
Data Abstraction in Java

H. Conrad Cunningham

15 June 2022

Contents
2 Data Abstraction in Java 2

2.1 Chapter Introduction . 2
2.2 Java as an Object-Oriented Language 2
2.3 Java Classes . 4

2.3.1 Class and Instance Methods 4
2.3.2 Class and Instance Variables 5
2.3.3 Public and Private Accessibility 6
2.3.4 Primitive and Reference Variables 6

2.4 Implementing ADTs as Java Classes 7
2.4.1 Java Implementation of Bounded Stack 12

2.5 Better Approach to Implementing ADTs in Java 14
2.5.1 Java Class Implementation for Day 16

2.6 What Next? . 22
2.7 Exercises . 22
2.8 Acknowledgments . 22
2.9 Concepts . 23
2.10 References . 23

Copyright (C) 1996-2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of June 2022 is a recent
version of Firefox from Mozilla.

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

2 Data Abstraction in Java
2.1 Chapter Introduction
This chapter is a Java-specific supplement to the chapter Data Abstraction Con-
cepts [2]. However, most of the concepts apply to other object-oriented languages
(e.g., Scala [9,10]. The discussion here is meant to be read in conjunction with
the Data Abstraction Concepts chapter.

This chapter discusses use of Java classes to implement abstract data types
(ADTs). It seeks to use good object-oriented programming practices, but it does
not cover the principles and practices of object-oriented programming fully. For
more information on object orientation, see my the chapters Object-Oriented
Software Development [5] and Object-Based Paradigms [4] (a chapter in the
ELIFP textbook [3, Ch. 3]).

Caveat: I wrote this chapter originally in the late 1990s. It should be updated
to use Java generics (and possibly other newer Java features such as default
methods in interfaces and lambda expressions). However, the basic principles
used here are still relevant to contemporary Java programming.

TODO: Update chapter to use generics and possibly other newer Java features
as needed.

2.2 Java as an Object-Oriented Language
TODO: Make sure this new section and the older sections that follow use
consistent terminology and flow smoothly.

According to the concepts and terminology used in the Object-Based Paradigms
[4] chapter of the ELIFP textbook [3, Ch. 3], Java is an object-oriented language.
Its object model includes:

• objects

Java objects are instances of classes.

• classes

Java classes are declared with the keyword class.

• inheritance

A Java class inherits from (i.e., extends) one other Java class—the builtin,
top-level class Object if no class is explicitly specified.

In addition to the single inheritance from a class, a Java class implements
zero or more interfaces. A Java interface is similar to an abstract class;
it cannot be instantiated to create objects.

• subtype polymorphism

2

../DA01/DataAbstractionConcepts.html
../DA01/DataAbstractionConcepts.html
../../OOSoftDev/OOSoftDev.html
../../OOSoftDev/OOSoftDev.html
../../ELIFP/Ch03/03_Object_Paradigms.html
../../ELIFP/Ch03/03_Object_Paradigms.html

Java’s the system treats child classes as subtypes of the parent class. It
dynamically binds the invocation of a method to the appropriate method
implementation by searching up the inheritance hierarchy.

As we use Java in this chapter, a Java object exhibits all three “essential
characteristics” of objects [4]:

a. state

The state of a Java object is the mapping of the object’s attributes (i.e.,
instance variables) to their values.

b. operations

The operations of a Java object are the methods defined for the object.
A method takes the object and zero or more other arguments and either
returns information about the object’s state or changes the its state.

c. identity

Each Java object (i.e., instance of a class) has an identity that is distinct
from all other Java objects (e.g., the address of the object in memory).

As we use Java in this chapter, a Java object also exhibits both “important but
non-essential characteristics” of objects [4]:

d. encapsulation

A Java class defines sets of instance variables and methods for instances of
the class. If these instance variables or methods are declared as private,
then they can only be accessed from within the class and, hence, are
encapsulated within the class. If they are marked as public, then they
can be accessed from outside the class. As we see, we normally explicitly
declare all instance variables private and all operations public.

Java’s encapsulation is thus at the class-level not the object level.

e. independent lifecycle

Java objects exist independently of the program units (e.g., methods or
classes) that create them. An object can be instantiated in one program
unit and passed to other program units where it is used. When the object
is no longer accessible, its resources (e.g., memory) can be reclaimed by
the garbage collector.

This chapter uses a cluster of related Java classes to implement modules. Java
classes should thus be designed and implemented to satisfy the principle of
information hiding. That is, they should not reveal details of their internal
implementation (i.e., their secrets). They should only reveal aspects needed for
the abstraction.

According to the concepts and terminology used in the Types [1] chapter of the
ELIFP textbook [3, Ch. 5], Java exhibits

3

../../../ELIFP/Ch05/05_Types.html

• static typing

The Java compiler determines the type of an expression based on the
explicitly declared (or inferred) types of its component subexpressions.

• nominal typing

In addition to the builtin types, the class and interface define types.

If class Child extends Parent, then type Child is considered a subtype of
type Parent. Similarly, if a class or interface Child implements IParent,
then type Child is considered a subtype of type IParent.

• polymorphic variables

Java variables declared with some type Base can hold objects of type Base
or of any of its subtypes.

• polymorphic operations

Java dynamically binds method invocations to method implementations
along the subtype (inheritance) hierarchy.

Java also overloads function calls and some builtin operators.

Java classes (especially those implementing ADTs) should be designed and
implemented so that they satisfy the Liskov Substitution Principle [1,7,11]. That
is, it should be possible to substitute a subclass instance for a superclass instance
in any circumstances.

In the following sections, we examine how to use Java to implement abstract
data types. We will elaborate on some of the concepts mentioned in this section.

2.3 Java Classes
As a language construct, a Java class{.java] is similar to a user-defined struct
type in C or user-defined record type in Pascal. A class is a template for
constructing data items that have the same structure but differing values (states).
We say that an item constructed by a class is a class instance (or an object).

Like the C structure type or Pascal record type, a Java class can consist of several
components. In C and Pascal, all the components are data fields. However, in
Java, functions and procedures may be included as components of a class. These
procedures and functions are called methods.

2.3.1 Class and Instance Methods

A method declared in a class may be either a class method or instance method.

• A class method is associated with the class as a whole, not with any specific
instance.

• An instance method is associated with an instance of the class.

4

We declare a method as a class method by giving the keyword static in the
header of its definition. For example, a main method of a program is a class
method of the class in which it is defined.

public static void main(String[] args)
{ // beginning code for the program
}

If we do not include the keyword static in the header of a method definition, the
method is an instance method. For example, consider methods that implement
the bounded stack’s push and top operations as specified in the chapter Data
Abstraction Concepts [2]:

public void pop()
{ // code for pop operation
}

public Object top()
{ // code for top operation
}

Note that pop() is a procedure (i.e., it has return type void) method and top is
a function method.

Scala note: The Scala language [8,10] does not have static members of classes.
However, the methods of a Scala singleton object have basically the same
characteristics described above for “class methods”. Often the “class methods”
appear in the companion object for a class. i.e., the object with the same
name as the class.

2.3.2 Class and Instance Variables

In a similar fashion, the variables (data fields) declared in a class may be either
class variables or instance variables.

• A class variable is associated with the class as a whole; there is only one
copy of the variable for the entire class. As with methods, the keyword
static is used to declare a class variable.

• An instance variable is associated with an instance of the class; each
instance has its own instance of the variable. As with methods, the absence
of the keyword static denotes an instance variable.

An instance method has direct access to the instance variables of the class
instance (object) to which it is applied. The instance’s variables are implicit
arguments of the method calls. (If needed to distinguish among names, the
builtin variable this can be used to refer to the instance to which the method is
applied.) The instance methods also have access to the class variables (if any).

Class methods only have access to the class variables. The methods do not

5

../DA01/DataAbstractionConcepts.html
../DA01/DataAbstractionConcepts.html

have any implicit arguments. In fact, class methods can be called without any
instances of the class being in existence.

Scala note: The Scala language does not have static members of classes. However,
the variables of a Scala singleton object have basically the same characteristics
described above for “class variables”. Often the “class variables” appear in the
companion object for a class. i.e., the object with the same name as the class.

2.3.3 Public and Private Accessibility

The components of a class can be designated as public or private.

• The public components of the class are accessible from anywhere in the
program (i.e., from any package).

• The private components are only accessible from inside the class.

As a general rule, the data fields of a class should be private instance variables,
meaning that they are associated with a specific instance and are only accessible
by the instance methods. This hides, or encapsulates, the data fields within the
class instance.

Note: Actually, the instance methods of a Java class can access the instance
variables of any instance of that class, not just the current instance.

In general, avoid public instance variables. They break the principle of informa-
tion hiding, leading to potential entanglements among modules.

A public method of a class is a service provided by that instance to other parts
of a program. The private methods of a class can be used in implementing the
public methods.

Class methods and variables should be used sparingly. These are more or less
the types of subprograms and global variables found in languages like C and
Pascal. Their excessive use can greatly reduce the potential benefits that can be
realized from object-oriented techniques.

Java note: There are two other types of accessibility, “friendly” and protected,
but public and private are sufficient for our discussion of ADT implementa-
tions.

Scala note: Although similar in concept to that of Java, the accessibility features
of Scala differ somewhat [8,10]. By default, all features are public in Scala, but
accessibility can restricted in a more fine-grained manner than in Java. The
unmodified keyword private has the same meaning as in Java.

2.3.4 Primitive and Reference Variables

A Java variable is a strongly typed “container” in memory that is declared to
hold either:

6

• a value of the associated primitive data type such as integers (int), floating
point numbers (double), booleans (boolean), and single characters (char).

• a reference to (i.e., memory address of) an instance of the associated class
(or other reference) type.

Java note: Although arrays are not class instances, array variables hold a
reference to an instance of the array.

The class instances themselves are stored in the dynamically managed heap
memory area. Java allocates memory from the heap to hold newly constructed
instances of a class. Java’s garbage collector reclaims the memory for instances
that are no longer needed by the program.

Note: Recent versions of Java can sometimes hide the differences between
primitive values and references by automatically “boxing” primitive values as
instances of the corresponding wrapper classes (e.g., int values as Integer
instances). Scala goes further in that primitives and references are in the same
type hierarchy. However, both languages run on the Java Virtual Machine, which
makes a distinction between primitive values and references (i.e., pointers), so it
is not possible to avoid the distinction entirely.

2.4 Implementing ADTs as Java Classes
If only one implementation of an ADT is needed, the following techniques can
be used to implement an ADT using Java.

The implementation techniques discussed in this section implement the ADT in
an imperative way. That is, instead of returning a new instance of the ADT with
a modified state, a mutator operation usually modifies the state of the existing
instance.

Caveat: The discussion of Java in this chapter does not use generic type parame-
ters. For the StackB ADT (defined in the Data Abstraction Concepts), the type
of the Item values stored in the stack can be a parameter of the StackB class.

TODO: Consider modifying this discusion to use an Item generic parameter.

1. Use the Java class construct to represent the entire ADT. If we
want to allow access to the class from anywhere in the program, we will
make the class public.

For the StackB ADT, we can use the following structure for the class:

public class StackB
{ // implementation of instance methods and data here
}

2. Use an instance of the Java class to represent an instance of the
ADT and, hence, variables of the class type to hold references to
instances.

7

../DA01/DataAbstractionConcepts.html

For example, to declare a variable that can hold a reference to a StackB
instance, we can use the following declaration:

StackB stk;

3. As each component of the class is defined, ensure that the se-
mantics of the ADT operations are implemented appropriately.
That is, make sure:

• an appropriate implementation (representation) invariant is defined
to capture what it means for the internal state of an instance to be
valid,

• the interface and implementation invariants are established (i.e., made
true) by the constructors and preserved (i.e., kept true) by the mutator
and accessor methods,

• each method’s postcondition is established by the method in any
circumstance when it is called with the precondition true.

The class and its methods should be documented with the invariants,
preconditions, and postconditions.

4. Represent the ADT’s constructors by Java constructor meth-
ods. In most circumstances, also include a parameterless default
constructor.

A Java constructor is a method with the same name as the class. It does
not have a return type specified. Upon creation of an instance of the class,
the constructor initializes the instance’s state so that the class invariants
are established.

A constructor is normally invoked by the Java operator new. The operator
new allocates memory on the heap for the instance, calls the constructor
to initialize the new instance, and then returns a reference to the new
instance.

For example, we can represent the ADT operation create by the construc-
tor method StackB.

public class StackB
{ public StackB(int size)

{ // initialization code
}

// rest of StackB methods and data ...
}

A user of the StackB class can then declare a variable and initialize it to
hold a reference to a new stack with a capacity of 100 items as follows:

StackB stk = new StackB(100);

8

The expression new StackB(100) allocates a StackB instance in the heap
storage and calls the constructor above to initialize the data fields encap-
sulated within the instance.

5. Represent the ADT operations by instance methods of the class.
Thus the state of the ADT instance, which is given explicitly in the ADT
signatures, becomes an implicit argument of all method calls. Mutators
also have the state as an implicit return.

We can apply a method to a class instance by using the selector (i.e., “dot”)
notation. This notation is similar to the notation for accessing record
components in Pascal.

For example, in the case of the StackB ADT we can represent the operations
as instance methods of class StackB. The explicit StackB parameters and
return values of the operations thus become implicit.

