
Exploring Languages
with Interpreters

and Functional Programming
Chapter 1

H. Conrad Cunningham

08 April 2022

Contents
1 Evolution of Programming Languages 2

1.1 Chapter Introduction . 2
1.2 Evolving Computer Hardware Affects Programming Languages . 2
1.3 History of Programming Languages 5
1.4 What Next? . 10
1.5 Exercises . 10
1.6 Acknowledgements . 11
1.7 Terms and Concepts . 11
1.8 References . 11

Copyright (C) 2016, 2017, 2018, 2019, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox frvom Mozilla.

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

1 Evolution of Programming Languages
1.1 Chapter Introduction
The goal of this chapter is motivate the study of programming language organi-
zation by:

• describing the evolution of computers since the 1940’s and its impact upon
contemporary programming language design and implementation

• identifying key higher-level programming languages that have emerged
since the early 1950’s

1.2 Evolving Computer Hardware Affects Programming
Languages

To put our study in perspective, let’s examine the effect of computing hardware
evolution on programming languages by considering a series of questions.

1. When were the first “modern” computers developed? That is, programmable
electronic computers.

Although the mathematical roots of computing go back more than a
thousand years, it is only with the invention of the programmable electronic
digital computer during the World War II era of the 1930s and 1940s that
modern computing began to take shape.

One of the first computers was the ENIAC (Electronic Numerical Inte-
grator and Computer), developed in the mid-1940s at the University of
Pennsylvania. When construction was completed in 1946, it cost about
$500,000. In today’s terms, that is nearly $7,000,000.

The ENIAC weighed 30 tons, occupied as much space as a small house,
and consumed 160 kilowatts of electric power.

Initially, the ENIAC had no main memory. Instead it had 20 accumulators,
each 10 decimal digits wide. Later 100 words of core were added.

Similarly, the ENIAC had no external memory as we know it today. It
could read and write stacks of punch cards.

The ENIAC was not a stored program computer. It was programmed
mostly by connecting cables in plugboards. It took several days of careful
work to enter one program. The program was only changed every few
weeks.

Aside: Many of the early programmers were women. This is quite a
contrast to contemporary programming teams that are mostly male. What
happened?

The ENIAC and most other computers of that era were designed for
military purposes, such as calculating firing tables for artillery or breaking

2

codes. As a result, many observers viewed the market for such devices to
be quite small. The observers were wrong!

Electronics technology has improved greatly in 70 years. Today, a computer
with the capacity of the ENIAC would be smaller than a coin from our pockets,
would consume little power, and cost just a few dollars on the mass market.

2. How have computer systems and their use evolved over the past 70 years?

• Contemporary processors are much smaller and faster. They use
much less power, cost much less money (when mass produced), and
operate much more reliably.

• Contemporary “main” memories are much larger in capacity, smaller
in physical size, and faster in access speed. They also use much less
power, cost much less money, and operate much more reliably.

• The number of processors per machine has increased from one to
many. First, channels and other co-processors were added, then
multiple CPUs. Today, computer chips for common desktop and
mobile applications have several processors—cores—on each chip,
plus specialized processors such as graphics processing units (GPUs)
for data manipulation and parallel computation. This trend toward
multiprocessors will likely continue given that physics dictates limits
on how small and fast we can make computer processors; to continue
to increase in power means increasing parallelism.

• Contemporary external storage devices are much larger in capacity,
smaller in size, faster in access time, and cost less.

• The number of computers available per user has increased from much
less than one to many more than one.

• Early systems were often locked into rooms, with few or no direct
connections to the external world and just a few kinds of input/output
devices. Contemporary systems may be on the user’s desktop or in
the user’s backpack, be connected to the internet, and have many
kinds of input/output devices.

• The range of applications has increased from a few specialized ap-
plications (e.g., code-breaking, artillery firing tables) to almost all
human activities.

• The cost of the human staff to program, operate, and support com-
puter systems has probably increased somewhat (in constant dollars).

3. How have these changes affected programming practice?

• In the early days of computing, computers were very expensive and
the cost of the human workers to use them relatively less. Today, the
opposite holds. So we need to maximize human productivity.

3

• In the early days of computing, the slow processor speeds and small
memory sizes meant that programmers had to control these precious
resources to be able to carry out most routine computations. Al-
though we still need to use efficient algorithms and data structures
and use good coding practices, programmers can now bring large
amounts of computing capacity to bear on most problems. We can
use more computing resources to improve productivity to program
development and maintenance. The size of the problems we can
solve computationally has increased beyond what would be possible
manually.

• In the early days of computing, multiple applications and users usually
had to share one computer. Today, we can often apply many processors
for each user and application if needed. Increasingly, applications
must be able to use multiple processors effectively.

• Security on early systems meant keeping the computers in locked
rooms and restricting physical access to those rooms. In contemporary
networked systems with diverse applications, security has become a
much more difficult issue with many aspects.

• Currently, industry can devote considerable hardware and software
resources to the development of production software.

The first higher-level programming languages began to appear in the 1950s. IBM
released the first compiler for a programming language in 1957–for the scientific
programming language Fortran. Although Fortran has evolved considerably
during the past 60 years, it is still in use today.

4. How have the above changes affected programming language design and
implementation over the past 60 years?

• Contemporary programming languages often use automatic memory
allocation and deallocation (e.g., garbage collection) to manage a
program’s memory. Although programs in these languages may use
more memory and processor cycles than hand-optimized programs,
they can increase programmer productivity and the security and
reliability of the programs. Think Java, C#, and Python versus C
and C++.

• Contemporary programming languages are often implemented using
an interpreter instead of a compiler that translates the program to the
processor’s machine code–or be implemented using a compiler to a
virtual machine instruction set (which is itself interpreted on the host
processor). Again they use more processor and memory resources to
increase programmer productivity and the security and reliability of
the programs. Think Java, C#, and Python versus C and C++.

• Contemporary programming languages should make the capabilities
of contemporary multicore systems conveniently and safely available

4

to programs and applications. To fail to do so limits the performance
and scalability of the application. Think Erlang, Scala, and Clojure
versus C, C++, and Java.

• Contemporary programming languages increasingly incorporate de-
clarative features (higher-order functions, recursion, immutable data
structures, generators, etc.). These features offer the potential of
increasing programming productivity, increasing the security and
reliability of programs, and more conveniently and safely providing
access to multicore processor capabilities. Think Scala, Clojure, and
Java 8 and beyond versus C, C++, and older Java.

As we study programming and programming languages in this and other courses,
we need to keep the nature of the contemporary programming scene in mind.

1.3 History of Programming Languages
From the instructor’s perspective, key languages and milestones in the history
of programming languages include the following.

Note: These descriptions use terminology such as imperative and function that
is defined in Chapters 2 and 3 on programming paradigms.

1950’s

• Fortran, 1957; imperative; first compiler, math-like language for scientific
programming, developed at IBM by John Backus, influenced most subse-
quent languages, enhanced versions still in use today (first programming
language learned by the author in 1974)

• Lisp [21,22,27,42], 1958; mix of imperative and functional features; inno-
vations include being homoiconic (i.e., code and data have same format),
extensive use of recursion, syntactic macros, automatic storage manage-
ment, higher-order functions; related to Church’s lambda calculus theory,
developed at MIT by John McCarthy, influenced most subsequent lan-
guages/research, enhanced versions still in use today

• Algol, 1958, 1960; imperative; innovations included nested block structure,
lexical scoping, use of BNF to define syntax, call-by-name parameter
passing; developed by an international team from Europe and the USA,
influenced most subsequent languages

• COBOL, 1959; imperative; focus on business/accounting programming,
decimal arithmetic, record data structures, key designer Grace Hopper,
still in use today (third language learned by instructor in late 1975)

1960’s

• Simula; 1962, 1967; imperative; original purpose for discrete-event sim-
ulation, developed in Norway by Ole-Johan Dahl and Kristen Nygaard,
Simula 67 is first object-oriented language (in Scandinavian school of

5

object-oriented languages), Simula 67 influenced subsequent object-oriented
languages

• Snobol, 1962; imperative; string processing, patterns as first-class data,
backtracking on failure, developed at AT&T Bell Laboratories by David J.
Farber, Ralph E. Griswold and Ivan P. Polonsky

• PL/I, 1964; imperative; IBM-designed language to merge scientific (For-
tran), business (COBOL), and systems programming (second language
learned by the instructor in early 1975)

• BASIC, 1964; imperative; simple language developed for interactive com-
puting in early timesharing and microcomputer environments, developed
at Dartmouth College by John G. Kemeny and Thomas E. Kurtz

• Algol 68, 1968; imperative; ambitious and rigorously defined successor to
Algol 60; designed by international team, greatly influenced computing
science theory and subsequent language designs, but not widely or fully
implemented because of its complexity

1970’s

• Pascal, 1970; imperative; simplified Algol family language designed by
Niklaus Wirth (Switzerland) because of frustration with complexity of Algol
68, structured programming, one-pass compiler, important for teaching in
1980s and 1990s, Pascal-P System virtual machine implemented on many
early microcomputers (Pascal used by UM CIS in CS1 and CS2 until 1999)

• Prolog [5,33], 1972; logic (relational); first and most widely used logic
programming language, originally developed by a team headed by Alain
Colmerauer (France), rooted in first-order logic, most modern Prolog
implementations based on the Edinburgh dialect (which ran on the Warren
Abstract Machine), used extensively for artificial intelligence research in
Europe, influenced subsequent logic languages and also Erlang

• C, 1972; imperative; systems programming language for Unix operating
system, widely used today; developed by Dennis Ritchie at AT&T Bell
Labs, influenced many subsequent languages (first used by the author in
1977)

• Smalltalk [14], 1972; imperative object-oriented; ground-up object-oriented
programming language, message-passing between objects (in American
school of object-oriented languages), extensive GUI development environ-
ment; developed by Alan Kay and others at Xerox PARC, influenced many
subsequent object-oriented languages and user interface approches

• ML, 1973; mostly functional; polymorphic type system on top of Lisp-like
language, pioneering statically typed functional programming, algebraic
data types, module system; developed by Robin Milner at the University of
Edinburgh as the “meta language” for a theorem-proving system, influenced

6

subsequent functional programming languages, modern dialects include
Standard ML (SML), CAML, and OCAML

• Scheme [12,13,43], 1975; mixed functional and imperative; minimalist
dialect of Lisp with lexical scoping, tail call optimization, first-class con-
tinuations; developed by Guy Steele and Gerald Jay Sussman at MIT,
influenced subsequent languages/research

• Icon, 1977; imperative; structured programming successor to Snobol, uses
goal-directed execution based on success or failure of expressions; developed
by a team led by Ralph Griswold at the University of Arizona

1980’s

• C++, 1980; imperative and object-oriented; C with Simula-like classes;
developed by Bjarne Stroustrup (Denmark)

• Ada, 1983; imperative and modular; designed by US DoD-funded com-
mittee as standard language for military applications, design led by Jean
Ichbiah and a team in France, statically typed, block structured, modular,
synchronous message passing, object-oriented extensions in 1995 (instructor
studied this language while working in the military aerospace industry
1980-83)

• Eiffel, 1985; imperative object-oriented language; designed with strong
emphasis on software engineering concepts such as design by contract and
command-query separation; developed by Bertrand Meyer (France)

• Objective C, 1986; imperative object-oriented; C with Smalltalk-like mes-
saging; developed by Brad Cox and Tom Love at Stepstone, selected by
Steve Jobs’ NeXT systems, picked up by Apple when NeXT absorbed, key
language for MacOS and iOS

• Erlang, 1986; functional and concurrent; message-passing concurrency on
functional programming base (actors), fault-tolerant/real-time systems,
dynamic typing, virtual machine, originally used in real-time telephone
switches; developed by Joe Armstrong, Robert Virding, and Mike Williams
at Ericsson (Sweden)

• Self [32,38], 1986; imperative prototype-based; dialect of Smalltalk, first
prototype-based language, used virtual machine with just-in-time compila-
tion (JIT); developed by David Ungar and Randall Smith while at Xerox
PARC, Stanford University, and Sun Microsystems, language influenced
JavaScript and Lua, JIT influenced Java HotSpot JIT development

• Perl, 1987; imperative; dynamic programming language originally focused
on providing powerful text-processing facilities based around regular ex-
pressions; developed by Larry Wall

1990’s

7

• Haskell [20,37,39], 1990; purely functional language; non-strict semantics
(i.e., lazy evaluation) and strong static typing; developed by an international
committee of functional programming researchers, widely used in research
community

• Python [[26];] [28]], 1991; imperative, originally object-based; dynami-
cally typed, multiparadigm language; developed by Guido van Rossum
(Netherlands)

• Ruby [29,36], 1993; imperative, object-oriented; dynamically typed, sup-
ports reflective/metaprogramming and internal domain-specific languages;
developed by Yukihiro “Matz” Matsumoto (Japan), popularized by Ruby
on Rails web framework, influenced subsequent languages

• Lua [17,19], 1993; imperative; minimalistic language designed for embed-
ding in any environment supporting standard C, dynamic typing, lexical
scoping, first-class functions, garbage collection, tail recursion optimization,
pervasive table/metatable data structure, facilities for prototype object-
oriented programming, coroutines, used as scripting language in games;
developed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes (Brazil)

• R [34,41], 1993; imperative; designed for statistical computing and graphics,
open-source implementation of the language S; developed by Ross Ihaka
and Robert Gentleman (New Zealand), influenced programming in the
data science community

• Java, 1995; imperative object-oriented; statically typed, virtual machine,
version 8+ has functional programming features (higher-order functions,
streams); developed by Sun Microsystems, now Oracle

• JavaScript, 1995 (standardized as ECMAScript); imperative and prototype-
based; designed for embedding in web pages, dynamic typing, first-class
functions, prototype-based object-oriented programming, internals influ-
enced by Scheme and Self but using a Java-like syntax; developed by
Brendan Eich at Netscape in 12 days to meet a deadline, became popular
quickly before language design made clean, evolving slowly because of
requirement to maintain backward compatibility

• PHP, 1995; imperative; server-side scripting language fordynamic web
applications; originally developed by Rasmus Lerdorf (Canada), evolved
organically

• OCaml (originally Objective Caml), 1996; mostly functional with impera-
tive and object-oriented features; a dialect of ML that adds object-oriented
constructs, focusing on performance and practical use; developed by a
team lead by Xavier Leroy (France)

2000’s

8

• C#, 2001; imperative object-oriented programming; statically typed, lan-
guage runs on Microsoft’s Common Language Infrastructure; developed by
Microsoft (in response to Sun’s Java)

• F#, 2002; OCaml re-envisioned for Microsoft’s Common Language Infra-
structure (.Net), replaces OCaml’s object and module systems with .Net
concepts; developed by a team led by Don Syme at Microsoft Research in
the UK

• Scala [24,31], 2003; hybrid functional and object-oriented language; runs
on the Java Virtual Machine and interoperates with Java; developed by
Martin Odersky’s team at EPFL in Switzerland

• Groovy, 2003; imperative object-oriented; dynamically typed “scripting”
language, runs on the Java Virtual Machine; originally proposed by James
Strachan

• miniKanren [3,4,11], 2005; relational; a family of relational programming
languages, developed by Dan Friedman’s team at Indiana University, im-
plemented as an extension to other languages (originally Scheme), most
popular current usage probably in Clojure

• Clojure [9,15,16], 2007; mixed functional and imperative; Lisp dialect, runs
on Java Virtual Machine, Microsoft Common Language Runtime, and
JavaScript platform, emphasis on functional programming, concurrency
(e.g., software transactional memory), and immutable data structures;
developed by Rich Hickey

