
Notes on
Domain-Specific Languages:

Introduction to DSLs

H. Conrad Cunningham

16 April 2022

Contents
1 Introduction to DSLs 2

1.1 Chapter Introduction . 2
1.2 What are DSLs? . 2

1.2.1 Motivation . 2
1.2.2 Examples . 3
1.2.3 Definition . 3
1.2.4 DSL/GPL Boundaries . 4

1.3 External and Internal DSL Syles 4
1.3.1 External . 5
1.3.2 Internal . 5

1.4 Shallow and Deep Embeddings of Internal DSLs 6
1.4.1 Shallow embedding . 7
1.4.2 Deep embedding . 7
1.4.3 ELI Calculator Language 8

1.5 DSLs Used to Produce This Document 8
1.6 Possible Advantages of Using DSLs 9
1.7 Possible Disadvantages of Using DSLs 11
1.8 Designing DSLs . 12

1.8.1 SCV analysis . 12
1.8.2 DSL design guidelines . 13
1.8.3 More guidelines for internal DSL design 19

1.9 What Next? . 20
1.10 Exercises . 21
1.11 Acknowledgements . 21
1.12 Concepts and Terms . 22
1.13 References . 22

Copyright (C) 2014, 2016, 2017, 2018, 2022, H. Conrad Cunningham

1

https://john.cs.olemiss.edu/~hcc

Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

2

https://www.cs.olemiss.edu
http://www.olemiss.edu

1 Introduction to DSLs
1.1 Chapter Introduction
Note: This is mostly a document I used in my Spring 2018 CSci 658, Software
Language Engineering, course. In 2022, I integrated the citations and hyperlinks

with my other notes, but this Although it has had some modifications in 2022,
but the document is still rough and incomplete.

TODO:

• Structure the document better. Check section titles.
• Finish missing sections and add better citations in places.
• Make flow more smoothly.
• Consider whether it should be broken into multiple chapters.
• Consider what are appropriate examples. Add or remove as needed. Ex-

pand on explanations of those I do include.
• Better integrate the various lists of guidelines for construction of DSLs.

Better tie these to concrete examples.
• Should this consider monadic DSLs in Haskell, macro systems, Template

Haskell, staged metaprogramming, or other techniques?

1.2 What are DSLs?
1.2.1 Motivation

Few computer science graduates will design and implement a general-purpose
programming language during their careers. However, many graduates will
design and implement—and all likely will use—special-purpose languages in
their work. These special-purpose languages are often called domain-specific
languages [24,87].

Hudak describes a domain-specific language (or DSL) as “a programming lan-
guage tailored to a particular application domain” [36], that is, to a particular
kind of problem.

General-purpose languages (GPLs) [86], such as Java, Python, C, C++, and
Haskell, seek to be broadly applicable across many domains. They can, in theory,
compute any function that is computable by a finite procedure; they are said to
be Turing complete [45,85].

Ideally, a DSL should enable experts in an application area to program without
programming—that is, to express the problems they want the computer to solve
using familiar concepts and notations, without having to master the intricacies
of programming in a general-purpose language [36,74].

DSLs might be Turing complete, but often they are not. DSLs are little languages
[3] that “trade generality for expressiveness” [52].

3

1.2.2 Examples

As discussed in Bentley’s classic column on “Little Languages” [3], the DSL
PIC [42,59,88] enables writers to produce line drawings in typeset documents;
they can focus on the layout of the drawings without being required to develop
programs in C, the primary general-purpose language used on Unix.

The PIC language and tool were built according to the Unix philosophy [84]. This
approach focuses on a minimalist and modular approach to software development.
The Unix tools have limited functionality but are usually built to read and write
streams of bytes so that tools can be readily composed using Unix pipes.

Other DSLs on the Unix (or Linux) platform include:

• AWK [1,60,89] for extracting data and generating reports from streams of
text-based data using regular expressions to specify the processing

• Lex [43,44,90] (and GNU Flex) for generating lexical analyzers

• Yacc [44,65,91] (and GNU Bison) for generating parsers

• Make [14,51,92] (and GNU Make) for building software from its various
source files

• C preprocessor (cpp) [64,93] for preprocessing C programs to include header
files, expand macros, and support conditional compilation

• DOT [66,94] little language for specifying graph structures within the
Graphviz [67] set of visualization tools

Markup languages are also DSLs:

• HTML [78,95] is a DSL for formatting documents on the Web.

• LaTeX [68,96] is a powerful markup language used for books and articles
(especially in STEM disciplines).

• Markdown [31,97] is a simple markup language for documents that may be
needed in various formats, especially HTML. It is often used by wikis and
other websites with user-contributed content (e.g., Wikipedia, GitHub).
This document is written using the variant of Markdown supported by the
Pandoc [46] tool.

• reStructuredText [30,98] is a simple markup language used mostly in the
Python community for technical documentation.

The designers of a DSL must select relevant concepts, notations, and processes
from the application domain and incorporate them into the DSL design [36].

1.2.3 Definition

Fowler defines a domain-specific language as a “computer programming language
of limited expressiveness focused on a particular domain” [24].

4

https://pandoc.org/

He explains these terms as follows:

• As a language, a DSL has fluency. The expressiveness of the language
comes not just from the simple expressions but also from how those
expressions can be easily composed to form larger units.

• As a computer programming language, a DSL is structured so that
humans can effectively read and write “programs” in the language and
computers can accurately read and “execute” the instructions. It has a
well-defined syntax and semantics.

• Having limited expressiveness means the DSL includes features that
are needed for its purpose and excludes features that are not needed for
that purpose.

• Being focused on a particular domain means that the DSL has a
purpose that is both clearly and narrowly defined.

1.2.4 DSL/GPL Boundaries

What is and is not a DSL is a fuzzy concept. Not all writers agree on the
definition. In these notes, we use Martin Fowler’s definition above to consider
whether or not a notation is a DSL.

Fowler suggests that one key characteristic of a DSL is its language nature [24].

• The language (DSL) is intended to be read and written by humans as well
as read by computers.

• The DSL must be fluent. That is, the meaning of the language comes not
just from the individual expressions (i.e., the words) but also from how the
expressions are composed together (i.e., into sentences and paragraphs). It
has both a vocabulary and a grammar.

Fowler also suggests two other key characteristics of a DSL—its limited expres-
siveness and its domain focus [24].

Fowler argues that a DSL should have only those features needed to support its
target domain. A DSL should not attempt to solve all problems for all users
for all time. It should not seek to define an entire software system. It should
instead focus on providing an effective, uncluttered solution to a specific aspect
of the overall system.

Which of these boundaries is important in a particular situation depends upon
the style of the DSL.

1.3 External and Internal DSL Syles
Fowler classifies DSLs into two styles [23,24]:

• external

5

• internal

Although the terminology is relatively new, the ideas are not.

1.3.1 External

An external DSL is a language that is different from the main programming
language for an application, but that is interpreted by or translated into a
program in the main language. The external DSL is a standalone language with
its own syntax and semantics.

The Unix little languages PIC, Lex, Yacc, and Make exhibit this style. They are
separate textual languages with their own syntax and semantics, but they are
processed by C programs (and may also generate C programs).

External DSLs may choose from a variety of language processing approaches
such as:

• ad hoc techniques (e.g., hand-coded recursive descent parsers)

• parser-generation tools (e.g., Lex and Yacc in the C/Unix environment,
Happy [48] and Alex [47] on the Haskell platform, and ANTLR [55,56] on
various platforms),

• parsing libraries (e.g., the Haskell library Parsec [33], Scala parser combi-
nator library [54,62], Python parser combinator library Parsita [32], and
Lua parsing library LPeg [38,39]

Example external DSLs associated with these course notes include:

• most of the Scala-based State Machine (Secret Panel) DSLs (adapted from
Fowler [24])

• one of the Lua- and Python-based Lair Configuration DSLs (adapted from
Fowler [22])

• three of the Ruby-based Reader DSLs (adapted from Fowler [18,19])

To distinguish between external DSLs and GPLs, Fowler cites the need for a
DSL to limit its features to the minimal set needed for the specific domain [24].
(See the discussion of DSL/GPL boundaries in Section 1.2.4.)

For example, Fowler considers the programming language R [69,79,80] a GPL
not a DSL. Although R has special-purpose features to support statistical
programming, it has a full set of general -urpose features for a wide range of
programming tasks.

1.3.2 Internal

An internal DSL transforms the main programming language itself into the
DSL—the DSL is embedded in the main language [36].

The techniques for constructing internal DSLs vary from language to language.

6

../StateMachineDSL/StateMachineDSL.html
../LairDSL/LairDSL.html
../ReaderDSL/ReaderDSL.html

The language Lisp (which was defined in the 1950s) [2,49,50,58,81] supports
syntactic macros, a convenient mechanism for extending the language by adding
application-specific features that are expanded at compile time. The Lisp
macro approach has been refined and included in languages such as Scheme
[15,27,28,57,58,82], Clojure [16,34,83], and Elixir [13,71].

Internal DSLs in the language Ruby [61,72] exploit the language’s flexible syntax,
runtime reflexive metaprogramming facilities, and blocks (closures). The Ruby
on Rails web framework includes several such internal DSLs.

Haskell’s algebraic data type system has stimulated research on “embedded”
DSLs for several domains including reactive animation and music [36,37].

In object-oriented languages, internal DSLs may also exploit object structures
and subtyping.

Example internal DSLs associated with these course notes include:

• the Scala-based Computer Configuration DSLs (adapted from Fowler [24])

• the Scala-based Email Message Building DSL (adapted from Fowler [24])

• most of the (Lua- and Python-based) Lair Configuration DSLs (adapted
from Fowler [22])

• the Ruby-based Survey DSL [9] (partially motivated by the sidebar in
Bentley [3])

• the Haskell-based Sandwich DSL project and similar Scala-based Sandwich
DSL project

To distinguish between an internal DSL and a standard command-query
[20,53,103] Application Programming Interface (API) [104], Fowler cites the need
for a DSL to be fluent [24]. The command-query API provides the vocabulary;
the DSL provides the grammar for composing the vocabulary “words” into
“sentences”.

The implementation of a DSL is often supported by an API with a fluent interface
[21,24,101], a vocabulary of operations designed to be composed smoothly into
larger operations.

TODO: Point out which of my DSLs above have a fluent interface.

1.4 Shallow and Deep Embeddings of Internal DSLs
An internal DSL may be implemented with a shallow embedding or a deep
embedding. The difference between shallow and deep embeddings concerns the
relationship between the implementations of a DSL’s syntax and its semantics.

7

../CompConfigDSL/CompConfigDSL.html
../EmailDSL/EmailDSL.html
../LairDSL/LairDSL.html
../SurveyDSL/SurveyDSL.html
../../ELIFP/Ch21/21_Algebraic_Types.html#sandwich-dsl-project
../SandwichDSL/Scala/SandwichDSL_Scala.html
../SandwichDSL/Scala/SandwichDSL_Scala.html

1.4.1 Shallow embedding

In a shallow embedding of an internal DSL, the implementation’s types and
data structures directly represent a single interpretation of the semantics of
the domain but do not represent the syntactic structure of the domain objects
[29,73].

For example, the regular expression package from Thompson [73:12.3] is a shallow
embedding of the regular expression concept in Haskell. It models the semantics
but not the syntax of regular expressions. It uses functions to represent the
regular expressions and higher order functions (combinators) to combine the
regular expressions in valid ways.

Similarly, the Scala-based Computer Configuration and Email Message Building
DSLs and the Lua-based internal Lair DSLs are relatively shallow embeddings
of the DSLs.

An advantage of a shallow embedding is that it provides a simple implementation
of the semantics of the domain. It is usually straightforward to modify the
semantics by adding new operations. If these capabilities are all that one needs,
then a shallow embedding is convenient.

A disadvantage is that it is sometimes difficult to relate what happens during
execution to the syntactic structure of the program, especially when errors occur.

1.4.2 Deep embedding

In a deep embedding of an internal DSL, the implementation’s types and data
structures model both the syntax and semantics of the domain. That is, it
represents the domain objects using abstract syntax trees (ASTs) [29,73]. These
can be interpreted in multiple ways as needed.

For example, Thompson [73:19.4] redesigns the Haskell regular expression package
as a deep embedding. It introduces types that represent the syntactic structure
of the regular expressions as well as their semantics.

The advantage of a deep embedding is that, in addition to manipulating the
semantics of the domain, one can also manipulate the syntactic representation of
the domain objects. The syntactic representation can be analyzed, transformed,
and translated in a many ways that are not possible with a shallow embedding.

As an example, consider the deep embedding of the regular expression DSL. It
can enable replacement of one regular expression by an equivalent simpler one,
such as replacing (a*)* by a*.

Of course, the disadvantages of deep embedding are that they are more complex
to develop, understand, and modify than shallow embeddings.

The Haskell-based Sandwich DSL, Scala-based Sandwich DSL, and Haskell-based
Exam DSL give other examples of how one can create a deeply embedded DSL
in a simple situation.

8

../CompConfigDSL/CompConfigDSL.html
../EmailDSL/EmailDSL.html
../LairDSL/LairDSL.html
../../ELIFP/Ch21/21_Algebraic_Types.html#sandwich-dsl-project
../SandwichDSL/Scala/SandwichDSL_Scala.html
../ELIFP/Ch21/21_Algebraic_Types.html#exam-dsl-project
../ELIFP/Ch21/21_Algebraic_Types.html#exam-dsl-project

TODO: Are others of my DSLs deeply embedded?

1.4.3 ELI Calculator Language

What about the ELI Calculator language in the textbook Exploring Languages
with Interpreters and Functional Programming (ELIFP) [10]?

The ELI Calculator language’s concrete syntax is defined in Chapter 41, abstract
syntax and semantics in Chapter 42, mapping from concrete syntax to abstract
syntax (i.e., parsing) in Chapter 44, and compilation to a Stack Virtual Machine
in Chapter 46. The programs that implement the language are implemented in
Haskell.

The concrete syntax and semantics of the ELI Calculator language is different
from its host language Haskell, so at that level it is an external DSL. The parsers
recognize valid arithmetic expressions in the input text and create an appropriate
abstract syntax tree inside the Haskell program. The abstract syntax tree differs
from the textual arithmetic expression and from its parse tree.

However, the abstract syntax tree does capture the essential aspects of the
syntax. And the abstract syntax tree itself can be considered a deep embedding
of an internal DSL for the abstract syntax. For the remainder of the processing
of the expression, the abstract syntax tree preserves the important syntactic
(structural) features of the arithmetic expressions.

The ELI Calculator language case study transforms the abstract syntax trees
by simplifying them (and by generating their symbolic derivatives) and by
generating equivalent instruction sequences for a Stack Virtual Machine.

1.5 DSLs Used to Produce This Document
When we look around, we can see DSLs everywhere!

Consider how I create this document on DSLs. I write the text with the text
editor Emacs, which includes a number of extensions, perhaps written in DSL(s).
I indicate the document’s structure using a DSL, Pandoc’s dialect [46] of the
markup language Markdown [31,97]. If I add mathematical notation to the
document, I write these in a subset of the LaTeX [68,96]. I then execute the
Pandoc tool [46] on the input file.

Pandoc (which itself is written in Haskell) reads the Markdown input, converts
it to an abstract syntax tree (AST) internally, and then writes an appropriate
HTML [78,95] (a DSL) output file (that you are likely reading). I also direct
Pandoc to write a LaTeX (a DSL) output file, on which I execute the tool
pdflatex to create a PDF document. I could generate documents in other
standard formats such as Microsoft Word’s .docx format [12,100] (essentially a
DSL) and EPUB [17,99] (a DSL).

