely the same termination conditions.

6.4.5 Client-supplier relationship

The design and implementation of information-hiding modules should be ap-
proached from two points of view simultaneously:

supplier: the developers of the module—the providers of the services
client: the users of the module—the users of the services (e.g., the designers of

other modules)

The client-supplier relationship is as represented in the following diagram:

________________ ________________
| | | |
| Client |===USES===>| Supplier |
|________________| |________________|
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(module user) (module)

The supplier’s concerns include:

• efficient and reliable algorithms and data structures

• convenient implementation

• easy maintenance

The clients’ concerns include:

• accomplishing their own tasks

• using the supplier module without effort to understand its internal details

• having a sufficient, but not overwhelming, set of operations.

As we have noted previously, the interface of a module is the set of features (i.e.,
public operations) provided by a supplier to clients.

A precise description of a supplier’s interface forms a contract between clients
and supplier.

The client-supplier contract:

1. gives the responsibilities of the client

These are the conditions under which the supplier must deliver results—
when the preconditions of the operations are satisfied (i.e., the operations
are called correctly).

2. gives the responsibilities of the supplier

These are the benefits the supplier must deliver—make the postconditions
hold at the end of the operation (i.e., the operations deliver the correct
results).

The contract

• protects the client by specifying how much must be done by the supplier

• protects the supplier by specifying how little is acceptable to the client

If we are both the clients and suppliers in a design situation, we should consciously
attempt to separate the two different areas of concern, switching back and forth
between our supplier and client “hats”.

6.4.6 Design criteria for interfaces

What else should we consider in designing a good interface for an information-
hiding module?
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In designing an interface for a module, we should also consider the following
criteria. Of course, some of these criteria conflict with one another; a designer
must carefully balance the criteria to achieve a good interface design.

Note: These are general principles; they are not limited to Haskell or func-
tional programming. In object-oriented languages, these criteria apply to class
interfaces.

• Cohesion: All operations must logically fit together to support a single,
coherent purpose. The module should describe a single abstraction.

• Simplicity: Avoid needless features. The smaller the interface the easier
it is to use the module.

• No redundancy: Avoid offering the same service in more than one way;
eliminate redundant features.

• Atomicity: Do not combine several operations if they are needed indi-
vidually. Keep independent features separate. All operations should be
primitive, that is, not be decomposable into other operations also in the
public interface.

• Completeness: All primitive operations that make sense for the abstrac-
tion should be supported by the module.

• Consistency: Provide a set of operations that are internally consistent in

– naming convention (e.g.„ in use of prefixes like “set” or “get”, in
capitalization, in use of verbs/nouns/adjectives),

– use of arguments and return values (e.g.„ order and type of argu-
ments),

– behavior (i.e., make operations work similarly).

Avoid surprises and misunderstandings. Consistent interfaces make it easier
to understand the rest of a system if part of it is already known.

The operations should be consistent with good practices for the specific
language being used.

• Reusability: Do not customize modules to specific clients, but make them
general enough to be reusable in other contexts.

• Robustness with respect to modifications: Design the interface of an
module so that it remains stable even if the implementation of the module
changes. (That is, it should be an abstract interface for an information-
hiding module as we discussed above.)

• Convenience: Where appropriate, provide additional operations (e.g.„
beyond the complete primitive set) for the convenience of users of the
module. Add convenience operations only for frequently used combinations
after careful study.
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We must trade off conflicts among the criteria. For example, we must balance:

• completeness versus simplicity

• reusability versus simplicity

• convenience versus consistency, simplicity, no redundancy, and atomicity

We must also balance these design criteria against efficiency and functionality.

6.5 What Next?
In this chapter (6), we considered procedural abstraction and modularity in that
context.

In Chapter 7, we consider data abstraction and modularity in that context.

6.6 Chapter Source Code
The Haskell source code for this chapter are in files:

• Sqrt.hs for the Square Root case study

• SqrtTest.hs for (limited) “smoke testing” of the Sqrt module

• Factorial.hs for the factorial source code from Chapter 4

• TestFactorial.hs is an extensive testing module developed in Chapter
12 for the factorial module

6.7 Exercises
1. State preconditions and postconditions for the following internal functions

in the Sqrt module:

a. sqrtIter
b. improve
c. average
d. goodEnough
e. square

2. Develop recursive and iterative (looping) versions of the square root func-
tion from this chapter in one or more primarily imperative languages (e.g.,
Java, C++, C#, Python 3, or Lua)

6.8 Acknowledgements
In Summer and Fall 2016, I adapted and revised much of this work from my
previous materials:

• Using Top-Down Stepwise Refinement (square root module), which is based
on Section 1.1.7 of Abelson and Sussman’s Structure and Interpretation of
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Computer Programs [1] and my example implementations of this algorithm
in Scala, Elixir, and Lua as well as Haskell.

• Modular Design and Programming from my Data Abstraction [4] and
Modular Design [5] notes, which drew ideas over the past 25 years from a
variety of sources [2,3,6–16,18,19].

In 2017, I continued to develop this work as sections 2.5-2.7 in Chapter 2,
Basic Haskell Functional Programming), of my 2017 Haskell-based programming
languages textbook.

In Spring and Summer 2018, I divided the previous Basic Haskell Functional
Programming chapter into four chapters in the 2018 version of the textbook,
now titled Exploring Languages with Interpreters and Functional Programming.
Previous sections 2.1-2.3 became the basis for new Chapter 4, First Haskell
Programs; previous Section 2.4 became Section 5.3 in the new Chapter 5, Types;
and previous sections 2.5-2.7 were reorganized into new Chapter 6, Procedural
Abstraction (this chapter), and Chapter 7, Data Abstraction. The discussion of
contracts for the factorial functions was moved from the 2017 Evaluation and
Efficiency chapter to this chapter.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), adding cross-references, and improving the build workflow and
use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

6.9 Terms and Concepts
TODO: Update

Procedural abstraction, top-down stepwise refinement, abstract code, termination
condition for recursion, Newton’s method, Haskell module, module exports
and imports, information hiding, module secret, encapsulation, precondition,
postcondtion, contract, invariant, interface, abstract interface, design criteria
for interfaces, software reuse, use of Haskell modules to implement information-
hiding modules, client-supplier contract.
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