2010’s

• Idris [1,2], 2011 (1.0 release 2017); functional; eagerly evaluated, Haskell-like
language with dependent types, incorporating ideas from proof assistants
(e.g., Coq), intended for practical programming; developed by Edwin Brady
(UK)

• Julia, 2012 (1.0 release 2018); dynamic programming language designed to
address high-performance numerical and scientific programming, intended
as a modern replacement for MATLAB, Python, and R

• Elixir [7,35], 2012 (1.0 release 2014); functional concurrent programming
language; dynamic strong typing, metaprogramming, protocols, Erlang
actors, runs on Erlang Virtual Machine, influenced by Erlang, Ruby, and
Clojure; developed by a team led by Jose Valim (Brazil)

• Elm [6,8], 2012 (0.19.1 release October 2019); simplified, eagerly evaluated
Haskell-like functional programming language that compiles to JavaScript,
intended primarily for user-interface programming in a browser, supports
reactive-style programming; developed by Evan Czaplicki (original version
for his senior thesis at Harvard)

9

• Rust [18,30], 2012 (1.0 release 2015); imperative; systems programming
language that incorporates contemporary language concepts and focuses on
safety and performance, meant to replace C and C++; developed originally
at Mozilla Research by Graydon Hoare

• PureScript [10,25], 2013 (0.12 release May 2018); mostly functional; an
eagerly evaluated language otherwise similar to Haskell, primarily compiles
to human-readable JavaScript; originally developed by Phil Freeman

• Swift, 2014; Apple’s replacement for Objective C that incorporates con-
temporary language concepts and focuses on program safety; “Objective C
without the C”

The evolution continues!

1.4 What Next?
Computer systems, software development practices, and programming languages
have evolved considerably since their beginnings in the 1940s and 1950s. Con-
temporary languages build on many ideas that first emerged in the early decades
of programming languages. But they mix the enduring ideas with a few modern
innovations and adapt them for the changing circumstances.

This textbook explores both programming and programming language organiza-
tion with the following approach:

• emphasize important concepts and techniques that have emerged during
the decades since the 1940s

• teach functional and modular programming primarily using the language
Haskell, a language that embodies many of the important concepts

• explore the design and implementation of programming languages by
building interpreters for simple languages

Chapters 2 and 3 explore the concept of programming paradigms.

1.5 Exercises
1. Choose some programming language not discussed above and investigate

the following issues.

a. When was the language created?
b. Who created it?
c. What programming paradigm(s) does it support? (See Chapters 2

and 3 for more information about programming paradigms.)
d. What are its distinguishing characterists?
e. What is its primary target domain or group of users?
f. What are other interesting aspects of the language, its history, use,

etc?

10

2. Repeat the previous exercise for some other language.

1.6 Acknowledgements
In Summer and Fall 2016, I adapted and revised much of this work in from my
previous materials:

• Evolving Computer Hardware Affects Programming Languages from my
notes Effect of Computing Hardware Evolution on Programming Languages,
which were based on a set of unscripted remarks I made in the Fall 2014
offering of CSci 450, Organization of Programming Languages

• History of Programming Languages from my notes History of Programming
Languages, which were based on a set of unscripted remarks I made in the
Fall 2014 offering of CSci 450, Organization of Programming Languages.
Those remarks drew on the following:

– O’Reilly History of Programming Languages poster [23]

– Wikipedia article on History of Programming Languages [40]

In 2017, I continued to develop this material as a part of Chapter 1, Fundamentals,
of my 2017 Haskell-based programming languages textbook.

In Spring and Summer 2018, I reorganized and expanded the previous Fundamen-
tals chapter into four chapters for the 2018 version of the textbook, now titled
Exploring Languages with Interpreters and Functional Programming. These are
Chapter 1, Evolution of Programming Languages (this chapter); Chapter 2,
Programming Paradigms); chapter 3, Object-Based Paradigms; and Chapter 80
(an appendix), Review of Relevant Mathematics.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

1.7 Terms and Concepts
The evolution of computer hardware since the 1940s; impacts upon programming
languages and their subsequent evolution.

1.8 References
[1] Edwin Brady. 2017. Type-driven development with Idris. Manning,

Shelter Island, New York, USA.

11

[2] Edwin Brady. 2022. Idris: A language for type-driven development.
Retrieved from https://www.idris-lang.org

[3] William E. Byrd. 2009. Relational programming in miniKanren: Tech-
niques, applications, and implementations. PhD thesis. Indiana Univer-
sity, Bloomington, Indiana, USA.

[4] William E. Byrd and Contributers. 2022. miniKanren,org. Retrieved
from http://minikanren.org/

[5] William F. Clocksin and Christopher S. Mellish. 2012. Programming in
Prolog: Using the ISO standard (Fifth ed.). Springer, Berlin, Germany.

[6] Evan Czaplicki. 2022. Elm: A delightful language for reliable web
applications. Retrieved from https://elm-lang.org

[7] Elixir Team. 2022. Elixir. Retrieved from https://elixir-lang.org

[8] Richard Feldman. 2020. Elm in action. Manning, Shelter Island, New
York, USA.

[9] Michael Fogus and Chris Houser. 2011. The joy of Clojure. Manning,
Shelter Island, New York, USA.

[10] Phil Freeman. 2017. Purescript by example: Functional programming for
the web. Leanpub, Victoria, British Columbia, Canada. Retrieved from
https://book.purescript.org/

[11] Daniel P. Friedman, William E. Byrd, Oleg Kiselolyov, and Jason Hemenn.
2018. The reasoned schemer (Second ed.). MIT Press, Cambridge,
Massachusetts, USA.

[12] Daniel P. Friedman and Matthias Felleisen. 1995. The little schemer
(Fourth ed.). MIT Press, Cambridge, Massachusetts, USA.

[13] Daniel P. Friedman and Matthias Felleisen. 1995. The seasoned schemer
(Second ed.). MIT Press, Cambridge, Massachusetts, USA.

[14] Adele Goldberg and David Robson. 1983. Smalltalk-80 the language and
its implementation. Addison-Wesley, Boston, Massachusetts, USA.

[15] Rich Hickey. 2020. A history of Clojure. Proceedings of the ACM on
Programming Languages 4, HOPL, Article 71 (2020), 1–46.

[16] Rich Hickey. 2022. The Clojure programming language. Retrieved from
https://clojure.org/

[17] Roberto Ierusalimschy. 2016. Programming in Lua (Fourth ed.). Lua.org,
Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil.

[18] Steve Klabnik, Carol Nichols, and Conributers. 2019. The Rust pro-
gramming language (Rust 2018th ed.). No Starch Press, San Francisco,
California, USA. Retrieved from https://doc.rust-lang.org/book/

[19] LabLua, PUC-Rio. 2022. Lua: The programming language. Retrieved
from https://www.lua.org/

12

https://www.idris-lang.org
http://minikanren.org/
https://elm-lang.org
https://elixir-lang.org
https://book.purescript.org/
https://clojure.org/
https://doc.rust-lang.org/book/
https://www.lua.org/

[20] Simon Marlow (Ed.). 2010. Haskell 2010 language report. Retrieved from
https://www.haskell.org/definition/haskell2010.pdf

[21] John McCarthy. 1978. History of LISP. ACM SIGPLAN Notices 8 (1978),
217–223. Retrieved from https://pages.cs.wisc.edu/~horwitz/CS704-
NOTES/PAPERS/mccarthy.pdf

[22] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P.
Hart, and Michael I. Levin. 1962. LISP 1.5 programmer’s manual.
MIT Press, Cambridge, Massachusetts, USA. Retrieved from https:
//apps.dtic.mil/sti/pdfs/AD0406138.pdf

[23] O’Reilly Media. 2004. History of programming languages poster. Re-
trieved from https://www.cs.toronto.edu/~gpenn/csc324/PLhistory.pdf

[24] Martin Odersky, Lex Spoon, and Bill Venners. 2021. Programming in
Scala (Fifth ed.). Artima, Inc., Walnut Creek, California, USA.

[25] purescript.org. 2022. PureScript: A strongly-typed functional pro-
gramming language that compiles to javascript. Retrieved from https:
//www.purescript.org/

[26] Python Software Foundation. 2022. Python. Retrieved from https:
//www.python.org/

[27] Christian Queinnec. 2003. Lisp in small pieces. Cambridge University
Press, Cambridge, UK.

[28] Luciano Ramalho. 2013. Fluent Python: Clear, concise, and effective
programming. O’Reilly Media, Sebastopol, California, USA.

[29] Ruby Community. 2022. Ruby: A programmer’s best friend. Retrieved
from https://www.ruby-lang.org

[30] Rust Team. 2022. Rust: A language empowering everyone to build reliable
and efficient software. Retrieved from https://www.rust-lang.org/

[31] Scala Language Organization. 2022. The Scala programming language.
Retrieved from https://www.scala-lang.org/

[32] SelfLanguage.org. 2022. Self: Fun through simplicity. Retrieved from
https://selflanguage.org/

[33] SWI-Prolog Organization. 2022. SWI-Prolog: Robust, mature, free
Prolog for the real world. Retrieved from https://www.swi-prolog.org/

[34] The R Foundation. 2022. R: The R project for statistical programming.
Retrieved from https://www.r-project.org/

[35] Dave Thomas. 2018. Programming Elixir >= 1.6: Functional |> concur-
rent |> pragmatic |> fun. Pragmatic Bookshelf, Raleigh, North Carolina,
USA.

[36] David Thomas, Chad Fowler, and Andrew Hunt. 2004. Programming
Ruby (Second ed.). Pragmatic Bookshelf, Raleigh, North Carolina, USA.

[37] Simon Thompson. 2011. Haskell: The craft of programming (Third ed.).
Addison-Wesley, Boston, Massachusetts, USA.

13

https://www.haskell.org/definition/haskell2010.pdf
https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/PAPERS/mccarthy.pdf
https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/PAPERS/mccarthy.pdf
https://apps.dtic.mil/sti/pdfs/AD0406138.pdf
https://apps.dtic.mil/sti/pdfs/AD0406138.pdf
https://www.cs.toronto.edu/~gpenn/csc324/PLhistory.pdf
https://www.purescript.org/
https://www.purescript.org/
https://www.python.org/
https://www.python.org/
https://www.ruby-lang.org
https://www.rust-lang.org/
https://www.scala-lang.org/
https://selflanguage.org/
https://www.swi-prolog.org/
https://www.r-project.org/

[38] David Ungar and Randall B. Smith. 1987. Self: The power of simplicity.
In Proceedings of the ACM conference on object-oriented programming
systems, languages and applications (OOPSLA’87), Orlando, Florida,
USA, 227–242.

[39] Wikibooks: Open Books for the World. 2019. Haskell. Retrieved from
https://en.wikibooks.org/wiki/Haskell

[40] Wikpedia: The Free Encyclopedia. 2022. History of programming lan-
guages. Retrieved from https://en.wikipedia.org/wiki/History_of_progr
amming_languages

[41] Wikpedia: The Free Encyclopedia. 2022. R (programming language).
Retrieved from https://en.wikipedia.org/wiki/R_(programming_langua
ge)

[42] Wikpedia: The Free Encyclopedia. 2022. Lisp (programming language).
Retrieved from https://en.wikipedia.org/wiki/Lisp_(programming_lang
uage)

[43] Wikpedia: The Free Encyclopedia. 2022. Scheme (programming lan-
guage). Retrieved from https://en.wikipedia.org/wiki/Scheme_(progra
mming_language)

14

https://en.wikibooks.org/wiki/Haskell
https://en.wikipedia.org/wiki/History_of_programming_languages
https://en.wikipedia.org/wiki/History_of_programming_languages
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)

	Evolution of Programming Languages
	Chapter Introduction
	Evolving Computer Hardware Affects Programming Languages
	History of Programming Languages
	What Next?
	Exercises
	Acknowledgements
	Terms and Concepts
	References