For the HTML output, I direct Pandoc to generate MathML [75,95], a standard
DSL in the XML family that describes mathematical expressions for display on

9

../../ELIFP/Ch41/41_Concrete_Syntax.html
../../ELIFP/Ch42/42_Abstract_Syntax.html
../../ELIFP/Ch44/44_Calc_Parsing.html
../../ELIFP/Ch46/46_Calc_Compilation.html

the Web. (It is currently supported by the FireFox browser but not all others,
which is why I recommend viewing these documents with FireFox.)

If I wish to include a drawing of a graph structure in the document, I may express
the graph in the DOT language [66,94] supported by the Graphviz package [67].
Then I can translate it into a Scalable Vector Graphics (SVG) [76] drawing,
which is encoded with another dialect of XML.

I wrote the original version of this document directly in HTML before I started
using Pandoc. Other documents used in my courses were written originally using
LaTeX or Word. In some case, I used Pandoc to convert these documents to
Markdown, which gave me the starting point for my recent changes.

To add a new input format to Pandoc requires a new reader program that can
parse the input and generate an appropriate abstract syntax tree.

To add a new output format to Pandoc requires a new writer program that can
access the abstract syntax tree and generate appropriately formatted output.

Pandoc’s abstract syntax tree is made available to writers using either Haskell
algebraic data types or JavaScript Object Notation (JSON) structures [8,11].

JSON is an external DSL in that it uses a subset of JavaScript’s concrete syntax
to express the structure of the data. But, because it is JavaScript code, it also
defines an equivalent internal data structure, so it also has aspects of an internal
DSL. Pandoc could use a JSON Schema [40] to define the supported format. A
JSON Schema is a JSON document with a specific format (a DSL) that defines
the format of other JSON documents (other DSLs).

The whole conversion process in Pandoc revolves around the abstract syntax
tree. Pandoc enables users to write their own filters that transform one Pandoc
AST to another.

Thus my workflow uses many DSLs directly or indirectly.

1.6 Possible Advantages of Using DSLs
Fowler and others give several possible advantages for using DSLs. These include:

1. DSLs can facilitate communication between domain experts and the pro-
grammers [24].

A DSL may be a small, simple language that can express important aspects
of the domain in a manner that nonprogrammers can read and understand.

In some cases, users may be able to write the DSL programs, allowing them
to adapt the application to their specific needs without the intervention
of programmers. But designing a DSL that users can write effectively is
considerably harder than one they can read effectively.

This is an attack on the effects of the essential complexity of software
development [4,5].

10

2. DSLs can help encode domain knowledge in concise, concrete forms readable
by humans [63].

This seeks to mitigate the problem of deciding what to build, lessening
the effects of the essential complexity of software development [4]. It also
enables this knowledge to be reused more readily.

3. DSLs and their implementations can increase opportunities for software
reuse [52].

An implementation of a DSL may generate code that incorporate key data
types, software architectures, algorithms, and other domain concepts and
processes. These are reused from one use of the DSL to another.

Software reuse is an attack on the effects of the essential complexity of
software development [4].

4. DSLs can improve programmer productivity [24].

Using a DSL for some narrow, well-defined aspect, programmers can code
the computation more quickly and reliably with the DSL than directly in
the GPL.

For example, many GPLs have sublanguages for specifying regular expres-
sions. In most cases, programmers can use these regular expression DSLs
more productively than programming the pattern recognition directly in
the GPL. Also, a mature implementation of the DSL will likely be more
reliable than a new implementation directly in the GPL.

5. DSLs can help shift the execution context between compile time and runtime
[24].

On the one hand, if some aspect of an application needs to be more flexible,
we might replace a description in the GPL program (e.g., populating a
complex data structure) with a description in a DSL that is interpreted at
runtime.

On the other hand, if some aspect of an application needs to be more
efficient, we might replace a description of the runtime configuration code
with a description in a DSL that is compiled into efficient GPL code.

6. DSLs can enable convenient use of alternative computational models that
are not natively supported by the GPL used in the overall application [24].

For example, some aspect of the computation might better be expressed as a
finite state machine, decision table, dependency network, rule-based system,
etc. We can embed such computations within traditional imperative or
object-oriented programs by designing< appropriate DSLs.

7. DSLs can promote porting aspects of the application code to a different
execution platform [77].

11

The front end phases of the DSL need not be changed, just the back end
that does code generation or interpretation.

Note: Fowler argues this is a benefit of having a semantic model, not
necessarily a DSL.

1.7 Possible Disadvantages of Using DSLs
Fowler also identifies several possible disadvantages of using DSLs [24]. These
include:

1. DSLs can contribute to the language cacophony.

If many, different, difficult-to-learn languages are used in an application
or an organization, then this creates considerable work for the software
developers to learn them all.

Fortunately, DSLs are usually much easier to learn than GPLs. Also the
abstractions represented in the DSLs likely will need to be present in the
libraries, APIs, documentation, and tools regardless. Thus using DSLs
might not incur as much language learning as it first appears.

2. DSLs can be costly to build and maintain.

A DSL is usually built on top of a library, API, or software framework.
Designing, implementing, and maintaining the DSL will require some
additional work.

Fortunately, DSLs are usually simple and once the developers master the
language development tools, designing and implementing a DSL can be
done without a huge investment.

As with any tool development or acquisition, the software development
organization must decide if the possible benefits are greater than the costs.

3. DSL can contributes to the ghetto language problem.

If a language uses many languages that are used nowhere else, then it can
become difficult to recruit staff.

This can be a significant problem for use of a GPL. (However, some software
development organizations choose languages outside the mainstream so
they can attract the more aggressive staff willing to take on interesting
technical challenges and use leading edge tools.)

But DSLs should be small and limited to a narrow domain, so the problem
should not be as significant as for GPLs. The organization should guard
against rampant “mission creep” for its DSLs.

4. DSLs can sometimes lead to narrow thinking.

12

The intention of DSL development is to open up the developers to using
whatever abstractions are appropriate to the domain, rather than those
that are convenient in the GPL.

Organizations that use DSLs should avoid falling back into the same trap
with their DSLs. They should develop appropriate new DSLs when needed
rather than use an existing DSL with inappropriate abstractions.

1.8 Designing DSLs
In a chapter in the functional programming notes, we examine families of related
functions to define generic, higher-order functions to capture the computational
patterns for each family. We seek to raise the level of abstraction in our programs.

Design of DSLs is similar, except that we seek to design a language to express the
family members in some application domain rather than design a higher-order
function.

1.8.1 SCV analysis

We should first analyze the domain systematically and then use the] results to
design an appropriate DSL syntax and semantics. We analyze the domain using
*Scope-Commonality-Variability (SCV) [7] and produce four outputs.

1. scope – the boundaries of the domain. That is, identify what we must
address and what we can ignore.

2. terminology – the definitions of the specialized terms, or concepts, relevant
to the domain.

3. commonalities – the aspects of the domain that do not change from one
application to another within the domain. We sometimes call these the
frozen spots.

4. variabilities – the aspects of the domain that may change from one ap-
plication to another within the domain. We sometimes call these the hot
spots.

TODO: Expand the explanation (e.g., include model) to include more of the ideas
from [7] and other sources. Perhaps include example such as the SurveyDSL
design from [9].

In the SCV analysis, we must seek to identify all the implicit assumptions in the
application domain. These implicit assumptions need to be made explicit in the
DSL’s design and implementation.

We use the SCV analysis to guide our choices for elements of the DSL design
[9]. The scope focuses our attention on what we are trying to accomplish. The
terminology and commonalities suggest the DSL statements and constructs. The
commonalities also suggest the semantics of the constructs and the nature of the

13

underlying computational model. The variabilities represent syntactic elements
to which the DSL programmer can assign values.

1.8.2 DSL design guidelines

TODO: Better integrate the Karsai, Freeman, and other lists of guidelines.

Karsai et al. [41] identifies 26 guidelines important for DSL design, grouping
them into 5 categories. The paper focuses on design of external DSLs. Here we
expand their guidelines to include internal DSLs.

A. Language purpose guidelines (i.e., what purposes to satisfy)

1. Identify language uses early.

In Fowler’s terminology, we must identify the domain and what uses
the language will have within the domain. We must carefully define
the scope within the SCV analysis.

2. Ask questions.

What group of users will write the DSL programs? will read them?
will deploy them for execution? Etc. What are each group’s purposes?
What does each group need to be able to understand and use the
DSL successfully? Can we simply the DSL further?

3. Make the language consistent.

Avoid surprises. Keep the DSL narrowly focused on its purposes. A
DSL feature should contribute to the purposes or be omitted. All
features should be based on a cohesive set of concepts.

B. Language realization guidelines (i.e., how to implement)

4. Decide carefully whether to use a text-based external DSL, a graphical
external DSL, or an internal DSL hosted in some particular language.

For the DSL’s identified domain, uses, and user groups, what are
the advantages and disadvantages of each approach? What tools are
available to support the DSL design, implementation, and use.

5. Compose existing languages where possible.

Can parts of the new DSL’s uses be handled by already implemented
languages and tools? If so, we can avoid the time-consuming and
error-prone work of designing and implementing a whole new DSL.
We can combine the existing languages, embed them within a new
“glue” language, extend an existing language with a few new features,
etc.

In the “Little Languages” paper, Bentley describes how the processor
for the external DSL chem generates a program in the DSL pic. The
processor for pic itself generates a program in the DSL troff. These

14

“filter” programs are then connected using pipes in the Unix shell (a
DSL). Furthermore, the implementation of pic specifies the lexical
analysis and parsing phases using the DSLs lex and yacc and defines
the overall build process using the DSL make.

Consider an internal DSL such as the Survey DSL. It includes many
existing features of the host language (Ruby) in the new DSL.

6. Reuse existing language definitions.

Even if the implementation of an existing language cannot be reused,
we can consider reusing its definition. This saves effort in language
design and it may leverage the users’ knowledge of the existing lan-
guage.

For example, the Pandoc Markdown dialect embeds LaTeX’s widely-
known mathematical notation to specify mathematical symbols and
expressions within the text.

Sometimes building a DSL entails embedding an existing API within
a fluent interface to implement an internal DSL or devising a simi-
lar textual notation to form an external DSL [52]. Or perhaps we
reenvision a textual or internal DSL as a graphical DSL.

7. Reuse existing type systems.

A language’s type system is probably the most difficult to design well
and implement robustly. A new type system can also be difficult for
users to learn to use effectively. Thus, by reusing an existing type
system that the users may know, DSL developers can both make their
work more efficient and the new DSL easier to understand and use.

An internal DSL selects from and builds on the host language’s existing
type system.

C. Language content guidelines (i.e., what features to include)

8. Reflect only necessary domain concepts.

Which artifacts (or objects) from the domain must we capture to
satisfy the DSL purposes? Which properties of those artifacts? Can
we leave out the other artifacts and purposes? We should discuss
possible designs with users and incorporate their feedback.

9. Keep the DSL simple.

Make the DSL easy for users to learn and use effectively. If the
language is too complex, users may just ignore it. Keep the language
as simple as possible to ensure effective use.

Simplicity may be especially difficult to achieve in internal DSLs
because the boundary between the DSL features and the host language
may not be clear. Seek to crisply define this boundary.

15

The next three guidelines help us achieve simplicity.

10. Avoid unnecessary generality.

This is an aspect of keeping the DSL simple. Design only what
is necessary to solve the problem. Avoid excessive concern about
generalizing and parameterizing the language beyond what is needed
initially. It is difficult to predict what generalizations will actually
prove useful.

However, a successful DSL is seldom static. It likely must evolve to
meet the changes in the domain and the expectations of its users.
Design the DSL so that it can be extended with new capabilities in
the future.

An SCV analysis can reveal important “variabilities” (hot spots) that
either should be incorporated in the initial design or that may become
important in the future.

11. Limit the number of language elements.

This is a second aspect of keeping the DSL simple. A language with
many elements is difficult to learn, use, and implement. It is better
to have a few elements that can be combined flexibly.

If the domain and purposes are complex, look for ways to break them
into a set of smaller problems, solve each subproblem by designing a
sublanguage, and then combine the sublanguages to solve the larger
problem. Users can focus on the sublanguages they need to carry out
their specific tasks.

Alternatively, determine whether some of the more complex elements
can be moved from the DSL’s core and to a “library” that can
be accessed by DSL programs. Enable users to store their own
language extensions in the library. This approach enables us to extend
the functionality of the DSL without changing the core language’s
structure.

For example, languages like Pascal included I/O statements as a
language construct. Later languages such as C and Java moved I/O
to a library.

12. Avoid conceptual redundancy.

This is a third aspect of keeping the DSL simple. If there are many
possible ways to express the same concept in the DSL, users will
likely become confused and may not use the DSL effectively. Avoid
unnecessary redundancy.

13. Avoid inefficient language elements.

16

A DSL raises the level of abstraction and usually obscures the details of
how a DSL program is actually executed. However, the DSL designers
and implementers must ensure that the DSL programs execute with
acceptable efficiency. Moreover, the user of the DSL must be able to
understand which DSL programs are more efficient than others.

D. Concrete syntax guidelines (i.e., how to make the DSL readable)

14. Adapt existing notations domain experts use.

Where possible, build on the formal notation that the domain experts
already know and use. If this needs to be modified or extended, keep
the changes close to the style of the existing notation. Familiarity
will make the DSL easier for domain experts to learn and

Of course, DSL designers may need to formalize the syntax and
semantics of informal terminology, notation, and processes to enable
them to be included in an automated DSL. Tools for processing the
new DSL may also provide capabilities not present in the current
practice.

15. Use descriptive notations.

Where possible, choose terms and symbols that suggest the intended
meaning. Avoid using them in ways that differ significantly from the
way they are used in the domain or in the general public.

For example, the symbol + usually denotes addition or some similar
operation; to use it to denote multiplication would likely introduce
confusion and make the DSL difficult to learn. Similarly, using the
keyword if to denote something other than a conditional would be
confusing.

16. Make elements distinguishable.

A DSL will be read by humans more frequently than written. So,
when the needs of readers and writers conflict, favor the readers over
the writers.

Make different elements appear differently in the displayed form.
Avoid using a subtle difference in notation, spelling, location, size,
font, or color as the sole way to distinguish between different elements.
In most cases, make the DSL accessible to those with impaired vision.

17. Use syntactic sugar appropriately.

Syntactic sugar refers to elements of a language that do not add to
the expressiveness of the DSL but which may make it easier to read
and perhaps easier to parse.

If used in moderation, syntactic sugar makes the language more
palatable. But overuse may just make the language fat -- more

17

verbose and confusing.

This guideline conflicts with the “avoid conceptual redundancy” guide-
line above. Designers must balance these concerns.

18. Permit comments.

Although comments do not make the DSL more semantically ex-
pressive, comments enable those writing DSL programs to explain
their design decisions to others (or their future selves) who need to
understand and modify the DSL program.

In addition, comments can allow information to be passed to tools that
generate structured documentation on the DSL programs. (Consider
JavaDoc.)

19. Provide organizational structures for DSL programs

To manage a DSL program that grows large and complex, we need to
be able to break it up into subprograms. The subprograms may need
to be organized into a graph structure and managed as a group in an
archive.

The DSL and the tools that manage DSL programs should allow a
group of subprograms to be organized into “packages” that can be
selectively included in other DSL programs.

This solution seeks to manage complexity of DSL programs by break-
ing them into smaller subprograms. The “library” solution suggested
for the “limit the number of language elements” guideline seeks to
manage the complexity of the language itself.

20. Balance compactness and comprehensibility.

Compact notation is generally efficient to write and process. However,
it may not be comprehensible to the reader.

Syntactic sugar can make a DSL more comprehensible, but make
it more difficult to write. And, if overused, it can make the DSL
confusingly verbose and thus less comprehensible.

So we must balance among the factors. As noted above, we should
normally favor the human reader over the writer.

21. Use the same style everywhere.

If a language has several sublanguages, make all the sublanguages
similar in style. This makes the various languages easier to understand
and use as a group.

For example, it would be confusing for one sublanguage to group
items with { and } and another to use begin and end for a similar
purpose.

18

Of course, this guideline must be balanced with the above guidelines
suggesting we should “compose existing languages.” “reuse existing
language definitions,” and “adapt existing notations domain experts
use.”

22. Identify usage conventions.

To keep the DSL definition simple, we generally should not rigidly
enforce minor syntactic issues such as layout. However, good DSL
programming style can make a program more comprehensible (and
more pleasant tor read).

In parallel with the language definition, we should describe good style
means for layout, naming conventions, order of elements, commenting,
etc.

E. Abstract syntax guidelines (i.e., how to represent the DSL internally)

23. Align abstract and concrete syntax

This means that:

• elements that differ in concrete syntax should differ in internal
representations

• elements that are similar in meaning should have similar internal
representations (e.g., be subclasses of same base class)

• the internal representation of an element should not be dependent
upon the context in which the element appears

The goal is to be able to map the human readable representation of the
DSL to the internal representation. This makes the execution easier
to understand and debug. It may enable the generation of runtime
error messages that tie back to the DSL program. (Remember the
discussion of shallow versus deep embedding of DSLs.)

24. Prefer layout that does not affect translation from concrete to abstract
syntax.

This guideline suggests that issues like indentation should not affect
the semantics. Not all language designers (e.g., of Python and Haskell)
agree with this guideline.

25. Enable modularity.

To manage the complexity of the language, the “limit the number
of language elements” guideline suggests providing a library of non-
primitive elements that extend the core language.

To manage the complexity of large DSL programs, the “organizational
structure for DSL programs” guideline suggests breaking a program
into a group of related pieces and storing the pieces in a library of
packages. This can be done at the DSL source code level.

19

This “enable modularity” guideline suggests the capability to build
the internal representation of a DSL program by composing separately
compiled “modules” incrementally.

Perhaps all of these mechanisms are implemented by a single module
mechanism or there may separate mechanisms for composing precom-
piled modules, DSL source code packages, and DSL extensions.

26. Introduce interfaces.

An interface usually defines a set of operation signatures (the name,
parameters and their types, and return value type) and perhaps
constraints on the operation’s execution (preconditions and postcon-
ditions).

If the modules of a large DSL program have well-defined interfaces,
then the DSL’s module mechanism can check whether the modules
conform with each other’s expectations.

Interfaces and modules together support an information-hiding ap-
proach to program development. Each module “hides” its internal
details from the other modules in the system.

1.8.3 More guidelines for internal DSL design

TODO: Better integrate the Karsai, Freeman, and other lists of guidelines.

Drawing on the experience in designing, implementing, and evolving the JMock
internal DSL (which provides mock objects for testing [25]), Freeman and Pryce
make four recommendations for constructing an internal DSL [25]. To some
extent, these recommendations apply to design of all DSLs.

27. Separate syntax and semantics (interpretation) into separate layers.

The concern of the syntax layer is to provide a fluent, readable language for
users familiar with the application domain. These may not be programmers–
or at least not programmers who are experts in the host language.

The concern of the semantic layer is to provide a correct, efficient, and
maintainable interpreter for the language. The developers and maintainers
of this layer are typically experts in the host language who can take
advantage of the implementation language’s capabilities and idioms.

As with most nontrivial software development tasks, mixing these concerns
can make the implementation difficult to develop, understand, and maintain.
It is better to translate the syntax to to an appropriate semantic model
(e.g., an abstract syntax tree) for processing, hiding the details of each
behind well-designed interfaces.

28. Use, and perhaps abuse, the host language and its conventions to enable
the writing of readable DSL programs.

20

For internal DSLs, the syntax layer may need to violate the conventional
programming styles and naming conventions of the host language to achieve
the desired readability and fluency.

For example, DSLs in object-oriented languages may use method chaining
[24,102] extensively to achieve the desired fluency of the interface [21,101].
These practices usually discouraged in the usual programming practices.

29. Don’t trap the user in the internal DSL.

Note: This concern of this guideline is similar to discussion of libraries,
packages, and modules in the Karsai et al guidelines in a previous subsec-
tion.

The DSL should encapsulate its internal implementation details to avoid
unexpected dependence on implementation features that might change
over time and to enable naive users to use the DSL safely.

However, it is difficult to anticipate all possible uses of a DSL over time.
Thus it is helpful to enable expert users of the host language to extend the
DSL by providing alternative implementations of key abstractions.

The implementation of the DSL should itself be approached as a software
family. Although the DSL syntax may look different than the host language,
the DSL implementation should seek to work seamlessly with other host
language programs.

We should track the changes that expert users make. These help identify
possible future enhancements of the DSL and its implementation.

30. Map error reports to the syntax layer rather than to the semantics layer,
which is hidden from the DSL user.

Note: The concern of this guideline is similar to that of Karsai et al’s
“align concrete and abstract syntax” guideline in a previous subsection.

Good error reports are critical to a successful DSL. As much as possible,
errors in both syntax and semantics should be stated in terms of the
syntactic structure of the specific DSL program. This is often difficult to
accomplish, but it is important because it is unlikely that the DSL’s users
will be familiar with the internal details of the implementation.

Deep embedding of DSLs can make it easier to trace errors back to recog-
nizable syntactic structures.

1.9 What Next?
TODO

TODO: Is a source code section needed?

21

1.10 Exercises
TODO

1.11 Acknowledgements
These notes evolved during the 2014-2018 period. They draw ideas from (in
alphabetical order) Bentley [3], Buck [6], Coplien [7], Fowler [18,19,22–24], Freeze
[26], Hudak [35,36], Karsai et al. [41], Mernik et al. [52], Thompson [73], Freeman
and Pryce [25], van Deursen et al. [74], my own research [9] related to the Ruby-
based Survey DSL, my experiences reimplementing several of Fowler’s DSLs in
Scala, Lua, or Python, various Wikipedia articles, and likely other sources.

In Fall 2014, I wrote the first short version of these notes to accompany the
Haskell-based Sandwich DSL project I assigned to my CSci 450 (Organization of
Programming Languages) class.

In Spring 2016, I updated these notes slightly to accompany the Scala-based
Sandwich DSL project I assigned to my CSci 555 (Functional Programming)
class.

In Fall 2016, I adapted and revised much of this document for possible use in
CSci 450, but I did not use it that semester.

In Spring 2017 for a Haskell-based offering of CSci 556 (Multiparadigm Program-
ming), I continued to develop these notes, adding discussion of the boundaries
between DSLs and other computing artifacts, of the Expression Language (later
called ELI Calculator language) case study, and of my use of DSLs in the workflow
for producing this document.

In Summer and Fall 2017, I updated these notes slightly for possible use in CSci
450, but did not use it that semester.

In Spring 2018, I added discussion of Fowler’s definition of DSLs [24], advantages
and disadvantages of DSLs [24], and Karsai’s DSL design guidelines [41] and
modified the document for use in CSci 658 (Software Language Engineering).

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on possible textbooks based on the course
materials I had developed during my three decades as a faculty member. In
January 2022, I began refining the existing content, integrating separately
developed materials together, reformatting the documents, constructing a unified
bibliography (e.g., using citeproc), and improving my build workflow and use of
Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

22

../SurveyDSL/SurveyDSL.html
../../ELIFP/Ch21/21_Algebraic_Types.html#sandwich-dsl-project
../../SandwichDSL/Scala/SandwichDSL_Scala.html
../../SandwichDSL/Scala/SandwichDSL_Scala.html

1.12 Concepts and Terms
TODO: Update this list

Domain-specific languages (DSLs); language nature; fluency; limited expressive-
ness; domain focus; DSLs versus general-purpose programming languages; DSLs
versus APIs; external versus internal DSLs; shallow versus deep embedding of
internal DSLs; use of algebraic data types to implement DSLs

1.13 References
[1] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. 1979.

Awk—a pattern scanning and processing language. Software: Practice
and Experience 9, 4 (1979), 267–279.

[2] Conrad Barski. 2011. Land of Lisp: Learn to program in Lisp, one game
at a time. No Starch Press, San Francisco, California, USA.

[3] Jon Bentley. 1986. Programming pearls: Little languages. Communica-
tions of the ACM 29, 8 (1986), 711–721.

[4] Frederick P. Brooks, Jr. 1987. No silver bullet: Essence and accident in
software engineering. IEEE Computer 20, 4 (1987), 10–19.

[5] Frederick P. Brooks, Jr. 1995. ’No Silver Bullet’ refired. In The mythical
man month (Anniversary). Addison-Wesley, Boston, Massachusetts, USA.

[6] Jamis Buck. 2006. Writing domain specific languages (blog post). Re-
trieved from https://weblog.jamisbuck.org/2006/4/20/writing-domain-
specific-languages.html

[7] James Coplien, Daniel Hoffman, and David Weiss. 1998. Commonality
and variability in software engineering. IEEE Software 15, 6 (1998),
37–45.

[8] Douglas Crockford. 2022. Introducing JSON. Retrieved from https:
//www.json.org/json-en.html

[9] H. Conrad Cunningham. 2008. A little language for surveys: Constructing
an internal DSL in Ruby. In Proceedings of the ACM SouthEast conference,
Auburn, Alabama, USA, 282–287.

[10] H. Conrad Cunningham. 2022. Exploring programming languages with in-
terpreters and functional programming (ELIFP). University of Mississippi,
Department of Computer and Information Science, University, Mississippi,
USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/ELIFP/EL
IFP.pdf

[11] Ecma International. 2017. ECMA-404 standard: The JSON data inter-
change format. Retrieved from https://www.ecma-international.org/pu
blications-and-standards/standards/ecma-404/

[12] Ecma International. 2021. ECMA-376 Standard: Office open XML file
formats. Retrieved from https://www.ecma-international.org/publicatio
ns-and-standards/standards/ecma-376/

23

https://weblog.jamisbuck.org/2006/4/20/writing-domain-specific-languages.html
https://weblog.jamisbuck.org/2006/4/20/writing-domain-specific-languages.html
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/

[13] Elixir Team. 2022. Elixir. Retrieved from https://elixir-lang.org

[14] Stuart I. Feldman. 1979. Make—a program for maintaining computer
programs. Software: Practice and Experience 9, 4 (1979), 255–265.

[15] Matthias Felleisen, David Van Horn, and Conrad Barski. 2013. Realm
of Racket: Learn to program, one game at a time! No Starch Press, San
Francisco, California, USA.

[16] Michael Fogus and Chris Houser. 2011. The joy of Clojure. Manning,
Shelter Island, New York, USA.

[17] International Digital Publishing Forum. 2022. EPUB 3.2. Retrieved from
https://www.w3.org/publishing/epub32/epub-spec.html

[18] