
Exploring Languages
with Interpreters

and Functional Programming
Chapter 2

H. Conrad Cunningham

02 April 2022

Contents
2 Programming Paradigms 2

2.1 Chapter Introduction . 2
2.2 Abstraction . 2

2.2.1 What is abstraction? . 2
2.2.2 Kinds of abstraction . 2
2.2.3 Procedures and functions 3

2.3 What is a Programming Paradigm? 4
2.4 Imperative Paradigm . 4

2.4.1 Java . 4
2.4.2 Other languages . 5

2.5 Declarative Paradigm . 5
2.5.1 Functional paradigm . 6

2.5.1.1 Haskell . 6
2.5.1.2 Other languages 8

2.5.2 Relational (or logic) paradigm 8
2.5.2.1 Prolog . 8
2.5.2.2 Other languages 9

2.6 Other Programming Paradigms 9
2.6.1 Procedural paradigm . 10

2.6.1.1 Python . 10
2.6.1.2 Other languages 11

2.6.2 Modular paradigm . 11
2.6.2.1 Python . 11
2.6.2.2 Other languages 16

2.6.3 Object-based paradigms 16
2.6.4 Concurrent paradigms . 16

1

2.7 Motivating Functional Programming: John Backus 16
2.7.1 Excerpts from Backus’s Turing Award Address [1] 17
2.7.2 Aside on the disorderly world of statements 19
2.7.3 Perspective from four decades later 19

2.8 What Next? . 20
2.9 Exercises . 20
2.10 Acknowledgements . 20
2.11 Terms and Concepts . 21
2.12 References . 22

Copyright (C) 2016, 2017, 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

2

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

2 Programming Paradigms
2.1 Chapter Introduction
The goals of this chapter are to:

• introduce the concepts of procedural and data abstraction

• examine the characteristics and concepts the primary programming para-
digms, imperative and declarative (including functional and relational)

• survey other paradigms such as procedural and modular programming

2.2 Abstraction
Programming concerns the construction of appropriate abstractions in a pro-
gramming language. Before we examine programming paradigms, let’s examine
the concept of abstraction.

2.2.1 What is abstraction?

As computing scientists and computer programmers, we should remember the
maxim:

Simplicity is good; complexity is bad.

The most effective weapon that we have in the fight against complexity is
abstraction. What is abstraction?

Abstraction is concentrating on the essentials and ignoring the details.

Sometimes abstraction is described as remembering the “what” and ignoring the
“how”.

Large complex problems can only be made understandable by decomposing
them into subproblems. Ideally, we should be able to solve each subproblem
independently and then compose their solutions into a solution to the larger
problem.

In programming, the subproblem solution is often expressed with some kind
of abstraction represented in a programming notation. From the outside, each
abstraction should be simple and easy for programmers to use correctly. The
programmers should only need to know the abstraction’s interface (i.e., some
small number of assumptions necessary to use the abstraction correctly).‘

2.2.2 Kinds of abstraction

Two kinds of abstraction are of interest to computing scientists: procedural
abstraction and data abstraction.

Procedural abstraction: the separation of the logical properties of an action
from the details of how the action is implemented.

3

Data abstraction: the separation of the logical properties of data from the
details of how the data are represented.

In procedural abstraction, programmers focus primarily on the actions to be
carried out and secondarily on the data to be processed.

For example, in the top-down design of a sequential algorithm, a programmer
first identifies a sequence of actions to solve the problem without being overly
concerned about how each action will be carried out.

If an action is simple, the programmer can code it directly using a sequence of
programming language statements.

If an action is complex, the programmer can abstract the action into a subprogram
(e.g., a procedure or function) in the programming language. The programmer
must define the subprogram’s name, parameters, return value, effects, and
assumptions—that is, define its interface. The programmer subsequently develops
the subprogram using the same top-down design approach.

In data abstraction, programmers primarily focus on the problem’s data and
secondarily on its actions. Programmers first identify the key data representations
and develop the programs around those and the operations needed to create and
update them.

We address procedural and data abstraction further in Chapters 6 and 7.

2.2.3 Procedures and functions

Generally we make the following distinctions among subprograms:

• A procedure is (in its pure form) a subprogram that takes zero or more
arguments but does not return a value. It is executed for its effects, such
as changing values in a data structure within the program, modifying its
reference or value-result arguments, or causing some effect outside the
program (e.g., displaying text on the screen or reading from a file).

• A function is (in its pure form) a subprogram that takes zero or more
arguments and returns a value but that does not have other effects.

• A method is a procedure or function often associated with an object or
class in an object-oriented program. Some object-oriented languages use
the metaphor of message-passing. A method is the feature of an object
that receives a message. In an implementation, a method is typically a
procedure or function associated with the (receiver) object; the object may
be an implicit parameter of the method.

Of course, the features of various programming languages and usual practices for
their use may not follow the above pure distinctions. For example, a language
may not distinguish between procedures and functions. One term or another
may be used for all subprograms. Procedures may return values. Functions may

4

have side effects. Functions may return multiple values. The same subprogram
can sometimes be called either as a function or procedure.

Nevertheless, it is good practice to maintain the distinction between functions
and procedures for most cases in software design and programming.

2.3 What is a Programming Paradigm?
According to Timothy Budd, a programming paradigm is “a way of conceptualiz-
ing what it means to perform computation, of structuring and organizing how
tasks are to be carried out on a computer” [3:3].

Historically, computer scientists have classified programming languages into one
of two primary paradigms: imperative and declarative.