Suppose we want to push an item x onto the stk created above. We can
do that with the following code:

if (!stk.full())
stk.push(x);

We can then examine the top item and remove it:

if (!stk.empty())
{ it = stk.top();

stk.pop();
}

6. Make the constructors, mutators, accessors, and destructors
public methods of the class. That is, precede the method’s definition
by the keyword public.

7. Represent the ADT mutator operations by Java procedure (i.e.,
void) methods, except those mutator operations that explicitly
require new instances to be generated (e.g., a copy or clone
operation).

For example, the pop method of StackB would have the following structure:

public void pop()
{ // code to implement operation
}

A mutator method modifies the encapsulated state of the class instance
(which is the implicit argument of the method). In any circumstance in
which its precondition and the class invariants hold on entry, the method
must establish its postcondition and reestablish the invariants upon exit.
(The invariant might not hold in the middle of the method’s execution.)

9

Comment: Implementing mutator operations as procedure calls that modify
the stored state is really an optimization. All mutators can be implemented
in the applicative style, returning a modified copy of the instance. This
implementation might, however, be inefficient in use of processor time and
memory.

8. For certain mutator operations (e.g., copy or clone), implement
the corresponding Java methods to return new instances of
the class rather than to modify the current instance (i.e., their
implicit arguments).

Any mutator method must, of course, establish its postcondition and
reestablish the invariants for the current instance. In addition, these
applicative mutators must also establish the invariants for the new instance
returned.

9. Represent the ADT accessor operations by Java function methods
of < the proper return type.

For example, the empty method of StackB would have the following struc-
ture:

public boolean empty()
{ // code to implement operation
}

An accessor method accesses the encapsulated state of the class instance
(which is the implicit argument) and computes a value to be returned. In
any circumstance in which its precondition and the class invariants hold
on entry, the method must establish its postcondition and reestablish the
invariants upon exit. (The invariant might not hold in the middle of the
method’s execution.)

10. If necessary for deallocation of internal resources, represent the
ADT destructor methods by explicit Java procedures; in most
cases, however. just allow the automatic garbage collection to
reclaim instances that are no longer being used.

For example, in the StackB class, we might include an explicit destroy
operation that releases the storage resources and disables further use of
the instance.

public void destroy()
{ // code to free resources
}

Java note: The Java framework allows a finalize() method to be included
in each class. This method is called implicitly whenever the garbage
collector detects that the instance is no longer in use. However, since it is
difficult to predict when (if ever) this method will be executed, it is safer

10

to include explicit destructors when resources are in short supply and must
be explicitly managed.

11. Use private data fields of the Java class to represent the encapsu-
lated state of the instance needed for a particular implementation.
By making the data fields private they are still available to the instance’s
methods, but are not visible outside the class.

For example, the StackB class might have the following data fields:

public class StackB
{ // public operations of class instance

// encapsulated data fields of class instance
private int topItem; // Pointer to next index for insertion
private int capacity; // Maximum number of items in stack
private Object[] stk; // the stack

}

12. Do not use public data fields in the class. These violate the
principle of information hiding. Instead introduce appropriate
accessor and mutator methods to allow manipulation of the
hidden state.

13. Include, as appropriate, private methods to aid in implementa-
tion.

Functionality common to several methods can be placed in separate func-
tions and procedures as needed. However, since these are private, they
can only be accessed from within the class and thus can be changed without
affecting the public interface of the class.

14. Add any other methods needed to make the ADT fit into the
Java environment.

For example, it is frequently useful to add public toString and clone
methods. The toString method returns a Java String reflecting the
“value” of the instance in a format suitable for printing. The clone method
creates a new instance that has the same value as the current instance.

15. In general, avoid use of class (i.e., static) variables. Since a class
variable is shared among all instances of the class, it may be difficult to
preserve the invariants for individual instances as the value of the class
variable changes.

However, it is a good programming practice to use class constants where
appropriate. These are data fields declared with both the static and
final modifiers. Their values may be initialized but cannot be changed
thereafter.

11

These constants may be declared private if usage is to be restricted to
the class or public if the users of the class also need access.

By convention, the names of constants are normally written with all
uppercase letters. For example, the following defines a symbolic name for
the integer code used for Sunday as a day of the week in the Day class
defined later.

public static final int SUNDAY = 1;

Caveat: When this set of notes was originally written, Java did not yet have
generics. So the examples below handle the type parameters of the ADT in
other ways. A Java generic provides a class facility that can be parameterized
with types (like the C++ template or Ada generic mechanisms).

