
Notes on Data Abstraction: Chapters 1-2

H. Conrad Cunningham

10 June 2022

Contents
1 Data Abstraction Concepts 2

1.1 Chapter Introduction . 2
1.2 What is Abstraction? . 2

1.2.1 Kinds of abstraction . 2
1.2.2 Procedures and functions 3

1.3 Concrete Data Structures . 4
1.4 Abstract Data Structures . 4
1.5 Abstract Data Types . 5
1.6 Defining ADTs . 6
1.7 Axiomatic Specification of an Unbounded Stack ADT 7

1.7.1 Name . 7
1.7.2 Sets . 8
1.7.3 Signatures . 8

1.7.3.1 Constructors . 8
1.7.3.2 Mutators . 8
1.7.3.3 Accessors . 9
1.7.3.4 Destructors . 9

1.7.4 Semantics (axiomatic approach) 9
1.8 Constructive Specification of a Bounded Stack ADT 11

1.8.1 Name . 11
1.8.2 Sets . 11
1.8.3 Signatures . 11

1.8.3.1 Constructors . 11
1.8.3.2 Mutators . 11
1.8.3.3 Accessors . 11
1.8.3.4 Destructors . 11

1.8.4 Semantics (constructive approach) 11
1.8.4.1 Constructor . 12
1.8.4.2 Mutators . 12
1.8.4.3 Accessors . 12
1.8.4.4 Destructor . 13

1.8.5 More formal semantics for bounded stack 14

1

1.8.5.1 Constructor . 14
1.8.5.2 Mutators . 14
1.8.5.3 Accessors . 15
1.8.5.4 Destructor . 15

1.9 Date (Day) ADT . 15
1.9.1 Constructor . 15
1.9.2 Mutators . 16
1.9.3 Accessors . 16
1.9.4 Destructor . 17

1.10 Client-Supplier Relationship . 17
1.11 Design Criteria for ADT Interfaces 18
1.12 What Next? . 19
1.13 Exercises . 19
1.14 Acknowledgements . 20
1.15 Terms and Concepts . 20

2 Data Abstraction in Java 21
2.1 Chapter Introduction . 21
2.2 Java as an Object-Oriented Language 21
2.3 Java Classes . 23

2.3.1 Class and Instance Methods 23
2.3.2 Class and Instance Variables 24
2.3.3 Public and Private Accessibility 25
2.3.4 Primitive and Reference Variables 25

2.4 Implementing ADTs as Java Classes 26
2.4.1 Java Implementation of Bounded Stack 31

2.5 Better Approach to Implementing ADTs in Java 33
2.5.1 Java Class Implementation for Day 35

2.6 What Next? . 41
2.7 Exercises . 41
2.8 Acknowledgments . 41
2.9 Concepts . 42
2.10 References . 42

Copyright (C) 1996-2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of June 2022 is a recent
version of Firefox from Mozilla.

2

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

1 Data Abstraction Concepts
1.1 Chapter Introduction
TODO: What are the goals of document/chapter?

1.2 What is Abstraction?
As computing scientists and computer programmers, we should remember the
maxim:

Simplicity is good; complexity is bad.

The most effective weapon that we have in the fight against complexity is
abstraction. What is abstraction?

Abstraction is concentrating on the essentials and ignoring the details.

Sometimes abstraction is described as remembering the “what” and ignoring the
“how”.

Large complex problems can only be made understandable by decomposing
them into subproblems. Ideally, we should be able to solve each subproblem
independently and then compose their solutions into a solution to the larger
problem.

In programming, the subproblem solution is often represented by an abstraction
expressed in a programming notation. From the outside, each abstraction
should be simple and easy for programmers to use correctly. The programmers
should only need to know the abstraction’s interface (i.e., some small number of
assumptions necessary to use the abstraction correctly).

TODO: I am unsure about the use of the term “abstraction” in the above
paragraph here and in ELIFP chapter 2.

1.2.1 Kinds of abstraction

Two kinds of abstraction are of interest to computing scientists: procedural
abstraction and data abstraction.

Procedural abstraction: the separation of the logical properties of an action
from the details of how the action is implemented.

Data abstraction: the separation of the logical properties of data from the
details of how the data are represented.

In procedural abstraction, programmers focus primarily on the actions to be
carried out and secondarily on the data to be processed.

For example, in the top-down design of a sequential algorithm, a programmer
first identifies a sequence of actions to solve the problem without being overly
concerned about how each action will be carried out.

3

If an action is simple, the programmer can code it directly using a sequence of
programming language statements.

If an action is complex, the programmer can abstract the action into a subprogram
(e.g., a procedure or function) in the programming language. The programmer
must define the subprogram’s name, parameters, return value, effects, and
assumptions—that is, define its interface. The programmer subsequently develops
the subprogram using the same top-down design approach.

In data abstraction, programmers primarily focus on the problem’s data and
secondarily on its actions. Programmers first identify the key data representations
and develop the programs around those and the operations needed to create and
update them.

TODO: Do we need to reintroduce the idea of module into the text above?

1.2.2 Procedures and functions

Generally we make the following distinctions among subprograms:

• A procedure is (in its pure form) a subprogram that takes zero or more
arguments but does not return a value. It is executed for its effects, such
as changing values in a data structure within the program, modifying its
reference or value-result arguments, or causing some effect outside the
program (e.g., displaying text on the screen or reading from a file).

• A function is (in its pure form) a subprogram that takes zero or more
arguments and returns a value but that does not have other effects.

• A method is a procedure or function often associated with an object or
class in an object-oriented program. Some object-oriented languages use
the metaphor of message-passing. A method is the feature of an object
that receives a message. In an implementation, a method is typically a
procedure or function associated with the (receiver) object; the object may
be an implicit parameter of the method.

Of course, the features of various programming languages and usual practices for
their use may not follow the above pure distinctions. For example, a language
may not distinguish between procedures and functions. One term or another
may be used for all subprograms. Procedures may return values. Functions may
have side effects. Functions may return multiple values. The same subprogram
can sometimes be called either as a function or procedure.

Nevertheless, it is good practice to maintain the distinction between functions
and procedures for most cases in software design and programming.

In Haskell, the primary unit of procedural abstraction is the pure function. Their
definitions may be nested within other functions. Haskell also groups functions
and other declarations into a program unit called a module. A module explicitly
exports selected functions and keep others hidden.

4

In Java, the primary unit of procedural abstraction is the method, which may be
a procedure, a pure function, or an impure (side-effecting) function. A method
must be part of a Java class, which is, in turn, part of a Java package.

Scala combines characteristics of Java and Haskell. It has Java-like methods,
which can be nested inside other methods. Scala also has class, object, trait,
and package constructs that include procedural abstractions.

1.3 Concrete Data Structures
In most languages (e.g., C), data structures are visible. A programmer can define
custom data types, yet their structure and values are known to other parts of
the program. These are concrete data structures.

As an example, consider a collection of records about the employees of a company.
Suppose we store these records in a global C array. The array and all its elements
are visible to all parts of the program. Any statement in the program can directly
access and modify the elements of the array.

The use of concrete data structures is convenient, but it does not scale well and
it is not robust with respect to change. As a program gets large, keeping track
of the design details of many concrete data structures becomes very difficult.
Also, any change in the design or implementation of a concrete data structures
may require change to all code that uses it.

1.4 Abstract Data Structures
TODO: The following uses the term module in a general manner, so it may be
necessary to introduce the concept of module above. (I had some changes above
to the current version—by bringing some text back from ELIFP Chapter 2.

An abstract data structure is a module consisting of data and operations. The
data are hidden within the module and can only be accessed by means of the
operations. The data structure is called abstract because its name and its
interface are known, but not its implementation. The operations are explicitly
given; the values are only defined implicitly by means of the operations.

An abstract data structure supports information hiding. Its implementation is
hidden behind an interface that remains unchanged, even if the implementation
changes. The implementation detail of the module is a design decision that is
kept as a secret from the other modules.

The concept of encapsulation is related to the concept of information hiding.
The data and the operations that manipulate the data are all combined in one
place. That is, they are encapsulated within a module.

An abstract data structure has a state that can be manipulated by the operations.
The state is a value, or collection of information, held by the abstract data
structure.

5

As an example, again consider the collection of records about the employees
of a company. Suppose we impose a discipline on our program, only allowing
the collection of records to be accessed through a small group of procedures
(and functions). Inside this group of procedures, the array of records can be
manipulated directly. However, all other parts of the program must use one of
the procedures in the group to manipulate the records in the collection. The fact
that the collection is implemented with an array is (according to the discipline
we imposed) hidden behind the interface provided by the group of procedures.
It is a secret of the module providing the procedures.

Now suppose we wish to modify our program and change the implementation
from an array to a linked list or maybe to move the collection to a disk file.
By approaching the design of the collection as an abstract data structure, we
have limited the parts of the program that must be changed to the small group
of procedures that used the array directly; other parts of the program are not
affected.

As another example of an abstract data structure, consider a stack. We provide
operations like push, pop, and empty to allow a user of the stack to access and
manipulate it. Except for the code implementing these operations, we disallow
direct access to the concrete data structure that implements the stack. The
implementation might use an array, a linked list, or some other concrete data
structure; the actual implementation is “hidden” from the user of the stack.

We, of course, can use the available features of a particular programming language
(e.g., module, package, class) to hide the implementation details of the data
structure and only expose the access procedures.

1.5 Abstract Data Types
There is only one instance of an abstract data structure. Often we need to create
multiple instances of an abstract data structure. For example, we might need
to have a collection of employee records for each different department within a
large company.

We need to go a step beyond the abstract data structure and define an abstract
data type (ADT).

What do we mean by type?

Type: a category of entities sharing common characteristics

Consider the built-in type int in C. By declaring a C variable to be of type int,
we are specifying that the variable has the characteristics of that type:

1. a value (state) drawn from some set (domain) of possible values—in the
case of int, a subset of the mathematical set of integers

2. a set of operations that can be applied to those values—in the case of int,
addition, multiplication, comparison for equality, etc.

6

Suppose we declare a C variable to have type int. By that declaration, we are
creating a container in the program’s memory that, at any point in time, holds
a single value drawn from the int domain. The contents of this container can
be operated upon by the int operations. In a program, we can declare several
int variables: each variable may have a different value, yet all of them have the
same set of operations.

In the definition of a concrete data type, the values are the most prominent
features. The values and their representations are explicitly prescribed; the
operations on the values are often left implicit.

The opposite is the case in the definition of an abstract data type. The opera-
tions are explicitly prescribed; the values are defined implicitly in terms of the
operations. A number of representations of the values may be possible.

Conceptually, an abstract data type is a set of entities whose logical behavior
is defined by a domain of values and a set of operations on that domain. In
the terminology we used above, an ADT is set of abstract data structures all
of whom have the same domain of possible states and have the same set of
operations.

We will refer to a particular abstract data structure from an ADT as an instance
of the ADT.

The implementation of an ADT in a language like C is similar to that discussed
above for abstract data structures. In addition to providing operations to access
and manipulate the data, we need to provide operations to create and destroy
instances of the ADT. All operations (except create) must have as a parameter
an identifier (e.g., a pointer) for the particular instance to be operated upon.

While languages like C do not directly support ADTs, the class construct
provides a direct way to define ADTs in languages like C++, Java, and Scala.

1.6 Defining ADTs
The behavior of an ADT is defined by a set of operations that can be applied to
an instance of the ADT.

Each operation of an ADT can have inputs (i.e., parameters) and outputs (i.e.,
results). The collection of information about the names of the operations and
their inputs and outputs is the interface of the ADT.

To specify an ADT, we need to give:

1. the name of the ADT
2. the sets (or domains) upon which the ADT is built. These include the

type being defined and the auxiliary types (e.g., primitive data types and
other ADTs) used as parameters or return values of the operations.

3. the signatures (syntax or structure) of the operations
• name

7

• input sets (i.e., the types, number, and order of the parameters)
• output set (i.e., the type of the return value)

4. the semantics (or meaning) of the operations

There are two primary approaches for specifying the semantics of the operations:

• The axiomatic (or algebraic) approach gives a set of logical rules (properties
or axioms) that relate the operations to one another. The meanings of the
operations are defined implicitly in terms of each other.

• The constructive (or abstract model) approach describes the meaning of the
operations explicitly in terms of operations on other abstract data types.
The underlying model may be any well-defined mathematical model or a
previously defined ADT.

In some ways, the axiomatic approach is the more elegant of the two approaches.
It is based in the well-established mathematical fields of abstract algebra and
category theory. Furthermore, it defines the new ADT independently of other
ADTs. To understand the definition of the new ADT it is only necessary to
understand its axioms, not the semantics of a model.

However, in practice, the axiomatic approach to specification becomes very
difficult to apply in complex situations. The constructive approach, which
builds a new ADT from existing ADTs, is the more useful methodology for most
practical software development situations.

To illustrate both approaches, let us look at a well-known ADT that we studied
in the introductory data structures course, the stack.

1.7 Axiomatic Specification of an Unbounded Stack ADT
In this section we give an axiomatic specification of an unbounded stack ADT.
By unbounded, we mean that there is no maximum capacity for the number of
items that can be pushed onto an instance of a stack.

Remember that an ADT specification consists of the name, sets, signatures, and
semantics.

1.7.1 Name

Stack (of Item)

In this specification, we are defining an ADT named Stack. The parameter
Item represents the arbitrary unspecified type for the entities stored in the stack.
Item is a formal generic parameter of the ADT specification. Stack is itself a
generic ADT; a different ADT is specified for each possible generic argument
that can be substituted for Item.

8

1.7.2 Sets

The sets (domains) involved in the Stack ADT are the following:

Stack: the set of all stack instances
(This is the set we are defining with the ADT.)

Item: the set of all items that can appear in a stack instance
boolean: the primitive Boolean type { False, True }

1.7.3 Signatures

To specify the signatures for the operations, we use the notation for mathematical
functions. By a tuple like (Stack, Item), we mean the Cartesian product of
sets Stack and Item, that is, the set of ordered pairs where the first component
is from Stack and the second is from Item. The set to the right of the -> is the
return type of the function.

We categorize the operations into one of four groups depending upon their
functionality:

• A constructor (sometimes called a creator, factory, or producer function)
constructs and initializes an instance of the ADT.

• A mutator (sometimes called a modifier, command, or “setter” function)
returns the instance with its state changed.

• An accessor (sometimes called an observer, query, or “getter” function)
returns information from the state of an instance without changing the
state.

• A destructor destroys an instance of the ADT.

We will normally list the operations in that order.

For now, we assume that a mutator returns a distinct new instance of the ADT
with a state that is a modified version of the original instance’s state. That is,
we are taking an applicative (or functional or referentially transparent) approach
to ADT specifications.

Technically speaking, a destructor is not an operation of the ADT. We can
represent the other types of operations as functions on the sets in the specification.
However, we cannot define a destructor in that way. But destructors are of
pragmatic importance in the implementation of ADTs, particularly in languages
that do not have automatic storage reclamation (i.e., garbage collection).

The signatures of the Stack ADT operations are as follows.

1.7.3.1 Constructors create: -> Stack

1.7.3.2 Mutators push: (Stack, Item) -> Stack

pop: Stack -> Stack

9

1.7.3.3 Accessors top: Stack -> Item

empty: Stack -> boolean

1.7.3.4 Destructors

destroy: Stack ->

The operation pop may not be the same as the “pop” operation you learned in
a data structures class. The traditional “pop” both removes the top element
from the stack and returns it. In this ADT, we have separated out the “return
top” functionality into accessor operation top and left operation pop as a pure
mutator operation that returns the modified stack.

The separation of the traditional “pop” into two functions has two advantages:

1. It results in an elegant, applicative stack specification whose operations fit
cleanly into the mutator/accessor categorization.

2. It results in a simpler, cleaner abstraction in which the set of operations
is “atomic”. No operation in the ADT’s interface can be decomposed into
other operations also in the interface.

Also note that operation destroy does not return a value. As we pointed out
above, the destroy operation is not really a part of the formal ADT specification.

1.7.4 Semantics (axiomatic approach)

We can specify the semantics of the Stack ADT with the following axioms. Each
axiom must hold for all instances s of type Stack and all entities x of type Item.

1. top(push(s,x)) = x
2. pop(push(s,x)) = s
3. empty(create()) = True
4. empty(push(s,x)) = False

The axioms are logical assertions that must always be true. Thus we can write
Axioms 3 and 4 more simply as:

3. empty(create())
4. not empty(push(s,x))

The first two axioms express the last-in-first-out (LIFO) property of stacks.
Axiom 1 tells us that the top element of the stack is the last element pushed.
Axiom 2 tells us that removal of the top element returns the stack to the state
it had before the last push.

Moreover, axioms 1 and 2 specify the LIFO property of stacks in purely mathe-
matical terms; there was no need to use the properties of any representation or
use any time-based (i.e., imperative) reasoning.

10

The last two axioms define when a stack is empty and when it not. Axiom 3
tells us that a newly created stack is empty. Axiom 4 tells us that pushing an
entity on a stack results in a nonempty stack.

But what about the sequences of operations top(create()) and pop(create())?

Clearly we do not want to allow either top or pop to be applied to an empty
stack. That is, top and pop are undefined when their arguments are empty
stacks.

Functions may be either total or partial.

• A total function A -> B is defined for all elements of A.

For example, the multiplication operation on the set of real numbers R is a
total function (R,R) -> R.

• A partial function A -> B is undefined for one or more elements of A.

For example, the division operation on the set of real numbers R is a partial
function because it is undefined when the divisor is 0.

In software development (and, hence, in specification of ADTs), partial functions
are common. To avoid errors in execution of such functions, we need to specify
the actual domain of the partial functions precisely.

In an axiomatic specification of an ADT, we restrict operations to their domains
by using preconditions. The precondition of an operation is a logical assertion
that specifies the assumptions about and the restrictions upon the values of the
arguments of the operation.

If the precondition of an operation is false, then the operation cannot be safely
applied. If any operation is called with its precondition false, then the program
is incorrect.

In the axiomatic specification of the stack, we introduce two preconditions as
follows.

Precondition of pop(Stack S): not empty(S)
Precondition of top(Stack S) not empty(S)

Note that we have not given the semantics of the destructor operation destroy.
This operation cannot be handled in the simple framework we have established.

Operation destroy is really an operation on the “environment” that contains
the stack. By introducing, the “environment” explicitly into our specification,
we could specify its behavior more precisely. Of course, the semantics of create
would also need to be extended to modify the environment and the other
operations would likely require preconditions to ensure that the stack has been
created in the environment.

Another simplification that we have made in this ADT specification is that we
did not impose a bound on the capacity of the stack instance. We could specify

11

this, but it would also complicate the axioms the specification.

1.8 Constructive Specification of a Bounded Stack ADT
In this section, we give a constructive specification of a bounded stack ADT. By
bounded, we mean that there is a maximum capacity for the number of items
that can be pushed onto an instance of a stack.

1.8.1 Name

StackB (of Item)

1.8.2 Sets

In this specification of bounded stacks, we have one additional set involved, the
set of integers.

StackB: the set of all stack instances
Item: set of all items that can appear in a stack instance
boolean: the primitive Boolean type
integer: the primitive integer type { ..., -2, -1, 0, 1, 2, ... }

1.8.3 Signatures

In this specification of unbounded stacks, we define the create operation to
take the maximum capacity as its parameter.

1.8.3.1 Constructors create: integer -> StackB

1.8.3.2 Mutators push: (StackB, Item) -> StackB

pop: StackB -> StackB

In this specification, we add operation full to detect whether or not the stack
instance has reached its maximum capacity.

1.8.3.3 Accessors top: StackB -> Item

empty: StackB -> boolean

full: StackB -> boolean

1.8.3.4 Destructors destroy: StackB ->

1.8.4 Semantics (constructive approach)

In the constructive approach, we give the semantics of each operation by associ-
ating both a precondition and a postcondition with the operation.

12

As before, the precondition is a logical assertion that specifies the required
characteristics of the values of the arguments.

A postcondition is a logical assertion that specifies the characteristics of the
result computed by the operation with respect to the values of the arguments.

In the specification in this subsection, we are a bit informal about the nature of
the underlying model. Although the presentation here is informal, we try to be
precise in the statement of the pre- and postconditions.

Note: We can formalize the model using an ordered pair of type (integer max,
sequence stkseq), in which max is the upper bound on the stack size and
stkseq is a sequence that represents the current sequence elements of elements
in the stack. This, more formal alternative, is presented in the next subsection.

1.8.4.1 Constructor create(integer size) -> StackB S'

• Precondition: size >= 0

• Postcondition: S' is a valid new instance of StackB &&
S' has the capacity to store size items &&
empty(S')

1.8.4.2 Mutators push(StackB S, Item I) -> StackB S'

• Precondition: S is a valid StackB instance &&
not full(S)

• Postcondition: S' is a valid StackB instance &&
S' = S with I added as the new top.

pop(StackB S) -> StackB S'

• Precondition: S is a valid StackB instance &&
not empty(S)

• Postcondition: S' is a valid StackB instance &&
S' = S with the top item deleted

1.8.4.3 Accessors top(StackB S) -> Item I

• Precondition: S is a valid StackB instance &&
not empty(S)

• Postcondition: I = the top item on S
(S is not modified by this operation.)

empty(StackB S) -> boolean e

• Precondition: S is a valid StackB instance

13

• Postcondition: e is true if and only if S contains no elements (i.e., is
empty)
(S is not modified by this operation.)

full(StackB S) -> boolean f

• Precondition: S is a valid StackB instance

• Postcondition: f is true if and only if S contains no space for additional
items (i.e., is full)
(S is not modified by this operation.)

1.8.4.4 Destructor destroy(StackB S) ->

• Precondition: S is a valid StackB instance

• Postcondition: StackB S no longer exists

Note that each operation except the constructor (create) has a StackB instance
as an input; the constructor and each of the mutators also has a StackB instance
as an output. This parameter identifies the particular instance that the operation
is manipulating.

Also note that all of these StackB instances are required to be “valid” in all
preconditions and postconditions, except the precondition of the constructor
and the postcondition of the destructor. By valid we mean that the state
of the instance is within the acceptable domain of values; it has not become
corrupted or inconsistent. What is specifically mean by “valid” will differ from
one implementation of a stack to another.

Suppose we implement the mutator operations as imperative commands rather
then applicative functions. That is, we implement mutators so that they directly
modify the state of an instance instead of returning a modified copy. (S and S'
are implemented as different states of the same physical instance.)

Then, in some sense, the above “validity” property is invariant for an instance
of the ADT; the constructor makes the property true, all mutators and accessors
preserve its truth, and the destructor makes it false.

An invariant property must hold between operations on the instance; it might
not hold during the execution of an operation. (For this discussion, we assume
that only one thread has access to the ADT implementation.)

Aside: An invariant on an ADT instance is similar in concept to an invariant for
a while-loop. A loop invariant holds before and after each execution of the loop.

As a convenience in specification we will sometimes state the invariants of the
ADT separately from the pre- and postconditions of the methods. We sometimes
will divide the invariants into two groups.

interface invariants: invariants stated in terms of publicly accessible features
and abstract properties of the ADT instance.

14

implementation (representation) invariants: detailed invariants giv-
ing the required relationships among the internal data fields of the
implementation.

The interface invariants are part of the public interface of the ADT. They only
deal with the state of an instance in terms of the abstract model for the ADT.

The implementation invariants are part of the hidden state of an instance; in
some cases, they define the meaning of the abstract properties stated in the
interface invariants in terms of hidden values in the implementation.

1.8.5 More formal semantics for bounded stack

Let the bounded stack StackB be represented by an ordered pair of type (integer
max, sequence stkseq), in which max is the upper bound on the stack size and
stkseq is a sequence that represents the current sequence elements of elements
in the stack.

1.8.5.1 Constructor create(integer size) -> StackB S'

• Precondition: size >= 0

• Postcondition: S' == (size,[])

Here [] represents an empty sequence. The value of a variable occurring in
the postcondition is the same as that variable’s value in the precondition.

1.8.5.2 Mutators push(StackB S, Item I) -> StackB S'

• Precondition: S == (m,ss) && m >= 0 && length(ss) < m

• Postcondition: S' == (m,[I]++ss)

Above ++ denotes the concatenation of its left and right operand sequences.
The result sequence has all the values from the left operand sequence, in
the same order, followed by all the values from the right operand sequence,
in the same order. Also the notation [I] represents a sequence consisting
a single element with the value I.

pop(StackB S) -> StackB S'

• Precondition: S == (m,ss) && m >= 0 && length(ss) > 0

• Postcondition: S' == (m,tail(ss))

Above tail is a function that returns the sequence remaining after removing
the first element of its nonempty sequence argument. Similarly, the function
head (used below) returns the first element of its nonempty sequence
argument.

15

1.8.5.3 Accessors top(StackB S) -> Item I

• Precondition: S == (m,ss) && m >= 0 && length(ss) > 0

• Postcondition: I = head(ss) && S' == S

empty(StackB S) -> boolean e

• Precondition: S == (m,ss) && m >= 0 && length(ss) <= m

• Postcondition: e == (length(ss) == 0) && S' == S

full(StackB S) -> boolean f

• Precondition: S == (m,ss) && m >= 0 && length(ss) <= m

• Postcondition: f == (length(ss) == m) && S' == S

1.8.5.4 Destructor destroy(StackB S) ->

• Precondition: S == (m,ss) && m >= 0 && length(ss) <= m

• Postcondition: StackB S no longer exists

Using this abstract model, we can state an interface invariant:

For a StackB S, there exists an integer m and sequence of Item
elements l such that S == (m,ss) && m >= 0 && length(ss) <=
m

For discussion of implementing ADTs as Java classes, see the chapter Data
Abstraction in Java. A Java implementation of the StackB ADT appears in that
chaper.

1.9 Date (Day) ADT
Consider an ADT for storing and manipulating calendar dates. We call the ADT
Day to avoid confusion with the Date class in the Java API. This ADT is based
on the Day class defined in Chapter 4 of the Horstmann and Cornell [10].

Logically, a calendar date consists of three pieces of information: a year designa-
tor, a month designator, and a day of the month designator. A secondary piece
of information is the day of the week. In this ADT interface definition, we use
integers (e.g., Java int) to designate these pieces of information.

Caveat: The discussion of Java in these notes does not use generic type parame-
ters.

1.9.1 Constructor

create(integer y, integer m, integer d) -> Day D'

16

DA01/DataAbstraction_Java.html
DA01/DataAbstraction_Java.html
DA01/DataAbstraction_Java.html#java-implementation-of-bounded-stack

• Precondition: y != 0 && 1 <= m <= 12 && 1 <= d <= #days in month m &&
(y,m,d) does not fall in the gap formed by the change to the modern
(Gregorian) calendar

• Postcondition: D' is a valid new instance of Day with year y, month m,
and day d

1.9.2 Mutators

setDay(Day D, integer y, integer m, integer d) -> Day D'

• Precondition: D is a valid instance of Day && y != 0 && 1 <= m <=
12 && 1 <= d <= #days in month &&
(y,m,d) does not fall in the gap formed by the change to the modern
(Gregorian) calendar

• Postcondition: D' is a valid instance of Day &&
D'= D except with year y, month m, and day d

Question: Should we include setDay, setMonth, and setYear operations?
What problems might arise?

advance(Day D, integer n) -> Day D'

• Precondition: D is a valid instance of Day

• Postcondition: D' is a valid instance of Day &&
D' = D with the date moved n days later (Negative n moves to an
earlier date.)

1.9.3 Accessors

getDay(Day D) -> integer d

• Precondition: D is a valid instance of Day

• Postcondition: d is day of the month from D, where 1 <= d <= #days
in month getMonth(D)
(D is unchanged.)

getMonth(Day D) -> integer m

• Precondition: D is a valid instance of Day

• Postcondition: m is the month from D, where 1 <= m <= 12
(D is unchanged.)

getYear(Day D) -> integer y

• Precondition: : D is a valid instance of Day

• Postcondition: y is the year from D, where y != 0
(D is unchanged.)

17

getWeekday(Day D) -> integer wd

• Precondition: D is a valid instance of Day

• Postcondition: wd is the day of the week upon which D falls: 0 = Sunday,
1 = Monday, . . . , 6 = Saturday
(D is unchanged.)

equals(Day D, Day D1) -> boolean eq

• Precondition: D and D' are valid instances of Day

• Postcondition: eq is true if and only if D and D' denote the same calendar
date
(D and D' are unchanged.)

daysBetween(Day D, Day D1) -> integer d

• Precondition: D and D' are valid instances of Day

• Postcondition: d is the number of calendar days from D1 to D, i.e.,
equals(D,advance(D1,d)) would be true
(D is unchanged.)

toString(Day D) -> String s

• Precondition: D is a valid instance of Day

• Postcondition: s is the date D expressed in the format “Day[getYear(D),getMonth(D),getDay(D)]”.
(D is unchanged.)

Note: This method is a “standard” method that should be defined for most Java
classes so that they fit well into the Java language framework.

1.9.4 Destructor

destroy(Day D) ->

• Precondition: D is a valid instance of Day

• Postcondition: D no longer exists

A Java implementation of the Day ADT appears in the supplementary notes.

1.10 Client-Supplier Relationship
The design and implementation of ADTs (i.e., classes) must be approached from
two points of view simultaneously:

supplier the developers of the ADT — the providers of the services
client the users of the ADT — the users of the services (e.g., the designers of

other ADTs)

The client-supplier relationship is as represented in the following diagram:

18

DA01/DataAbstraction_Java_ADTs.html#java-class-implementation-for-day-1

________________ ________________
Client	===USES===>	Supplier
________________		________________

(ADT user) (ADT)

TODO: Replace the above diagram with a better graphic and make it a Figure.

The supplier’s concerns include:

• efficient and reliable algorithms and data structures,
• convenient implementation,
• easy maintenance.

The clients’ concerns include:

• accomplishing their own tasks,
• using the supplier ADT without effort to understand its internal details,
• having a sufficient, but not overwhelming, set of operations.

As we have noted previously, the interface of an ADT is the set of features (i.e.,
public operations) provided by a supplier to clients.

A precise description of a supplier’s interface forms a contract between clients
and supplier.

The client-supplier contract:

1. gives the responsibilities of the client. These are the conditions under
which the supplier must deliver results — when the preconditions of the
operations are satisfied (i.e., the operations are called correctly).

2. gives the responsibilities of the supplier. These are the benefits the supplier
must deliver — make the postconditions hold at the end of the operation
(i.e., the operations deliver the correct results).

The contract

• protects the client by specifying how much must be done by the supplier.

• protects the supplier by specifying how little is acceptable to the client.

If we are both the clients and suppliers in a design situation, we should consciously
attempt to separate the two different areas of concern, switching back and forth
between our supplier and client “hats”.

1.11 Design Criteria for ADT Interfaces
We can use the following design criteria for evaluating ADT interfaces. Of course,
some of these criteria conflict with one another; a designer must carefully balance
the criteria to achieve a good interface design.

19

In object-oriented languages, these criteria also apply to class interfaces.

• Cohesion: All operations must logically fit together to support a single,
coherent purpose. The ADT should describe a single abstraction.

• Simplicity: Avoid needless features. The smaller the interface the easier
it is to use the ADT (class).

• No redundancy: Avoid offering the same service in more than one way;
eliminate redundant features.

• Atomicity: Do not combine several operations if they are needed indi-
vidually. Keep independent features separate. All operations should be
primitive, that is, not be decomposable into other operations also in the
public interface.

• Completeness: All primitive operations that make sense for the abstrac-
tion should be supported by the ADT (class).

• Consistency: Provide a set of operations that are internally consistent in

– naming convention (e.g., in use of prefixes like “set” or “get”, in
capitalization, in use of verbs/nouns/adjectives),

– use of arguments and return values (e.g., order and type of arguments),
– behavior (i.e., make operations work similarly).

Avoid surprises and misunderstandings. Consistent interfaces make it easier
to understand the rest of a system if part of it is already known.

• Reusability: Do not customize ADTs (classes) to specific clients, but
make them general enough to be reusable in other contexts.

• Robustness with respect to modifications: Design the interface of
an ADT (class) so that it remains stable even if the implementation of the
ADT changes.

• Convenience: Where appropriate, provide additional operations (e.g.,
beyond the complete primitive set) for the convenience of users of the ADT
(class). Add convenience operations only for frequently used combinations
after careful study.

1.12 What Next?
TODO

1.13 Exercises
TODO

20

1.14 Acknowledgements
In Spring 2017 I adapted these lecture notes from my previous notes on this
topic. The material here is based on my study of a variety of sources (e.g., Bird
and Wadler [1], Dale [7], Gries [8]; Horstmann [9,10], Liskov [11], Meyer [12],
Mossenbock [13], Parnas [16], and Thomas [18]).

I wrote the first version of these lecture notes to use in the first Java-based
version of CSci 211 (then titled File Systems) during Fall 1996. I revised the
notes incrementally over the next decade for use in my Java-based courses on
object-orientation and software architecture. I partially revised the notes for use
in my Scala-based classes beginning in Fall 2008.

In Fall 2013 I updated these notes to better support my courses that used
non-JVM languages such as Lua, Elixir, and Haskell. I moved the extensive
Java-based content to a separate document and developed separate case studies
for the other languages.

In Summer 2017, I adapted the notes to use Pandoc. I continued to revise the
structure and text in minor ways in 2017, 2018, and 2019.

I incorporated quite a bit of this material into Chapters 2, 6, and 7 of the 2018
draft of the textbook Exploring Languages with Interpreters and Functional
Programming (ELIFP).

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on possible textbooks based on the course
materials I had developed during my three decades as a faculty member. In
January 2022, I began refining the existing content, integrating separately
developed materials together, reformatting the documents, constructing a unified
bibliography (e.g., using citeproc), and improving my build workflow and use of
Pandoc.

TODO: 2022 updates

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

1.15 Terms and Concepts
TODO

21

2 Data Abstraction in Java
2.1 Chapter Introduction
This chapter is a Java-specific supplement to the chapter Data Abstraction
Concepts [3]. However, most of the concepts apply to other object-oriented
languages (e.g., Scala [15,17]. The discussion here is meant to be read in
conjunction with the Data Abstraction Concepts chapter.

This chapter discusses use of Java classes to implement abstract data types
(ADTs). It seeks to use good object-oriented programming practices, but it does
not cover the principles and practices of object-oriented programming fully. For
more information on object orientation, see my the chapters Object-Oriented
Software Development [6] and Object-Based Paradigms [5] (a chapter in the
ELIFP textbook [4, Ch. 3]).

Caveat: I wrote this chapter originally in the late 1990s. It should be updated
to use Java generics (and possibly other newer Java features such as default
methods in interfaces and lambda expressions). However, the basic principles
used here are still relevant to contemporary Java programming.

TODO: Update chapter to use generics and possibly other newer Java features
as needed.

2.2 Java as an Object-Oriented Language
TODO: Make sure this new section and the older sections that follow use
consistent terminology and flow smoothly.

According to the concepts and terminology used in the Object-Based Paradigms
[5] chapter of the ELIFP textbook [4, Ch. 3], Java is an object-oriented language.
Its object model includes:

• objects

Java objects are instances of classes.

• classes

Java classes are declared with the keyword class.

• inheritance

A Java class inherits from (i.e., extends) one other Java class—the builtin,
top-level class Object if no class is explicitly specified.

In addition to the single inheritance from a class, a Java class implements
zero or more interfaces. A Java interface is similar to an abstract class;
it cannot be instantiated to create objects.

• subtype polymorphism

22

DA02/../DA01/DataAbstractionConcepts.html
DA02/../DA01/DataAbstractionConcepts.html
DA02/../../OOSoftDev/OOSoftDev.html
DA02/../../OOSoftDev/OOSoftDev.html
DA02/../../ELIFP/Ch03/03_Object_Paradigms.html
DA02/../../ELIFP/Ch03/03_Object_Paradigms.html

Java’s the system treats child classes as subtypes of the parent class. It
dynamically binds the invocation of a method to the appropriate method
implementation by searching up the inheritance hierarchy.

As we use Java in this chapter, a Java object exhibits all three “essential
characteristics” of objects [5]:

a. state

The state of a Java object is the mapping of the object’s attributes (i.e.,
instance variables) to their values.

b. operations

The operations of a Java object are the methods defined for the object.
A method takes the object and zero or more other arguments and either
returns information about the object’s state or changes the its state.

c. identity

Each Java object (i.e., instance of a class) has an identity that is distinct
from all other Java objects (e.g., the address of the object in memory).

As we use Java in this chapter, a Java object also exhibits both “important but
non-essential characteristics” of objects [5]:

d. encapsulation

A Java class defines sets of instance variables and methods for instances of
the class. If these instance variables or methods are declared as private,
then they can only be accessed from within the class and, hence, are
encapsulated within the class. If they are marked as public, then they
can be accessed from outside the class. As we see, we normally explicitly
declare all instance variables private and all operations public.

Java’s encapsulation is thus at the class-level not the object level.

e. independent lifecycle

Java objects exist independently of the program units (e.g., methods or
classes) that create them. An object can be instantiated in one program
unit and passed to other program units where it is used. When the object
is no longer accessible, its resources (e.g., memory) can be reclaimed by
the garbage collector.

This chapter uses a cluster of related Java classes to implement modules. Java
classes should thus be designed and implemented to satisfy the principle of
information hiding. That is, they should not reveal details of their internal
implementation (i.e., their secrets). They should only reveal aspects needed for
the abstraction.

According to the concepts and terminology used in the Types [2] chapter of the
ELIFP textbook [4, Ch. 5], Java exhibits

23

DA02/../../../ELIFP/Ch05/05_Types.html

• static typing

The Java compiler determines the type of an expression based on the
explicitly declared (or inferred) types of its component subexpressions.

• nominal typing

In addition to the builtin types, the class and interface define types.

If class Child extends Parent, then type Child is considered a subtype of
type Parent. Similarly, if a class or interface Child implements IParent,
then type Child is considered a subtype of type IParent.

• polymorphic variables

Java variables declared with some type Base can hold objects of type Base
or of any of its subtypes.

• polymorphic operations

Java dynamically binds method invocations to method implementations
along the subtype (inheritance) hierarchy.

Java also overloads function calls and some builtin operators.

Java classes (especially those implementing ADTs) should be designed and
implemented so that they satisfy the Liskov Substitution Principle [2,11,19].
That is, it should be possible to substitute a subclass instance for a superclass
instance in any circumstances.

In the following sections, we examine how to use Java to implement abstract
data types. We will elaborate on some of the concepts mentioned in this section.

2.3 Java Classes
As a language construct, a Java class{.java] is similar to a user-defined struct
type in C or user-defined record type in Pascal. A class is a template for
constructing data items that have the same structure but differing values (states).
We say that an item constructed by a class is a class instance (or an object).

Like the C structure type or Pascal record type, a Java class can consist of several
components. In C and Pascal, all the components are data fields. However, in
Java, functions and procedures may be included as components of a class. These
procedures and functions are called methods.

2.3.1 Class and Instance Methods

A method declared in a class may be either a class method or instance method.

• A class method is associated with the class as a whole, not with any specific
instance.

• An instance method is associated with an instance of the class.

24

We declare a method as a class method by giving the keyword static in the
header of its definition. For example, a main method of a program is a class
method of the class in which it is defined.

public static void main(String[] args)
{ // beginning code for the program
}

If we do not include the keyword static in the header of a method definition, the
method is an instance method. For example, consider methods that implement
the bounded stack’s push and top operations as specified in the chapter Data
Abstraction Concepts [3]:

public void pop()
{ // code for pop operation
}

public Object top()
{ // code for top operation
}

Note that pop() is a procedure (i.e., it has return type void) method and top is
a function method.

Scala note: The Scala language [14,17] does not have static members of classes.
However, the methods of a Scala singleton object have basically the same
characteristics described above for “class methods”. Often the “class methods”
appear in the companion object for a class. i.e., the object with the same
name as the class.

2.3.2 Class and Instance Variables

In a similar fashion, the variables (data fields) declared in a class may be either
class variables or instance variables.

• A class variable is associated with the class as a whole; there is only one
copy of the variable for the entire class. As with methods, the keyword
static is used to declare a class variable.

• An instance variable is associated with an instance of the class; each
instance has its own instance of the variable. As with methods, the absence
of the keyword static denotes an instance variable.

An instance method has direct access to the instance variables of the class
instance (object) to which it is applied. The instance’s variables are implicit
arguments of the method calls. (If needed to distinguish among names, the
builtin variable this can be used to refer to the instance to which the method is
applied.) The instance methods also have access to the class variables (if any).

Class methods only have access to the class variables. The methods do not

25

DA02/../DA01/DataAbstractionConcepts.html
DA02/../DA01/DataAbstractionConcepts.html

have any implicit arguments. In fact, class methods can be called without any
instances of the class being in existence.

Scala note: The Scala language does not have static members of classes. However,
the variables of a Scala singleton object have basically the same characteristics
described above for “class variables”. Often the “class variables” appear in the
companion object for a class. i.e., the object with the same name as the class.

2.3.3 Public and Private Accessibility

The components of a class can be designated as public or private.

• The public components of the class are accessible from anywhere in the
program (i.e., from any package).

• The private components are only accessible from inside the class.

As a general rule, the data fields of a class should be private instance variables,
meaning that they are associated with a specific instance and are only accessible
by the instance methods. This hides, or encapsulates, the data fields within the
class instance.

Note: Actually, the instance methods of a Java class can access the instance
variables of any instance of that class, not just the current instance.

In general, avoid public instance variables. They break the principle of informa-
tion hiding, leading to potential entanglements among modules.

A public method of a class is a service provided by that instance to other parts
of a program. The private methods of a class can be used in implementing the
public methods.

Class methods and variables should be used sparingly. These are more or less
the types of subprograms and global variables found in languages like C and
Pascal. Their excessive use can greatly reduce the potential benefits that can be
realized from object-oriented techniques.

Java note: There are two other types of accessibility, “friendly” and protected,
but public and private are sufficient for our discussion of ADT implementa-
tions.

Scala note: Although similar in concept to that of Java, the accessibility features
of Scala differ somewhat [14,17]. By default, all features are public in Scala, but
accessibility can restricted in a more fine-grained manner than in Java. The
unmodified keyword private has the same meaning as in Java.

2.3.4 Primitive and Reference Variables

A Java variable is a strongly typed “container” in memory that is declared to
hold either:

26

• a value of the associated primitive data type such as integers (int), floating
point numbers (double), booleans (boolean), and single characters (char).

• a reference to (i.e., memory address of) an instance of the associated class
(or other reference) type.

Java note: Although arrays are not class instances, array variables hold a
reference to an instance of the array.

The class instances themselves are stored in the dynamically managed heap
memory area. Java allocates memory from the heap to hold newly constructed
instances of a class. Java’s garbage collector reclaims the memory for instances
that are no longer needed by the program.

Note: Recent versions of Java can sometimes hide the differences between
primitive values and references by automatically “boxing” primitive values as
instances of the corresponding wrapper classes (e.g., int values as Integer
instances). Scala goes further in that primitives and references are in the same
type hierarchy. However, both languages run on the Java Virtual Machine, which
makes a distinction between primitive values and references (i.e., pointers), so it
is not possible to avoid the distinction entirely.

2.4 Implementing ADTs as Java Classes
If only one implementation of an ADT is needed, the following techniques can
be used to implement an ADT using Java.

The implementation techniques discussed in this section implement the ADT in
an imperative way. That is, instead of returning a new instance of the ADT with
a modified state, a mutator operation usually modifies the state of the existing
instance.

Caveat: The discussion of Java in this chapter does not use generic type parame-
ters. For the StackB ADT (defined in the Data Abstraction Concepts), the type
of the Item values stored in the stack can be a parameter of the StackB class.

TODO: Consider modifying this discusion to use an Item generic parameter.

1. Use the Java class construct to represent the entire ADT. If we
want to allow access to the class from anywhere in the program, we will
make the class public.

For the StackB ADT, we can use the following structure for the class:

public class StackB
{ // implementation of instance methods and data here
}

2. Use an instance of the Java class to represent an instance of the
ADT and, hence, variables of the class type to hold references to
instances.

27

DA02/../DA01/DataAbstractionConcepts.html

For example, to declare a variable that can hold a reference to a StackB
instance, we can use the following declaration:

StackB stk;

3. As each component of the class is defined, ensure that the se-
mantics of the ADT operations are implemented appropriately.
That is, make sure:

• an appropriate implementation (representation) invariant is defined
to capture what it means for the internal state of an instance to be
valid,

• the interface and implementation invariants are established (i.e., made
true) by the constructors and preserved (i.e., kept true) by the mutator
and accessor methods,

• each method’s postcondition is established by the method in any
circumstance when it is called with the precondition true.

The class and its methods should be documented with the invariants,
preconditions, and postconditions.

4. Represent the ADT’s constructors by Java constructor meth-
ods. In most circumstances, also include a parameterless default
constructor.

A Java constructor is a method with the same name as the class. It does
not have a return type specified. Upon creation of an instance of the class,
the constructor initializes the instance’s state so that the class invariants
are established.

A constructor is normally invoked by the Java operator new. The operator
new allocates memory on the heap for the instance, calls the constructor
to initialize the new instance, and then returns a reference to the new
instance.

For example, we can represent the ADT operation create by the construc-
tor method StackB.

public class StackB
{ public StackB(int size)

{ // initialization code
}

// rest of StackB methods and data ...
}

A user of the StackB class can then declare a variable and initialize it to
hold a reference to a new stack with a capacity of 100 items as follows:

StackB stk = new StackB(100);

28

The expression new StackB(100) allocates a StackB instance in the heap
storage and calls the constructor above to initialize the data fields encap-
sulated within the instance.

5. Represent the ADT operations by instance methods of the class.
Thus the state of the ADT instance, which is given explicitly in the ADT
signatures, becomes an implicit argument of all method calls. Mutators
also have the state as an implicit return.

We can apply a method to a class instance by using the selector (i.e., “dot”)
notation. This notation is similar to the notation for accessing record
components in Pascal.

For example, in the case of the StackB ADT we can represent the operations
as instance methods of class StackB. The explicit StackB parameters and
return values of the operations thus become implicit.

Suppose we want to push an item x onto the stk created above. We can
do that with the following code:

if (!stk.full())
stk.push(x);

We can then examine the top item and remove it:

if (!stk.empty())
{ it = stk.top();

stk.pop();
}

6. Make the constructors, mutators, accessors, and destructors
public methods of the class. That is, precede the method’s definition
by the keyword public.

7. Represent the ADT mutator operations by Java procedure (i.e.,
void) methods, except those mutator operations that explicitly
require new instances to be generated (e.g., a copy or clone
operation).

For example, the pop method of StackB would have the following structure:

public void pop()
{ // code to implement operation
}

A mutator method modifies the encapsulated state of the class instance
(which is the implicit argument of the method). In any circumstance in
which its precondition and the class invariants hold on entry, the method
must establish its postcondition and reestablish the invariants upon exit.
(The invariant might not hold in the middle of the method’s execution.)

29

Comment: Implementing mutator operations as procedure calls that modify
the stored state is really an optimization. All mutators can be implemented
in the applicative style, returning a modified copy of the instance. This
implementation might, however, be inefficient in use of processor time and
memory.

8. For certain mutator operations (e.g., copy or clone), implement
the corresponding Java methods to return new instances of
the class rather than to modify the current instance (i.e., their
implicit arguments).

Any mutator method must, of course, establish its postcondition and
reestablish the invariants for the current instance. In addition, these
applicative mutators must also establish the invariants for the new instance
returned.

9. Represent the ADT accessor operations by Java function methods
of < the proper return type.

For example, the empty method of StackB would have the following struc-
ture:

public boolean empty()
{ // code to implement operation
}

An accessor method accesses the encapsulated state of the class instance
(which is the implicit argument) and computes a value to be returned. In
any circumstance in which its precondition and the class invariants hold
on entry, the method must establish its postcondition and reestablish the
invariants upon exit. (The invariant might not hold in the middle of the
method’s execution.)

10. If necessary for deallocation of internal resources, represent the
ADT destructor methods by explicit Java procedures; in most
cases, however. just allow the automatic garbage collection to
reclaim instances that are no longer being used.

For example, in the StackB class, we might include an explicit destroy
operation that releases the storage resources and disables further use of
the instance.

public void destroy()
{ // code to free resources
}

Java note: The Java framework allows a finalize() method to be included
in each class. This method is called implicitly whenever the garbage
collector detects that the instance is no longer in use. However, since it is
difficult to predict when (if ever) this method will be executed, it is safer

30

to include explicit destructors when resources are in short supply and must
be explicitly managed.

11. Use private data fields of the Java class to represent the encapsu-
lated state of the instance needed for a particular implementation.
By making the data fields private they are still available to the instance’s
methods, but are not visible outside the class.

For example, the StackB class might have the following data fields:

public class StackB
{ // public operations of class instance

// encapsulated data fields of class instance
private int topItem; // Pointer to next index for insertion
private int capacity; // Maximum number of items in stack
private Object[] stk; // the stack

}

12. Do not use public data fields in the class. These violate the
principle of information hiding. Instead introduce appropriate
accessor and mutator methods to allow manipulation of the
hidden state.

13. Include, as appropriate, private methods to aid in implementa-
tion.

Functionality common to several methods can be placed in separate func-
tions and procedures as needed. However, since these are private, they
can only be accessed from within the class and thus can be changed without
affecting the public interface of the class.

14. Add any other methods needed to make the ADT fit into the
Java environment.

For example, it is frequently useful to add public toString and clone
methods. The toString method returns a Java String reflecting the
“value” of the instance in a format suitable for printing. The clone method
creates a new instance that has the same value as the current instance.

15. In general, avoid use of class (i.e., static) variables. Since a class
variable is shared among all instances of the class, it may be difficult to
preserve the invariants for individual instances as the value of the class
variable changes.

However, it is a good programming practice to use class constants where
appropriate. These are data fields declared with both the static and
final modifiers. Their values may be initialized but cannot be changed
thereafter.

31

These constants may be declared private if usage is to be restricted to
the class or public if the users of the class also need access.

By convention, the names of constants are normally written with all
uppercase letters. For example, the following defines a symbolic name for
the integer code used for Sunday as a day of the week in the Day class
defined later.

public static final int SUNDAY = 1;

Caveat: When this set of notes was originally written, Java did not yet have
generics. So the examples below handle the type parameters of the ADT in
other ways. A Java generic provides a class facility that can be parameterized
with types (like the C++ template or Ada generic mechanisms).

For example, in the implementation below we represent the set Item of the
StackB{.java} ADT by the class Object. As we will see when we discuss
inheritance, the Object type will allow us to store an instance of any class on
the StackB. With this definition, any data of a reference type can appear in the
stack, but values of the primitive types cannot. A better implementation would
have Item as type parameter of the class.

The next section gives a Java implementation of the StackB ADT. A similar
constructive definition and two implementations of a Queue ADT are available
in a separate document.

TODO: Beter integrate SoftwareInterfaces into this document collection.

2.4.1 Java Implementation of Bounded Stack

TODO: Reconstruct (or find) the following source code and ensure that it
executes on the current Java platform. Insert link.

In this section, we give an implementation of the StackB ADT that uses an array
of objects and an integer “pointer” to represent the stack. (This implementation
does not use Java generic classes.)

This implementation is not robust; each operation assumes that its precondition
holds. A more robust implementation might check whether the precondition
holds and throw an exception if it does not.

Remember that the invariants are implicitly pre- and postconditions of all mutator
and accessor methods, postconditions of the constructor, and preconditions of
the destructor.

// A Bounded Stack ADT
public class StackB
{ // Interface Invariant: Once created and until destroyed, this

// stack instance has a valid and consistent internal state

public StackB(int size)

32

DA02/../SoftwareInterfaces/Queue.html

// Pre: size >= 0
// Post: initialized new instance with capacity size && empty()
{ stk = new Object[size];

capacity = size;
topItem = 0;
}

public void push(Object item)
// Pre: NOT full()
// Post: item added as the new top of this instance's stack
{ stk[topItem] = item;

topItem++;
}

public void pop()
// Pre: NOT empty()
// Post: item at top of stack removed from this instance
{ topItem--;

stk[topItem] = null;
}

public Object top()
// Pre: NOT empty()
// Post: return item at top of this instance's stack
{ return stk[topItem-1];
}

public boolean empty()
// Pre: true
// Post: return true iff this instance's stack has no elements
{ return (topItem <= 0);
}

public boolean full()
// Pre: true
// Post: return true iff this instance's stack is at full capacity
{ return (topItem >= capacity);
}

public void destroy()
// Pre: true
// Post: internal resources released; stack effectively deleted
{ stk = null;
capacity = 0;

topItem = 0;
}

33

// Implementation Invariant for informal model:
// 0 <= topItem <= capacity &&
// stack is in array section stk[0..topItem-1]
// with the top at stk[topItem-1], etc.

// Implementation Invariant for more formal model representing stack
// as tuple (integer max, sequence stkseq)
// m == capacity && 0 <= topItem <= capacity &&
// stackInArray(stk,topItem,stkseq)
// where stackInArray(arr,t,ss) = if t == 0 then ss == []
// else arr[t-1] == head(ss)
// && stackInArray(arr,t-1,tail(ss))

private int topItem; // Pointer to next index for insertion
private int capacity; // Maximum number of items in stack
private Object[] stk; // the stack

}

2.5 Better Approach to Implementing ADTs in Java
TODO: Reconstruct (or find) the following source code and ensure that it
executes on the current Java platform. Inset link.

If several different implementations of an ADT are needed, then the Java specifi-
cation of an ADT’s interface should be separated from the class implementation.
The interface specification can be reused among several classes and various
implementations of the interface can be used interchangeably.

This can be done as follows.

1. Define a Java interface that specifies the type signatures for
the ADT’s mutator and accessor (and, if needed, destructor)
operations. These method signatures should have the same characteristics
as described above in the discussion of class-based specification.

2. Specify and document the interface by the interface invariants,
preconditions, and postconditions that must be supported by any
implementation of the ADT. There are no implementation invariants
for an interface, but individual classes that implement the interface will
have them.

For example, a bounded stack interface might be specified as follows:

public interface StackADT
{ // Interface Invariant: Once created and until destroyed, this

// stack instance has a valid and consistent internal state

public void push(Object item);

34

// Pre: NOT full()
// Post: item added as the new top of this instance's stack

...

public Object top();
// Pre: NOT empty()
// Post: return item at top of this instance's stack

...
}

3. Provide one or more concrete classes that implement the
interface.

For example, an array-based StackADT could be implemented similarly to
the StackB definition given in the previous section.

public class StackInArray implements StackADT
{ // Interface Invariant: Once created and until destroyed, this

// stack instance has a valid and consistent internal state

public StackInArray(int size)
// Pre: size >= 0
// Post: initialized new instance with capacity size && empty()
{ stk = new Object[size];
capacity = size;

topItem = 0;
}

public void push(Object item)
// Pre: NOT full()
// Post: item added as the new top of this instance's stack
{ stk[topItem] = item;

topItem++;
}

...

public Object top()
// Pre: NOT empty()
// Post: return item at top of this instance's stack
{ return stk[topItem-1];
}

...

35

// Implementation Invariant for informal model:
// 0 <= topItem <= capacity &&
// stack is in array section stk[0..topItem-1]
// with the top at stk[topItem-1], etc.

// Implementation Invariant for more formal model representing stack
// as tuple (integer max, sequence stkseq)
// m == capacity && 0 <= topItem <= capacity &&
// stackInArray(stk,topItem,stkseq)
// where stackInArray(arr,t,ss) =
// if t == 0 then ss == []
// else arr[t-1] == head(ss)
// && stackInArray(arr,t-1,tail(ss))

private int topItem; // Pointer to next index for insertion
private int capacity; // Maximum number of items in stack
private Object[] stk; // the stack

}

4. Declare variables of the ADT’s interface type to hold instances
of any concrete class that implements the interface. Any of the
operations defined in the interface can be applied to the instance to
which this variable refers.

For example, a variable of type StackADT can hold instances of any concrete
class that implements the interface StackADT.

StackADT theStack = new StackInArray(100);
theStack.push("Hello World");

For an ADT specification and implementations that follow this approach, see
the description of the Ranked Sequence ADT case study given in a separate
document. In addition to Java interfaces, the Ranked Sequence case study uses
other Java features such as exceptions, enumerations, packages, and Javadoc
annotations.

TODO: Integrate SoftwareInterfaces into this document collection.

2.5.1 Java Class Implementation for Day

TODO: Reconstruct (or find) the following source code and ensure that it
executes on the current Java platform. Inset link.

The following implementation of the Day ADT is adapted from the like-named
class in Horstmann and Cornell’s book Core Java [10].

This implementation represents the calendar as three integers. It converts the
dates to and from Julian dates to do some of the operations.

36

DA02/../SoftwareInterfaces/RankedSequence.html

// This class implementation is adapted from the Day class in
// Horstmann and Cornell, Core Java 1.2: Volume I - Fundamentals
// (Fourth Edition), Prentice Hall, 1999.

import java.util.*;
import java.io.*;

public class Day
{

// Interface Invariant: Once created and until destroyed, this
// instance contains a valid date. getdate() != 0 &&
// 1 <= getMonth() <= 12 && 1 <= getDay() <= #days in getMonth().
// Also calendar date getMonth()/getDay()/getYear() does not
// fall in the gap formed by the change to the modern
// (Gregorian) calendar.

// Constants for days of the week

public static final int SUNDAY = 1;
public static final int MONDAY = 2;
public static final int TUESDAY = 3;
public static final int WEDNESDAY = 4;
public static final int THURSDAY = 5;
public static final int FRIDAY = 6;
public static final int SATURDAY = 7;

// Constructors

public Day()
// Pre: true
// Post: the new instance's day, month, and year set to today's
// date (i.e., the date of creation of the instance)
//
// Implementation uses GregorianCalendar class from the Java API
// to get today's date.
//
{ GregorianCalendar todaysDate = new GregorianCalendar();

year = todaysDate.get(Calendar.YEAR);
month = todaysDate.get(Calendar.MONTH) + 1;
day = todaysDate.get(Calendar.DAY_OF_MONTH);

}

public Day(int y, int m, int d)
throws IllegalArgumentException

// Pre: y != 0 && 1 <= m <= 12 && 1 <= d <= #days in month m
// (y,m,d) does not fall in the gap formed by the

37

// change to the modern (Gregorian) calendar.
// Post: the new instance's day, month, and year set to y, m,
// and d, respectively
// Exception: IllegalArgumentException if y m d not a valid date
{ year = y;

month = m;
day = d;
if (!isValid())

throw new IllegalArgumentException();
}

// Mutators

public void setDay(int y, int m, int d)
throws IllegalArgumentException

// Pre: y != 0 && 1 <= m <= 12 && 1 <= d <= #days in month m
// (y,m,d) does not fall in the gap formed by the
// change to the modern (Gregorian) calendar.
// Post: this instance's day, month, and year set to y, m,
// and d, respectively
// Exception: IllegalArgumentException if y m d not a valid date
{ year = y;

month = m;
day = d;
if (!isValid())

throw new IllegalArgumentException();
}

public void advance(int n)
// Pre: true
// Post: this instance's date moved n days later. (Negative n
// moves to an earlier date.)
{ fromJulian(toJulian() + n);
}

// Accessors

public int getDay()
// Pre: true
// Post: returns the day from this instance, where
// 1 <= getDay() <= #days in this instance's month
{ return day;
}

public int getMonth()
// Pre: true

38

// Post: returns the month from this instance's date, where
// 1 <= getMonth() <= 12
{ return month;
}

public int getYear()
// Pre: true
// Post: returns the year from this instance's date, where
// getYear() != 0
{ return year;
}

public int getWeekday()
// Pre: true
// Post: returns the day of the week upon which this instance
// falls, where 1 <= getWeekday() <= 7;
// 1 == Sunday, 2 == Monday, ..., 7 == Saturday
{ // calculate day of week

return (toJulian() + 1) % 7 + 1;
}

public boolean equals(Day dd)
// Pre: dd is a valid instance of Day
// Post: returns true if and only if this instance and instance
// dd denote the same calendar date
{ return (year == dd.getYear() && month == dd.getMonth()

&& day == dd.getDay());
}

public int daysBetween(Day dd)
// Pre: dd is a valid instance of Day
// Post: returns the number of calendar days from the dd
// instance's date to this instance's date, where
// equals(dd.advance(n)) would hold
{ // implementation code

return toJulian() - dd.toJulian();
}

public String toString()
// Pre: true
// Post: returns this instance's date expressed in the format
// "Day[year,month,day]"
{

return "Day[" + year + "," + month + "," + day + "]";
}

39

// Destructors -- None needed

// Private Methods

private boolean isValid()
// Pre: true
// Post: returns true iff this is a valid date
{ Day t = new Day();

t.fromJulian(this.toJulian());
return t.day == day && t.month == month

&& t.year == year;
}

private int toJulian()
// Pre: true
// Post: returns Julian day number that begins at noon of this day
//
// A positive year signifies A.D., negative year B.C.
// Remember that the year after 1 B.C. was 1 A.D. (i.e., no year 0).
//
// A convenient reference point is that May 23, 1968, at noon
// is Julian day 2440000.
//
// Julian day 0 is a Monday.
//
// This algorithm is from Press et al., Numerical Recipes
// in C, 2nd ed., Cambridge University Press 1992.
//
{ int jy = year;

if (year < 0)
jy++;

int jm = month;
if (month > 2)

jm++;
else
{ jy--;

jm += 13;
}
int jul = (int) (java.lang.Math.floor(365.25 * jy)

+ java.lang.Math.floor(30.6001*jm) + day + 1720995.0);

int IGREG = 15 + 31*(10+12*1582);
// Gregorian Calendar adopted Oct. 15, 1582

if (day + 31 * (month + 12 * year) >= IGREG)
// change over to Gregorian calendar

40

{ int ja = (int)(0.01 * jy);
jul += 2 - ja + (int)(0.25 * ja);

}
return jul;

}

private void fromJulian(int j)
// Pre: true
// Post: this calendar Day is set to Julian date j
//
// This algorithm is from Press et al., Numerical Recipes
// in C, 2nd ed., Cambridge University Press 1992
//
{ int ja = j;

int JGREG = 2299161;
/* the Julian date of the adoption of the Gregorian

calendar
*/

if (j >= JGREG)
/* correct for crossover to Gregorian Calendar */
{ int jalpha = (int)(((float)(j - 1867216) - 0.25)

/ 36524.25);
ja += 1 + jalpha - (int)(0.25 * jalpha);

}
int jb = ja + 1524;
int jc = (int)(6680.0 + ((float)(jb-2439870) - 122.1)

/365.25);
int jd = (int)(365 * jc + (0.25 * jc));
int je = (int)((jb - jd)/30.6001);
day = jb - jd - (int)(30.6001 * je);
month = je - 1;
if (month > 12)

month -= 12;
year = jc - 4715;
if (month > 2)

--year;
if (year <= 0)

--year;
}

// Implementation Invariants:
// year != 0 && 1 <= month <= 12 && 1 <= day <= #days in month
// (year,month,day) not in gap formed by the change to the
// modern (Gregorian) calendar

41

private int year;
private int month;
private int day;

}

2.6 What Next?
TODO

2.7 Exercises
TODO

2.8 Acknowledgments
This chapter was originally part of my Data Abstraction Concepts notes [3].
See the Acknowledgments section of that chapter for more information on its
development. For the Lua-based offering of CSci 658 in Fall 2013. I separated
most of the Java-specific material into this chapter to make the content of the
Data Abstraction chapter more language independent.

In this chapter, I use a Java programming style influenced by Horstmann and
Cornell’s book Core Java [10]. I adapted the Java Day design and implementation
from the like-named class in Chapter 4 of Horstmann and Cornell’s of that book
[10].

In Summer 2017, I modified this chapter slightly to link it into the revised
(Pandoc Markdown) version of the Notes on Data Abstraction chapter and then
reformatted it to use Pandoc Markdown in Spring 2018.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on possible textbooks based on the course
materials I had developed during my three decades as a faculty member. In
January 2022, I began refining the existing content, integrating separately
developed materials together, reformatting the documents, constructing a unified
bibliography (e.g., using citeproc), and improving my build workflow and use of
Pandoc.

In 2022, I also added the section “Java as an Object-Oriented Language” to
better tie this chapter to the concepts and terminology used in the ELIFP
textbook [4], especially chapters 3 and 5.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

42

DA02/../DA01/DataAbstractionConcepts.html
DA02/../DA01/DataAbstractionConcepts.html#acknowledgements

2.9 Concepts
TODO

2.10 References
[1] Richard Bird. 1998. Introduction to functional programming using Haskell

(Second ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.
[2] H. Conrad Cunningham. 2019. Type system concepts. University of

Mississippi, Department of Computer and Information Science, University,
Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/
TypeConcepts/TypeSystemConcepts.html

[3] H. Conrad Cunningham. 2022. Data abstraction concepts. University of
Mississippi, Department of Computer and Information Science, University,
Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/
DataAbstraction/DA01/DataAbstractionConcepts.html

[4] H. Conrad Cunningham. 2022. Exploring programming languages with in-
terpreters and functional programming (ELIFP). University of Mississippi,
Department of Computer and Information Science, University, Mississippi,
USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/ELIFP/EL
IFP.pdf

[5] H. Conrad Cunningham. 2022. Object-based paradigms. In Exploring
programming languages with interpreters and functional programming
(ELIFP). University of Mississippi, Department of Computer and Infor-
mation Science, University, Mississippi, USA. Retrieved from https://john
.cs.olemiss.edu/~hcc/docs/ELIFP/Ch03/03_Object_Paradigms.html

[6] H. Conrad Cunningham. 2022. Object-oriented software development.
University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/docs/OOSoftDev/OOSoftDev.html

[7] Nell Dale and Henry M. Walker. 1996. Abstract data types: Specifi-
cations, implementations, and applications. D. C. Heath, Lexington,
Massachusetts, USA.

[8] David Gries. 1981. Science of programming. Springer, New York, New
York, USA.

[9] Cay S. Horstmann. 1995. Mastering object-oriented design in C++.
Wiley, Indianapolis, Indiana, USA.

[10] Cay S. Horstmann and Gary Cornell. 1999. Core Java 1.2: Volume
I—Fundamentals. Prentice Hall, Englewood Cliffs, New Jersey, USA.

[11] Barbara Liskov. 1987. Keynote address—Data abstraction and hierarchy.
In Proceedings on object-oriented programming systems, languages, and
applications (OOPSLA ’87): addendum, ACM, Orlando, Florida, USA,
17–34.

43

https://john.cs.olemiss.edu/~hcc/docs/TypeConcepts/TypeSystemConcepts.html
https://john.cs.olemiss.edu/~hcc/docs/TypeConcepts/TypeSystemConcepts.html
https://john.cs.olemiss.edu/~hcc/docs/DataAbstraction/DA01/DataAbstractionConcepts.html
https://john.cs.olemiss.edu/~hcc/docs/DataAbstraction/DA01/DataAbstractionConcepts.html
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/Ch03/03_Object_Paradigms.html
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/Ch03/03_Object_Paradigms.html
https://john.cs.olemiss.edu/~hcc/docs/OOSoftDev/OOSoftDev.html
https://john.cs.olemiss.edu/~hcc/docs/OOSoftDev/OOSoftDev.html

[12] Bertrand Meyer. 1997. Object-oriented program construction (Second
ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.

[13] Hanspeter Mossenbock. 1995. Object-oriented programming in Oberon-2.
Springer, Berlin, Germany.

[14] Martin Odersky, Lex Spoon, and Bill Venners. 2008. Programming in
Scala (First ed.). Artima, Inc., Walnut Creek, California, USA.

[15] Martin Odersky, Lex Spoon, and Bill Venners. 2021. Programming in
Scala (Fifth ed.). Artima, Inc., Walnut Creek, California, USA.

[16] David L. Parnas. 1972. On the criteria to be used in decomposing systems
into modules. Communications of the ACM 15, 12 (December 1972),
1053–1058.

[17] Scala Language Organization. 2022. The Scala programming language.
Retrieved from https://www.scala-lang.org/

[18] Pete Thomas and Ray Weedom. 1995. Object-oriented programming in
Eiffel. Addison-Wesley, Boston, Massachusetts, USA.

[19] Wikpedia: The Free Encyclopedia. 2022. Liskov substitution principle.
Retrieved from https://en.wikipedia.org/wiki/Liskov_substitution_prin
ciple

44

https://www.scala-lang.org/
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle

	Data Abstraction Concepts
	Chapter Introduction
	What is Abstraction?
	Kinds of abstraction
	Procedures and functions

	Concrete Data Structures
	Abstract Data Structures
	Abstract Data Types
	Defining ADTs
	Axiomatic Specification of an Unbounded Stack ADT
	Name
	Sets
	Signatures
	Constructors
	Mutators
	Accessors
	Destructors

	Semantics (axiomatic approach)

	Constructive Specification of a Bounded Stack ADT
	Name
	Sets
	Signatures
	Constructors
	Mutators
	Accessors
	Destructors

	Semantics (constructive approach)
	Constructor
	Mutators
	Accessors
	Destructor

	More formal semantics for bounded stack
	Constructor
	Mutators
	Accessors
	Destructor

	Date (Day) ADT
	Constructor
	Mutators
	Accessors
	Destructor

	Client-Supplier Relationship
	Design Criteria for ADT Interfaces
	What Next?
	Exercises
	Acknowledgements
	Terms and Concepts

	Data Abstraction in Java
	Chapter Introduction
	Java as an Object-Oriented Language
	Java Classes
	Class and Instance Methods
	Class and Instance Variables
	Public and Private Accessibility
	Primitive and Reference Variables

	Implementing ADTs as Java Classes
	Java Implementation of Bounded Stack

	Better Approach to Implementing ADTs in Java
	Java Class Implementation for Day

	What Next?
	Exercises
	Acknowledgments
	Concepts
	References