This imperative-declarative taxonomy categorizes programming styles and lan-
guage features on how they handle state and how they execute programs.

In recent years, many imperative languages have added more declarative features,
so the distinction between languages has become blurred. However, the concept
of programming paradigm is still meaningful.

2.4 Imperative Paradigm
A program in the imperative paradigm has an implicit state (i.e., values of
variables, program counters, etc.) that is modified (i.e., side-effected or mutated)
by constructs (i.e., commands) in the source language [19].

As a result, such languages generally have an explicit notion of sequencing (of
the commands) to permit precise and deterministic control of the state changes.

Imperative programs thus express how something is to be computed. They
emphasize procedural abstractions.

2.4.1 Java

Consider the following Java program fragment from file Counting.java:

int count = 0 ;
int maxc = 10 ;
while (count <= maxc) {

System.out.println(count) ;
count = count + 1 ;

}

In this fragment, the program’s state includes at least the values of the variables
count and maxc, the sequence of output lines that have been printed, and an
indicator of which statement to execute next (i.e., location or program counter).

The assignment statement changes the value of count and the println statement
adds a new line to the output sequence. These are side effects of the execution.

5

Counting.java

Similarly, Java executes these commands in sequence, causing a change in which
statement will be executed next. The purpose of the while statement is to
cause the statements between the braces to be executed zero or more times. The
number of times depends upon the values of count and maxc and how the values
change within the while loop.

We call this state implicit because the aspects of the state used by a particular
statement are not explicitly specified; the state is assumed from the context of
the statement. Sometimes a statement can modify aspects of the state that are
not evident from examining the code fragment itself.

The Java variable count is mutable because its value can change. After the
declaration, count has the value 0. At the end of the first iteration of the while
loop, it has value 1. After the while loop exits, it has a value 10. So a reference
to count yields different values depending upon the state of the program at that
point.

The Java variable maxc is also mutable, but this code fragment does not change
its value. So maxc could be replaced by an immutable value.

Of course, the Java fragment above must be included within a main method to
be executed. A main method is the entry point of a Java program.

public class Counting {
public static void main(String[] args) {

/* Java code fragment above */
}

}

Imperative languages are the “conventional” or “von Neumann languages” dis-
cussed by John Backus in his 1977 Turing Award address [1]. (See Section 2.7.)
They are suited to traditional computer architectures.

Most of the languages in existence today are primarily imperative in nature.
These include Fortran, C, C++, Java, Scala, C#, Python, Lua, and JavaScript.

2.4.2 Other languages

The Scala [23,26] program CountingImp.scala is equivalent to the Java program
described above. The program CountingImp2.scala is also equivalent, except
that it makes the maxc variable immutable. That is, it can be bound to an initial
value, but its binding cannot be changed subsequently.

2.5 Declarative Paradigm
A program in the declarative paradigm has no implicit state. Any needed state
information must be handled explicitly [19].

A program is made up of expressions (or terms) that are evaluated rather than
commands that are executed.

6

CountingImp.scala
CountingImp2.scala

Repetitive execution is accomplished by recursion rather than by sequencing.

Declarative programs express what is to be computed (rather than how it is to
be computed).

The declarative paradigm is often divided into two types: functional (or applica-
tive) and relational (or logic).

2.5.1 Functional paradigm

In the functional paradigm the underlying model of computation is the mathe-
matical concept of a function [19].

In a computation, a function is applied to zero or more arguments to compute a
single result; that is, the result is deterministic (or predictable).

2.5.1.1 Haskell Consider the following Haskell code from file Counting.hs:

counter :: Int -> Int -> String
counter count maxc

| count <= maxc = show count ++ "\n"
++ counter (count+1) maxc

| otherwise = ""

This fragment is similar to the Java fragment above. This Haskell code defines a
function counter (i.e., a procedural abstraction) that takes two integer argu-
ments, count and maxc, and returns a string consisting of a sequence of lines
with the integers from count to maxc such that each would be printed on a
separate line. (It does not print the string, but it inserts a newline character at
the end of each line.)

In the evaluation (i.e., “execution”) of a function call, Programming for the
{Newton}: Software Development with {NewtonScript}counter references the
values of count and maxc corresponding to the explicit arguments of the function
call. These values are not changed during the evaluation of that function call.
However, the values of the arguments can be changed as needed for a subsequent
recursive call of counter.

We call the state of counter explicit because it is passed in arguments of the
function call. These parameters are immutable (i.e., their values cannot change)
within the body of the function. That is, any reference to count or maxc within
a call gets the same value.

In a pure functional language like Haskell, the names like count and maxc are
said to be referentially transparent. In the same context (such as the body of the
function), they always have the same value. A name must be defined before it is
used, but otherwise the order of evaluation of the expressions within a function
body does not matter; they can even be evaluated in parallel.

7

Counting.hs

There are no “loops”. The functional paradigm uses recursive calls to carry out
a task repeatedly.

As we see in later chapters, referential transparency is probably the most im-
portant property of functional programming languages. It underlies Haskell’s
evaluation model (Chapter 8). It also underlies the ability to state and prove
“laws” about Haskell programs (e.g., Chapters 25 and 26). Haskell programmers
and Haskell compilers can use the “mathematical” properties of the programs to
transform programs that are more efficient.

The above Haskell fragment does not really carry out any actions; it just defines
a mapping between the arguments and the return value. We can “execute” the
counter function above with the arguments 0 and 10 with the following IO
program.

main = do
putStrLn (counter 0 10)

By calling the main function from the ghci interpreter, we get the same displayed
output as the Java program.

Haskell separates pure computation (as illustrated by function counter) from
computation that has effects on the environment such as input/output (as
illustrated by IO function main).

In most programming languages that support functional programming, functions
are treated as first-class values. That is, like other data types, functions can
be stored in data structures, passed as arguments to functions, and returned
as the results of functions. (The implementation technique for first-order func-
tions usually involves creation of a lexical closure holding the function and its
environment.)

In some sense, functional languages such as Haskell merge the concepts of
procedural and functional abstraction. Functions are procedural abstractions,
but they are also data.

A function that can take functions as arguments or return functions in the
result is called a higher-order function. A function that does not take or return
functions is thus a first-order function. Most imperative languages do not fully
support higher-order functions.

The higher-order functions in functional programming languages enable regular
and powerful abstractions and operations to be constructed. By taking advan-
tage of a library of higher-order functions that capture common patterns of
computation, we can quickly construct concise, yet powerful, programs.

Purely functional languages include Haskell, Idris, Miranda, Hope, Elm, and
Backus’s FP.

Hybrid functional languages with significant functional subsets include Scala,
F#, OCaml, SML, Erlang, Elixir, Lisp, Clojure, and Scheme.

8

Mainstream imperative languages such as Java (beginning with version 8), C#,
Python, Ruby, Groovy, Rust, and Swift have recent feature extensions that make
them hybrid languages as well.

2.5.1.2 Other languages The Scala [23,26] program CountingFun.scala
is equivalent to the above Haskell program.

2.5.2 Relational (or logic) paradigm

In the relational (logic) paradigm, the underlying model of computation is the
mathematical concept of a relation (or a predicate) [19].

A computation is the (nondeterministic) association of a group of values—with
backtracking to resolve additional values.

2.5.2.1 Prolog Consider the following Prolog [6] code from file Counting.pl.
In particular, this code runs on the SWI-Prolog interpreter [27].

counter(X,Y,S) :- count(X,Y,R), atomics_to_string(R,'\n',S).

count(X,X,[X]).
count(X,Y,[]) :- X > Y.
count(X,Y,[X|Rs]) :- X < Y, NX is X+1, count(NX,Y,Rs).

This fragment is somewhat similar to the Java and Haskell fragments above. It
can be used to generate a string with the integers from X to Y where each integer
would be printed on a separate line. (As with the Haskell fragment, it does not
print the string.)

This program fragment defines a database consisting of four clauses.

The clause

count(X,X,[X]).

defines a fact. For any variable value X and list [X] consisting of the single value
X, count(X,X,[X]) is asserted to be true.

The other three clauses are rules. The left-hand-side of :- is true if the right-
hand-side is also true. For example,

count(X,Y,[]) :- X > Y.

asserts that

count(X,Y,[])

is true when X > Y. The empty brackets denote an empty list of values.

As a logic or relational language, we can query the database for any missing
components. For example,

count(1,1,Z).

9

CountingFun.scala
Counting.pl
http://www.swi-prolog.org/

yields the value Z = [1]. However,

count(X,1,[1]).

yields the value X = 1. If more than one answer is possible, the program can
generate all of them in some nondeterministic order.

So, in some sense, where imperative and functional languages only run a compu-
tation in one direction and give a single answer, Prolog can potentially run a
computation in multiple directions and give multiple answers.

As with Haskell, the above Prolog fragment does not really carry out any
computational actions; it just adds facts to the database and defines general
relationships among facts. We can “execute” the query counter(0,10,S) above
and print the value of S using the following rule.

main :- counter(0,10,S), write(S).

Example relational languages include Prolog, Parlog, and miniKanren.

Most Prolog implementations have imperative features such as the “cut” and
the ability to assert and retract clauses.

2.5.2.2 Other languages TODO: Perhaps add a new example using
miniKanren [4,5,14] in some reasonable base language–preferably Java, Python,
or Scala.

2.6 Other Programming Paradigms
As we noted, the imperative-declarative taxonomy described above divides
programming styles and language features on how they handle state and how
they are executed.

The computing community often speaks of other paradigms—procedural, modu-
lar, object-oriented, concurrent, parallel, language-oriented, scripting, reactive,
and so forth. The definitions of these “paradigms” may be quite fuzzy and vary
significantly from one writer to another.

Sometimes a term is chosen for “marketing” reasons—to associate a language
with some trend even though the language may be quite different from others in
that paradigm—or to make a language seem different and new even though it
may not be significantly different.

These paradigms tend to divide up programming styles and language features
along different dimensions than the primary taxonomy described in Sections 2.4
and 2.5. Often the languages we are speaking of are subsets of the imperative
paradigm.

This section briefly discusses some of these paradigms. We discuss the prominent
object-based paradigms in the next chapter.

10

2.6.1 Procedural paradigm

The procedural paradigm is a subcategory of the imperative paradigm. It organizes
programs primarily using procedural abstractions. A procedural program consists
of a sequence of steps that access and modify the program’s state.

Some of the steps are abstracted out as subprograms—procedures or functions—
that can be reused. In some cases, subprograms may be nested inside other
subprograms, thus limiting the part of the program in which the nested subpro-
gram can be called.

The procedural programming approach arose in programming languages such as
Fortran, Algol, PL/I, Pascal, and C from the 1950’s to the 1970’s and beyond.
In this chapter, we use the Python programming language to illustrate of its
features.

2.6.1.1 Python Consider the following Python [25] code from file
CountingProc.py:

File CountingProc.py
def counter(count,maxc):

def has_more(count,maxc): # new variables
return count <= maxc

def adv():
nonlocal count # from counter
count = count + 1

while has_more(count,maxc):
print(f'{count}') # Python 3.6+ string interpolation
adv()

When called as

counter(0,10)

this imperative Python “procedure” executes similarly to the Java program
fragment we examined in Section 2.4.

Python does not distinguish between procedures and functions as we have defined
them. It uses the term “function” for both. Both return values and can have
side-effects. The value returned may be the special default value None.

This Python code uses procedural abstraction more extensively than the earlier
Java fragment. The Python procedure encloses the while loop in procedure
counter and abstracts the loop test and incrementing operation into function
has_more and procedure adv, respectively.

Like many procedural languages, Python uses lexical scope for variable, procedure,
and function names. That is, the scope of a name (i.e., range of code in which it
can be accessed) begins at the point it is defined and ends at the end of that
block of code (e.g., function, class, or module).

11

CountingProc.py

Function has_more and procedure adv are encapsulated within counter. They
can only be accessed inside the body of counter after their definitions.

Parameters count and maxc of procedure counter can be accessed throughout
the body of counter unless hidden by another variable or parameter with the
same name. They are hidden within the function has_more, which reuses the
names for its parameters, but are accessible within procedure adv.

But to allow assignment to count within the nested procedure adv, the variable
must declared as nonlocal in the inner procedure. Otherwise, the assignment
would have created a new variable with the name count within the body of
procedure adv.

Languages like Python, C, Fortran, Pascal, and Lua are primarily procedural
languages, although most have evolved to support other styles.

2.6.1.2 Other languages Scala [23,26] is a hybrid object-functional language
that enables function definitions to be nested inside other function definitions.
The procedural Scala program CountingProc.scala is equivalent to the Python
program above.

2.6.2 Modular paradigm

Modular programming refers more to a design method for programs and program
libraries than to languages.

Modular programming means to decompose a program into units of functionality
(i.e., modules) that can be developed separately and then recomposed. These
modules can hide (i.e., encapsulate) key design and implementation details within
the modu

The module’s public features can be accessed through its interface; its private
features cannot be accessed from outside the module. Thus a module supports
the principle of information hiding. This method also keeps the interactions
among modules at a minimum, maintaining a low degree of coupling.

We discuss modular programming in more depth in Chapters 6 and 7.

A language that provides constructs for defining modules, packages, namespaces,
or separate compilation units can assist in writing modular programs.

In this chapter, we examine some aspects of the modular paradigm using the
imperative language Python. We examine modular programming in the purely
functional programming language Haskell on Chapters 6 and 7 and later chapters.

2.6.2.1 Python

2.6.2.1.1 Using one module First, let’s consider the following Python [25]
code from file CountingMod.py to illustrate use of modules in Python programs.
This module is similar to the procedural program in the previous section.

12

CountingProc.scala
CountingMod.py

This modular program, however, has all the functions and procedures at the same
level of the Python module (file) instead of most being nested within procedure
counter. The modular program also uses module-level variables instead of local
variables of procedure counter.

File CountingMod.py
count = 0
maxc = 10

def has_more():
return count <= maxc

def adv():
global count
count = count + 1

def counter():
while has_more():

print(f'{count}')
adv()

This module creates two module-level global variables count and maxc and
defines three module-level Python functions has_more, adv, and counter.

The module assigns initial values to the variables. Their values can be accessed
anywhere later in the module unless hidden by parameters or local variables
with the same name.

Function has_more() tests module-level variables count and maxc to determine
whether there are more items in the sequence.

Procedure adv() assigns a new value to the module-level variable count. It
must declare count as global so that a new local variable is not created.

Variable maxc is also mutable, but this module does not modify its value.

Each module is a separate file that can be imported by other Python code. It
introduces a separate name space for variables, functions, and other features.

For example, we can import the module above and execute counter with the
following Python code from file CountingModTest1.py:

from CountingMod import counter
counter()

The from-import statement imports feature counter (a Python function) from
the module in file CountingMod.py. The imported name counter can be used
without qualifying it. The other features of CountingMod (e.g., count and adv)
cannot be accessed.

13

CountingModTest1.py

As an alternative, we can import the module from file CountingModTest2.py
as follows:

import CountingMod

CountingMod.count = 10
CountingMod.maxc = 20
CountingMod.counter()

This code imports all the features of the module. It requires the variables and
functions to be accessed with the name prefix CountingMod. (i.e., the module
name followed by a period). This approach enables the importing code to modify
the values of global variables in the imported module.

In this second example, the importing code can both access and modify the
global variables of the imported module.

Python does not enforce the encapsulation of module-level variable or function
names. All names are public (i.e., can be imported to other modules). However,
programmers can, by convention, designate module-level names as private by
beginning the name with a single underscore character _. The alternative import
above will not automatically import such names.

For example, good modular programming practice might suggest that the names
_count, _maxc, _has_more(), and _adv() be used in the CountingMod module
above. This naming convention would designate those as private and leave only
counter() as public.

Most modern languages support “modules” in some way. Other languages
(e.g., Standard ML) provide advanced support for modules with the ability to
encapsulate features and provide multiple implementations of common interfaces.

2.6.2.1.2 Using multiple modules To see the flexibility of modular pro-
grams, let’s consider a variant of the above that uses two modules.

The first module—CountingModA from file CountingModA.py—is shown below.

File CountingModA.py
from Arith import reset, adv, get_count, has_more

def counter():
while has_more():

count = get_count()
print(f'{count}')
adv()

CountingModA has similar overall functionality to the CountingMod module in
the previous example. However, its counter procedure uses a has_more function,
an adv procedure, and a new get_counter function implemented in a separate

14

CountingModTest2.py
CountingModA.py

module named Arith. The CountingModA module has no module-level variables
and its counter procedure has no local variables.

The second module—Arith from file Arith.py—is shown below.

File Arith.py
_start = 0
_stop = 10
_change = 1
_count = _start

def reset(new_start, new_stop, new_change):
global _start, _stop, _change, _count
_start = new_start
_stop = new_stop
_count = _start
if new_change == 0:

print('Error: Attempt to reset increment to 0; not reset.')
else:

_change = new_change

def adv():
global _count
_count = _count + _change

def get_count():
return _count

def has_more():
if _change > 0:

return _count <= _stop
else:

return _count >= _stop

This module makes the module-level variables private to the module by conven-
tion.

By default, module Arith generates the same arithmetic sequence as
CountingMod in the previous modular programming example. However, it
generalizes CountingMod in the following ways:

• renaming variable count to be _count and variable maxc to be _stop

• replacing the constant 0 in the initialization of variable _count by a new
variable _start, which is itself initialized to 0

• replacing the constant 1 in the increment of variable _count by a new
variable _change, which is itself initialized to 1

15

Arith.py

• adding a new function get_count that enables a user module (e.g.,
CountingModA) to get the current value of the _count variable

This is called an accessor or getter function.

• implementing the function has_more() and the procedure adv() used by
module CountingModA

These argumentless public functions operate on Arith’s private module-
level variables _start, _stop, _change, and _count.

• adding a new procedure reset() that enables the values of _start, _stop,
_change, and _count to be reinitialized to new values

Now let’s consider an alternative to Arith, the second module. Module Geom
from file Geom.py is shown below.

File Geom.py
_start = 1
_stop = 100
_change = 2
_count = _start

def reset(new_start, new_stop, new_change):
global _start, _stop, _change, _count
_start = new_start
_stop = new_stop
_count = start
if abs(new_change) <= 1:

print('Error: Attempt to set abs(_change) <= 1; not reset.')
else:

_change = new_change

def adv():
global _count
_count = _count * _change

def get_count():
return _count

def has_more():
return _count <= _stop

Module Geom has essentially the same interface as Arith, but it generates a
geometric sequence instead of an arithmetic sequence.

To use this module, the only change needed to CountingModA.py is to import
the module Geom instead of Arith. This alternative is in module CountingModG
in file CountingModG.py.

16

Geom.py
CountingModG.py

This two-level example illustrates the additional flexibility that modular pro-
gramming can enable.

2.6.2.2 Other languages The modular Scala [23,26] program CountingMod.scala
is equivalent to the first Python program above. The similar Scala program
CountingMod2.scala uses a Scala trait to define the interface of the module. It
is used in manner similar to the second Python program above.

TODO: Probably should show a Java 8+ example for this. Also the Scala might
need more update to be similar to new modular Python examples.

2.6.3 Object-based paradigms

The dominant paradigm since the early 1990s has been the object-oriented
paradigm. Because this paradigm is likely familiar with most readers, we examine
it and related object-based paradigms in the next chapter.

2.6.4 Concurrent paradigms

TODO: Perhaps describe a paradigm like actors and give an example in Elixir
[13,28].

2.7 Motivating Functional Programming: John Backus
In this book we focus primarily on the functional paradigm—on the programming
language Haskell in particular. Although languages that enable or emphasize
the functional paradigm have been around since the early days of computing,
much of the later interest in functional programming grew from the 1977 Turing
Award lecture.

John W. Backus (December 3, 1924 – March 17, 2007) was a pioneer in research
and development of programming languages. He was the primary developer of
Fortran while a programmer at IBM in the mid-1950s. Fortran is the first widely
used high-level language. Backus was also a participant in the international
team that designed the influential languages Algol 58 and Algol 60 a few years
later. The notation used to describe the Algol 58 language syntax—Backus-Naur
Form (BNF)—bears his name. This notation continues to be used to this day.

In 1977, ACM bestowed its Turing Award on Backus in recognition of his career
of accomplishments. (This award is sometimes described as the “Nobel Prize for
computer science”.) The annual recipient of the award gives an address to a major
computer science conference. Backus’s address was titled “Can Programming
Be Liberated from the von Neumann Style? A Functional Style and Its Algebra
of Programs”.

Although functional languages like Lisp go back to the late 1950’s, Backus’s
address did much to stimulate research community’s interest in functional pro-
gramming languages and functional programming over the past four decades.

17

CountingMod.scala
CountingMod2.scala

The next subsection gives excerpts from Backus’s Turing Award address published
as the article “Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs” [1].

2.7.1 Excerpts from Backus’s Turing Award Address [1]

Programming languages appear to be in trouble. Each successive language
incorporates, with little cleaning up, all the features of its predecessors plus a
few more. Some languages have manuals exceeding 500 pages; others cram a
complex description into shorter manuals by using dense formalisms. . . . Each
new language claims new and fashionable features, such as strong typing or
structured control statements, but the plain fact is that few languages make
programming sufficiently cheaper or more reliable to justify the cost of producing
and learning to use them.