For example, in the implementation below we represent the set Item of the
StackB{.java} ADT by the class Object. As we will see when we discuss
inheritance, the Object type will allow us to store an instance of any class on
the StackB. With this definition, any data of a reference type can appear in the
stack, but values of the primitive types cannot. A better implementation would
have Item as type parameter of the class.

The next section gives a Java implementation of the StackB ADT. A similar
constructive definition and two implementations of a Queue ADT are available
in a separate document.

TODO: Beter integrate SoftwareInterfaces into this document collection.

2.4.1 Java Implementation of Bounded Stack

TODO: Reconstruct (or find) the following source code and ensure that it
executes on the current Java platform. Insert link.

In this section, we give an implementation of the StackB ADT that uses an array
of objects and an integer “pointer” to represent the stack. (This implementation
does not use Java generic classes.)

This implementation is not robust; each operation assumes that its precondition
holds. A more robust implementation might check whether the precondition
holds and throw an exception if it does not.

Remember that the invariants are implicitly pre- and postconditions of all mutator
and accessor methods, postconditions of the constructor, and preconditions of
the destructor.

// A Bounded Stack ADT
public class StackB
{ // Interface Invariant: Once created and until destroyed, this

// stack instance has a valid and consistent internal state

public StackB(int size)

12

../SoftwareInterfaces/Queue.html

// Pre: size >= 0
// Post: initialized new instance with capacity size && empty()
{ stk = new Object[size];

capacity = size;
topItem = 0;
}

public void push(Object item)
// Pre: NOT full()
// Post: item added as the new top of this instance's stack
{ stk[topItem] = item;

topItem++;
}

public void pop()
// Pre: NOT empty()
// Post: item at top of stack removed from this instance
{ topItem--;

stk[topItem] = null;
}

public Object top()
// Pre: NOT empty()
// Post: return item at top of this instance's stack
{ return stk[topItem-1];
}

public boolean empty()
// Pre: true
// Post: return true iff this instance's stack has no elements
{ return (topItem <= 0);
}

public boolean full()
// Pre: true
// Post: return true iff this instance's stack is at full capacity
{ return (topItem >= capacity);
}

public void destroy()
// Pre: true
// Post: internal resources released; stack effectively deleted
{ stk = null;
capacity = 0;

topItem = 0;
}

13

// Implementation Invariant for informal model:
// 0 <= topItem <= capacity &&
// stack is in array section stk[0..topItem-1]
// with the top at stk[topItem-1], etc.

// Implementation Invariant for more formal model representing stack
// as tuple (integer max, sequence stkseq)
// m == capacity && 0 <= topItem <= capacity &&
// stackInArray(stk,topItem,stkseq)
// where stackInArray(arr,t,ss) = if t == 0 then ss == []
// else arr[t-1] == head(ss)
// && stackInArray(arr,t-1,tail(ss))

private int topItem; // Pointer to next index for insertion
private int capacity; // Maximum number of items in stack
private Object[] stk; // the stack

}

2.5 Better Approach to Implementing ADTs in Java
TODO: Reconstruct (or find) the following source code and ensure that it
executes on the current Java platform. Inset link.

If several different implementations of an ADT are needed, then the Java specifi-
cation of an ADT’s interface should be separated from the class implementation.
The interface specification can be reused among several classes and various
implementations of the interface can be used interchangeably.

This can be done as follows.

1. Define a Java interface that specifies the type signatures for
the ADT’s mutator and accessor (and, if needed, destructor)
operations. These method signatures should have the same characteristics
as described above in the discussion of class-based specification.

2. Specify and document the interface by the interface invariants,
preconditions, and postconditions that must be supported by any
implementation of the ADT. There are no implementation invariants
for an interface, but individual classes that implement the interface will
have them.

For example, a bounded stack interface might be specified as follows:

public interface StackADT
{ // Interface Invariant: Once created and until destroyed, this

// stack instance has a valid and consistent internal state

public void push(Object item);

14

// Pre: NOT full()
// Post: item added as the new top of this instance's stack

...

public Object top();
// Pre: NOT empty()
// Post: return item at top of this instance's stack

...
}

3. Provide one or more concrete classes that implement the
interface.

For example, an array-based StackADT could be implemented similarly to
the StackB definition given in the previous section.

public class StackInArray implements StackADT
{ // Interface Invariant: Once created and until destroyed, this

// stack instance has a valid and consistent internal state

public StackInArray(int size)
// Pre: size >= 0
// Post: initialized new instance with capacity size && empty()
{ stk = new Object[size];
capacity = size;

topItem = 0;
}

public void push(Object item)
// Pre: NOT full()
// Post: item added as the new top of this instance's stack
{ stk[topItem] = item;

topItem++;
}

...

public Object top()
// Pre: NOT empty()
// Post: return item at top of this instance's stack
{ return stk[topItem-1];
}

...

15

// Implementation Invariant for informal model:
// 0 <= topItem <= capacity &&
// stack is in array section stk[0..topItem-1]
// with the top at stk[topItem-1], etc.

// Implementation Invariant for more formal model representing stack
// as tuple (integer max, sequence stkseq)
// m == capacity && 0 <= topItem <= capacity &&
// stackInArray(stk,topItem,stkseq)
// where stackInArray(arr,t,ss) =
// if t == 0 then ss == []
// else arr[t-1] == head(ss)
// && stackInArray(arr,t-1,tail(ss))

private int topItem; // Pointer to next index for insertion
private int capacity; // Maximum number of items in stack
private Object[] stk; // the stack

}

4. Declare variables of the ADT’s interface type to hold instances
of any concrete class that implements the interface. Any of the
operations defined in the interface can be applied to the instance to
which this variable refers.

For example, a variable of type StackADT can hold instances of any concrete
class that implements the interface StackADT.

StackADT theStack = new StackInArray(100);
theStack.push("Hello World");

For an ADT specification and implementations that follow this approach, see
the description of the Ranked Sequence ADT case study given in a separate
document. In addition to Java interfaces, the Ranked Sequence case study uses
other Java features such as exceptions, enumerations, packages, and Javadoc
annotations.

TODO: Integrate SoftwareInterfaces into this document collection.

2.5.1 Java Class Implementation for Day

TODO: Reconstruct (or find) the following source code and ensure that it
executes on the current Java platform. Inset link.

The following implementation of the Day ADT is adapted from the like-named
class in Horstmann and Cornell’s book Core Java [6].

This implementation represents the calendar as three integers. It converts the
dates to and from Julian dates to do some of the operations.

16

../SoftwareInterfaces/RankedSequence.html

// This class implementation is adapted from the Day class in
// Horstmann and Cornell, Core Java 1.2: Volume I - Fundamentals
// (Fourth Edition), Prentice Hall, 1999.

import java.util.*;
import java.io.*;

public class Day
{

// Interface Invariant: Once created and until destroyed, this
// instance contains a valid date. getdate() != 0 &&
// 1 <= getMonth() <= 12 && 1 <= getDay() <= #days in getMonth().
// Also calendar date getMonth()/getDay()/getYear() does not
// fall in the gap formed by the change to the modern
// (Gregorian) calendar.

// Constants for days of the week

public static final int SUNDAY = 1;
public static final int MONDAY = 2;
public static final int TUESDAY = 3;
public static final int WEDNESDAY = 4;
public static final int THURSDAY = 5;
public static final int FRIDAY = 6;
public static final int SATURDAY = 7;

// Constructors

public Day()
// Pre: true
// Post: the new instance's day, month, and year set to today's
// date (i.e., the date of creation of the instance)
//
// Implementation uses GregorianCalendar class from the Java API
// to get today's date.
//
{ GregorianCalendar todaysDate = new GregorianCalendar();

year = todaysDate.get(Calendar.YEAR);
month = todaysDate.get(Calendar.MONTH) + 1;
day = todaysDate.get(Calendar.DAY_OF_MONTH);

}

public Day(int y, int m, int d)
throws IllegalArgumentException

// Pre: y != 0 && 1 <= m <= 12 && 1 <= d <= #days in month m
// (y,m,d) does not fall in the gap formed by the

17

// change to the modern (Gregorian) calendar.
// Post: the new instance's day, month, and year set to y, m,
// and d, respectively
// Exception: IllegalArgumentException if y m d not a valid date
{ year = y;

month = m;
day = d;
if (!isValid())

throw new IllegalArgumentException();
}

// Mutators

public void setDay(int y, int m, int d)
throws IllegalArgumentException

// Pre: y != 0 && 1 <= m <= 12 && 1 <= d <= #days in month m
// (y,m,d) does not fall in the gap formed by the
// change to the modern (Gregorian) calendar.
// Post: this instance's day, month, and year set to y, m,
// and d, respectively
// Exception: IllegalArgumentException if y m d not a valid date
{ year = y;

month = m;
day = d;
if (!isValid())

throw new IllegalArgumentException();
}

public void advance(int n)
// Pre: true
// Post: this instance's date moved n days later. (Negative n
// moves to an earlier date.)
{ fromJulian(toJulian() + n);
}

// Accessors

public int getDay()
// Pre: true
// Post: returns the day from this instance, where
// 1 <= getDay() <= #days in this instance's month
{ return day;
}

public int getMonth()
// Pre: true

18

// Post: returns the month from this instance's date, where
// 1 <= getMonth() <= 12
{ return month;
}

public int getYear()
// Pre: true
// Post: returns the year from this instance's date, where
// getYear() != 0
{ return year;
}

public int getWeekday()
// Pre: true
// Post: returns the day of the week upon which this instance
// falls, where 1 <= getWeekday() <= 7;
// 1 == Sunday, 2 == Monday, ..., 7 == Saturday
{ // calculate day of week

return (toJulian() + 1) % 7 + 1;
}

public boolean equals(Day dd)
// Pre: dd is a valid instance of Day
// Post: returns true if and only if this instance and instance
// dd denote the same calendar date
{ return (year == dd.getYear() && month == dd.getMonth()

&& day == dd.getDay());
}

public int daysBetween(Day dd)
// Pre: dd is a valid instance of Day
// Post: returns the number of calendar days from the dd
// instance's date to this instance's date, where
// equals(dd.advance(n)) would hold
{ // implementation code

return toJulian() - dd.toJulian();
}

public String toString()
// Pre: true
// Post: returns this instance's date expressed in the format
// "Day[year,month,day]"
{

return "Day[" + year + "," + month + "," + day + "]";
}

19

// Destructors -- None needed

// Private Methods

private boolean isValid()
// Pre: true
// Post: returns true iff this is a valid date
{ Day t = new Day();

t.fromJulian(this.toJulian());
return t.day == day && t.month == month

&& t.year == year;
}

private int toJulian()
// Pre: true
// Post: returns Julian day number that begins at noon of this day
//
// A positive year signifies A.D., negative year B.C.
// Remember that the year after 1 B.C. was 1 A.D. (i.e., no year 0).
//
// A convenient reference point is that May 23, 1968, at noon
// is Julian day 2440000.
//
// Julian day 0 is a Monday.
//
// This algorithm is from Press et al., Numerical Recipes
// in C, 2nd ed., Cambridge University Press 1992.
//
{ int jy = year;

if (year < 0)
jy++;

int jm = month;
if (month > 2)

jm++;
else
{ jy--;

jm += 13;
}
int jul = (int) (java.lang.Math.floor(365.25 * jy)

+ java.lang.Math.floor(30.6001*jm) + day + 1720995.0);

int IGREG = 15 + 31*(10+12*1582);
// Gregorian Calendar adopted Oct. 15, 1582

if (day + 31 * (month + 12 * year) >= IGREG)
// change over to Gregorian calendar

20

{ int ja = (int)(0.01 * jy);
jul += 2 - ja + (int)(0.25 * ja);

}
return jul;

}

private void fromJulian(int j)
// Pre: true
// Post: this calendar Day is set to Julian date j
//
// This algorithm is from Press et al., Numerical Recipes
// in C, 2nd ed., Cambridge University Press 1992
//
{ int ja = j;

int JGREG = 2299161;
/* the Julian date of the adoption of the Gregorian

calendar
*/

if (j >= JGREG)
/* correct for crossover to Gregorian Calendar */
{ int jalpha = (int)(((float)(j - 1867216) - 0.25)

/ 36524.25);
ja += 1 + jalpha - (int)(0.25 * jalpha);

}
int jb = ja + 1524;
int jc = (int)(6680.0 + ((float)(jb-2439870) - 122.1)

/365.25);
int jd = (int)(365 * jc + (0.25 * jc));
int je = (int)((jb - jd)/30.6001);
day = jb - jd - (int)(30.6001 * je);
month = je - 1;
if (month > 12)

month -= 12;
year = jc - 4715;
if (month > 2)

--year;
if (year <= 0)

--year;
}

// Implementation Invariants:
// year != 0 && 1 <= month <= 12 && 1 <= day <= #days in month
// (year,month,day) not in gap formed by the change to the
// modern (Gregorian) calendar

21

private int year;
private int month;
private int day;

}

2.6 What Next?
TODO

2.7 Exercises
TODO

2.8 Acknowledgments
This chapter was originally part of my Data Abstraction Concepts notes [2].
See the Acknowledgments section of that chapter for more information on its
development. For the Lua-based offering of CSci 658 in Fall 2013. I separated
most of the Java-specific material into this chapter to make the content of the
Data Abstraction chapter more language independent.

In this chapter, I use a Java programming style influenced by Horstmann and
Cornell’s book Core Java [6]. I adapted the Java Day design and implementation
from the like-named class in Chapter 4 of Horstmann and Cornell’s of that book
[6].

In Summer 2017, I modified this chapter slightly to link it into the revised
(Pandoc Markdown) version of the Notes on Data Abstraction chapter and then
reformatted it to use Pandoc Markdown in Spring 2018.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on possible textbooks based on the course
materials I had developed during my three decades as a faculty member. In
January 2022, I began refining the existing content, integrating separately
developed materials together, reformatting the documents, constructing a unified
bibliography (e.g., using citeproc), and improving my build workflow and use of
Pandoc.

In 2022, I also added the section “Java as an Object-Oriented Language” to
better tie this chapter to the concepts and terminology used in the ELIFP
textbook [3], especially chapters 3 and 5.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

22

../DA01/DataAbstractionConcepts.html
../DA01/DataAbstractionConcepts.html#acknowledgements

2.9 Concepts
TODO

2.10 References
[1] H. Conrad Cunningham. 2019. Type system concepts. University of

Mississippi, Department of Computer and Information Science, University,
Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/
TypeConcepts/TypeSystemConcepts.html

[2] H. Conrad Cunningham. 2022. Data abstraction concepts. University of
Mississippi, Department of Computer and Information Science, University,
Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/
DataAbstraction/DA01/DataAbstractionConcepts.html

[3] H. Conrad Cunningham. 2022. Exploring programming languages with in-
terpreters and functional programming (ELIFP). University of Mississippi,
Department of Computer and Information Science, University, Mississippi,
USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/ELIFP/EL
IFP.pdf

[4] H. Conrad Cunningham. 2022. Object-based paradigms. In Exploring
programming languages with interpreters and functional programming
(ELIFP). University of Mississippi, Department of Computer and Infor-
mation Science, University, Mississippi, USA. Retrieved from https://john
.cs.olemiss.edu/~hcc/docs/ELIFP/Ch03/03_Object_Paradigms.html

[5] H. Conrad Cunningham. 2022. Object-oriented software development.
University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/docs/OOSoftDev/OOSoftDev.html

[6] Cay S. Horstmann and Gary Cornell. 1999. Core Java 1.2: Volume
I—Fundamentals. Prentice Hall, Englewood Cliffs, New Jersey, USA.

[7] Barbara Liskov. 1987. Keynote address—Data abstraction and hierarchy.
In Proceedings on object-oriented programming systems, languages, and
applications (OOPSLA ’87): addendum, ACM, Orlando, Florida, USA,
17–34.

[8] Martin Odersky, Lex Spoon, and Bill Venners. 2008. Programming in
Scala (First ed.). Artima, Inc., Walnut Creek, California, USA.

[9] Martin Odersky, Lex Spoon, and Bill Venners. 2021. Programming in
Scala (Fifth ed.). Artima, Inc., Walnut Creek, California, USA.

[10] Scala Language Organization. 2022. The Scala programming language.
Retrieved from https://www.scala-lang.org/

[11] Wikpedia: The Free Encyclopedia. 2022. Liskov substitution principle.
Retrieved from https://en.wikipedia.org/wiki/Liskov_substitution_prin
ciple

23

https://john.cs.olemiss.edu/~hcc/docs/TypeConcepts/TypeSystemConcepts.html
https://john.cs.olemiss.edu/~hcc/docs/TypeConcepts/TypeSystemConcepts.html
https://john.cs.olemiss.edu/~hcc/docs/DataAbstraction/DA01/DataAbstractionConcepts.html
https://john.cs.olemiss.edu/~hcc/docs/DataAbstraction/DA01/DataAbstractionConcepts.html
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/Ch03/03_Object_Paradigms.html
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/Ch03/03_Object_Paradigms.html
https://john.cs.olemiss.edu/~hcc/docs/OOSoftDev/OOSoftDev.html
https://john.cs.olemiss.edu/~hcc/docs/OOSoftDev/OOSoftDev.html
https://www.scala-lang.org/
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle

	Data Abstraction in Java
	Chapter Introduction
	Java as an Object-Oriented Language
	Java Classes
	Class and Instance Methods
	Class and Instance Variables
	Public and Private Accessibility
	Primitive and Reference Variables

	Implementing ADTs as Java Classes
	Java Implementation of Bounded Stack

	Better Approach to Implementing ADTs in Java
	Java Class Implementation for Day

	What Next?
	Exercises
	Acknowledgments
	Concepts
	References