Since large increases in size bring only small increases in power, smaller, more
elegant languages such as Pascal continue to be popular. But there is a desperate
need for a powerful methodology to help us think about programs, and no
conventional language even begins to meet that need. In fact, conventional
languages create unnecessary confusion in the way we think about programs. . . .
In order to understand the problems of conventional programming languages,
we must first examine their intellectual parent, the von Neumann computer.
What is a von Neumann computer? When von Neumann and others conceived
of it . . . [in the 1940’s], it was an elegant, practical, and unifying idea that
simplified a number of engineering and programming problems that existed then.
Although the conditions that produced its architecture have changed radically,
we nevertheless still identify the notion of “computer” with this . . . concept.

In its simplest form a von Neumann computer has three parts: a central processing
unit (or CPU), a store, and a connecting tube that can transmit a single word
between the CPU and the store (and send an address to the store). I propose to
call this tube the von Neumann bottleneck. The task of a program is to change
the contents of the store in some major way; when one considers that this task
must be accomplished entirely by pumping single words back and forth through
the von Neumann bottleneck, the reason for its name becomes clear.

Ironically, a large part of the traffic in the bottleneck is not useful data but
merely names of data, as well as operations and data used only to compute
such names. Before a word can be sent through the tube its address must be in
the CPU; hence it must either be sent through the tube from the store or be
generated by some CPU operation. If the address is sent form the store, then
its address must either have been sent from the store or generated in the CPU,
and so on. If, on the other hand, the address is generated in the CPU, it must
either be generated by a fixed rule (e.g., “add 1 to the program counter”) or by
an instruction that was sent through the tube, in which case its address must
have been sent, and so on.

Surely there must be a less primitive way of making big changes in the store than

18

by pushing vast numbers of words back and forth through the von Neumann
bottleneck. Not only is this tube a literal bottleneck for the data traffic of a
problem, but, more importantly, it is an intellectual bottleneck that has kept us
tied to word-at-a-time thinking instead of encouraging us to think in terms of
the larger conceptual units of the task at hand. . . .

Conventional programming languages are basically high level, complex versions
of the von Neumann computer. Our . . . old belief that there is only one kind of
computer is the basis our our belief that there is only one kind of programming
language, the conventional—von Neumann—language. The differences between
Fortran and Algol 68, although considerable, are less significant than the fact
that both are based on the programming style of the von Neumann computer.
Although I refer to conventional languages as “von Neumann languages” to take
note of their origin and style, I do not, of course, blame the great mathematician
for their complexity. In fact, some might say that I bear some responsibility for
that problem.

Von Neumann programming languages use variables to imitate the computer’s
storage cells; control statements elaborate its jump and test instructions; and
assignment statements imitate its fetching, storing, and arithmetic. The assign-
ment statement is the von Neumann bottleneck of programming languages and
keeps us thinking in word-at-at-time terms in much the same way the computer’s
bottleneck does.

Consider a typical program; at its center are a number of assignment statements
containing some subscripted variables. Each assignment statement produces
a one-word result. The program must cause these statements to be executed
many times, while altering subscript values, in order to make the desired overall
change in the store, since it must be done one word at a time. The programmer
is thus concerned with the flow of words through the assignment bottleneck as
he designs the nest of control statements to cause the necessary repetitions.

Moreover, the assignment statement splits programming into two worlds. The
first world comprises the right sides of assignment <statements. This is an
orderly world of expressions, a world that has useful algebraic properties (except
that those properties are often destroyed by side effects). It is the world in which
most useful computation takes place.

The second world of conventional programming languages is the world of state-
ments. The primary statement in that world is the assignment statement itself.
All the other statements in the language exist in order to make it possible to
perform a computation that must be based on this primitive construct: the
assignment statement.

This world of statements is a disorderly one, with few useful mathematical
properties. Structured programming can be seen as a modest effort to introduce
some order into this chaotic world, but it accomplishes little in attacking the
fundamental problems created by the word-at-a-time von Neumann style of

19

programming, with its primitive use of loops, subscripts, and branching flow of
control.

Our fixation on von Neumann languages has continued the primacy of the von
Neumann computer, and our dependency on it has made non-von Neumann
languages uneconomical and has limited their development. The absence of full
scale, effective programming styles founded on non-von Neumann principles has
deprived designers of an intellectual foundation for new computer architectures.
. . .

2.7.2 Aside on the disorderly world of statements

Backus states that “the world of statements is a disorderly one, with few math-
ematical properties”. Even in 1977 this was a bit overstated since work by
Hoare on axiomatic semantics [16], by Dijkstra on the weakest precondition (wp)
calculus [12], and by others had already appeared.

However, because of the referential transparency property of purely functional
languages, reasoning can often be done in an equational manner within the
context of the language itself. We examine this convenient approach later in this
book.

In contrast, the wp-calculus and other axiomatic semantic approaches must
project the problem from the world of programming language statements into
the world of predicate calculus, which is much more orderly. We leave this study
to courses on program derivation and programming language semantics.

Note: For this author’s take on this formal methods topic, see my materials for
University of Mississippi course Program Semantics and Derivation (CSci 550)
[7,8].

2.7.3 Perspective from four decades later

In his Turing Award Address, Backus went on to describe FP, his proposal for
a functional programming language. He argued that languages like FP would
allow programmers to break out of the von Neumann bottleneck and find new
ways of thinking about programming.

FP itself did not catch on, but the widespread attention given to Backus’ address
and paper stimulated new interest in functional programming to develop by
researchers around the world. Modern languages like Haskell developed partly
from the interest generated.

In the 21st Century, the software industry has become more interested in
functional programming. Some functional programming features now appear in
most mainstream programming languages (e.g., in Java 8+). This interest seems
to driven primarily by two concerns:

• managing the complexity of large software systems effectively

20

• exploiting multicore processors conveniently and safely

The functional programming paradigm is able to address these concerns because
of such properties such as referential transparency, immutable data structures,
and composability of components. We look at these aspects in later chapters.

2.8 What Next?
This chapter (2) introduced the concepts of abstraction and programming para-
digm and surveyed the imperative, declarative, functional, and other paradigms.

Chapter 3 continues the discussion of programming paradigms by examining the
object-oriented and related object-based paradigms.

The subsequent chapters use the functional programming language Haskell to
illustrate general programming concepts and explore programming language
design and implementation using interpreters.

2.9 Exercises
1. This chapter used Haskell (and Scala) to illustrate the functional paradigm.

Choose a language such as Java, Python, or C#. Describe how it can be
used to write programs in the functional paradigm. Consider how well the
language supports tail recursion.

TODO: Modify question if more examples are given in chapter.

2. This chapter used Python (and Scala) to illustrate the procedural paradigm.
Choose a different language such as Java, C, C++, or C#. Describe how
it can be used to write programs in the procedural paradigm.

TODO: Modify question if more examples are given in chapter.

3. This chapter used Python (and Scala) to illustrate the modular paradigm.
For the same language chosen for previous exercise, describe how it can be
used to write programs in the modular paradigm.

TODO: Modify question if more examples are given in chapter.

4. Repeat the previous two exercises with a different language.

2.10 Acknowledgements
In Summer and Fall 2016, I adapted and revised much of this work from my
previous materials:

• Abstraction (Section 2.2) from the “What is Abstraction?” section of my
Data Abstraction notes [10], which I wrote originally for the first C++
(CSci 490) and Java-based (CSci 211) classes at UM in 1996 but expanded
and adapted for other courses in later years. In the mid-to-late 1990s, the
Data Abstraction notes drew on my study of a variety of sources (e.g.,

21

Bird and Wadler [2], Dale [11], Gries [15]; Horstmann [17,18], Liskov [20],
Meyer [21], Mossenbock [22], Parnas [24], and Thomas [29])

• Discussion of the primary programming paradigms (Sections 2.3-2.6) from
Chapter 1 of my Notes on Functional Programming with Haskell [9], which
drew on the taxonomy in Hudak’s survey paper [19]. In 2016, I expanded
the discussion of the paradigms and included examples. This drew in part
from my use and/or teaching of a variety of programming languages since
my first programming course in 1974 (e.g., Fortran, Cobol, Pl/I, C, Snobol,
Jovial, Ada, Pascal, Haskell, C++, Java, Ruby, Scala, Lua, Elixir, and
Python).

• Motivating Functional Programming (Section 2.7) from Chapter 1 of my
Notes on Functional Programming with Haskell [9]. This includes a long
excerpt from the influential Turing Award lecture by John Backus [1].

In 2017, I continued to develop this material as a part of Chapter 1, Fundamentals,
of my 2017 Haskell-based programming languages textbook.

In Spring and Summer 2018, I reorganized and expanded the previous Fundamen-
tals chapter into four chapters for the 2018 version of the textbook, now titled
Exploring Languages with Interpreters and Functional Programming. These are
Chapter 1, Evolution of Programming Languages; Chapter 2, Programming
Paradigms (this chapter); Chapter 3, Object-based Paradigms; and Chapter
80, Review of Relevant Mathematics. I added the examples on procedural and
modular programming.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), adding cross-references, and improving the build workflow and
use of Pandoc.

In 2022, I aslo revised and expanded the modular programming example

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

2.11 Terms and Concepts
TODO: Update

Abstraction, procedural abstraction, data abstraction, interface, procedures,
functions, methods; programming language paradigm, primary paradigms (im-
perative, declarative, functional, relational or logic language); other paradigms
(procedural, modular, object-oriented, concurrent); program state, implicit versus
explicit state, execution of commands versus evaluation of expressions, mutable
versus immutable data structures, side effects, sequencing, recursion, referential

22

transparency, first-class values, first-order and higher-order functions, lexical
scope, global versus local variables, public versus private features, information
hiding, encapsulation, lexical closure; von Neumann computer, von Neumann
language, worlds of expressions and statements, axiomatic semantics, weakest
precondition calculus.

2.12 References
[1] John Backus. 1978. Can programming be liberated from the von Neumann

style? A functional style and its algebra of programs (1977 Turing Award
address). Communications of the ACM 21, 8 (1978), 613–641.

[2] Richard Bird. 1998. Introduction to functional programming using Haskell
(Second ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.

[3] Timothy Budd. 1995. Multiparadigm programming in Leda. Addison-
Wesley, Boston, Massachusetts, USA.

[4] William E. Byrd. 2009. Relational programming in miniKanren: Tech-
niques, applications, and implementations. PhD thesis. Indiana Univer-
sity, Bloomington, Indiana, USA.

[5] William E. Byrd and Contributers. 2022. miniKanren,org. Retrieved
from http://minikanren.org/

[6] William F. Clocksin and Christopher S. Mellish. 2012. Programming in
Prolog: Using the ISO standard (Fifth ed.). Springer, Berlin, Germany.

[7] H. Conrad Cunningham. 2006. A programmer’s introduction to predicate
logic. University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/csci450/notes/haskell_notes.pdf

[8] H. Conrad Cunningham. 2006. Notes on program semantics and de-
rivation. University of Mississippi, Department of Computer and In-
formation Science, University, Mississippi, USA. Retrieved from https:
//john.cs.olemiss.edu/~hcc/reports/umcis-1994-02.pdf

[9] H. Conrad Cunningham. 2014. Notes on functional programming with
Haskell. University of Mississippi, Department of Computer and In-
formation Science, University, Mississippi, USA. Retrieved from https:
//john.cs.olemiss.edu/~hcc/docs/Notes_FP_Haskell/Notes_on_Functi
onal_Programming_with_Haskell.pdf

[10] H. Conrad Cunningham. 2019. Notes on data abstraction. University of
Mississippi, Department of Computer and Information Science, University,
Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/
DataAbstraction/DataAbstraction.html

[11] Nell Dale and Henry M. Walker. 1996. Abstract data types: Specifi-
cations, implementations, and applications. D. C. Heath, Lexington,
Massachusetts, USA.

23

http://minikanren.org/
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/reports/umcis-1994-02.pdf
https://john.cs.olemiss.edu/~hcc/reports/umcis-1994-02.pdf
https://john.cs.olemiss.edu/~hcc/docs/Notes_FP_Haskell/Notes_on_Functional_Programming_with_Haskell.pdf
https://john.cs.olemiss.edu/~hcc/docs/Notes_FP_Haskell/Notes_on_Functional_Programming_with_Haskell.pdf
https://john.cs.olemiss.edu/~hcc/docs/Notes_FP_Haskell/Notes_on_Functional_Programming_with_Haskell.pdf
https://john.cs.olemiss.edu/~hcc/docs/DataAbstraction/DataAbstraction.html
https://john.cs.olemiss.edu/~hcc/docs/DataAbstraction/DataAbstraction.html

[12] Edsger W. Dijkstra. 1975. Guarded commands, nondeterminacy and
formal derivation of programs. Communications of the ACM 18, 8 (1975),
453–457.

[13] Elixir Team. 2022. Elixir. Retrieved from https://elixir-lang.org

[14] Daniel P. Friedman, William E. Byrd, Oleg Kiselolyov, and Jason Hemenn.
2018. The reasoned schemer (Second ed.). MIT Press, Cambridge,
Massachusetts, USA.

[15] David Gries. 1981. Science of programming. Springer, New York, New
York, USA.

[16] Charles Antony Richard Hoare. 1969. An axiomatic basis for computer
programming. Communications of the ACM 12, 10 (1969), 576–580.

[17] Cay S. Horstmann. 1995. Mastering object-oriented design in C++.
Wiley, Indianapolis, Indiana, USA.

[18] Cay S. Horstmann and Gary Cornell. 1999. Core Java 1.2: Volume
I—Fundamentals. Prentice Hall, Englewood Cliffs, New Jersey, USA.

[19] Paul Hudak. 1989. Conception, evolution, and application of functional
programming languages. ACM Computing Surveys 21, 3 (1989), 359–411.

[20] Barbara Liskov. 1987. Keynote address—Data abstraction and hierarchy.
In Proceedings on object-oriented programming systems, languages, and
applications (OOPSLA ’87): addendum, ACM, Orlando, Florida, USA,
17–34.

[21] Bertrand Meyer. 1997. Object-oriented program construction (Second
ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.

[22] Hanspeter Mossenbock. 1995. Object-oriented programming in Oberon-2.
Springer, Berlin, Germany.

[23] Martin Odersky, Lex Spoon, and Bill Venners. 2021. Programming in
Scala (Fifth ed.). Artima, Inc., Walnut Creek, California, USA.

[24] David L. Parnas. 1972. On the criteria to be used in decomposing systems
into modules. Communications of the ACM 15, 12 (December 1972),
1053–1058.

[25] Python Software Foundation. 2022. Python. Retrieved from https:
//www.python.org/

[26] Scala Language Organization. 2022. The Scala programming language.
Retrieved from https://www.scala-lang.org/

[27] SWI-Prolog Organization. 2022. SWI-Prolog: Robust, mature, free
Prolog for the real world. Retrieved from https://www.swi-prolog.org/

[28] Dave Thomas. 2018. Programming Elixir >= 1.6: Functional |> concur-
rent |> pragmatic |> fun. Pragmatic Bookshelf, Raleigh, North Carolina,
USA.

[29] Pete Thomas and Ray Weedom. 1995. Object-oriented programming in
Eiffel. Addison-Wesley, Boston, Massachusetts, USA.

24

https://elixir-lang.org
https://www.python.org/
https://www.python.org/
https://www.scala-lang.org/
https://www.swi-prolog.org/

	Programming Paradigms
	Chapter Introduction
	Abstraction
	What is abstraction?
	Kinds of abstraction
	Procedures and functions

	What is a Programming Paradigm?
	Imperative Paradigm
	Java
	Other languages

	Declarative Paradigm
	Functional paradigm
	Haskell
	Other languages

	Relational (or logic) paradigm
	Prolog
	Other languages

	Other Programming Paradigms
	Procedural paradigm
	Python
	Other languages

	Modular paradigm
	Python
	Other languages

	Object-based paradigms
	Concurrent paradigms

	Motivating Functional Programming: John Backus
	Excerpts from Backus's Turing Award Address [1]
	Aside on the disorderly world of statements
	Perspective from four decades later

	What Next?
	Exercises
	Acknowledgements
	Terms and Concepts
	References

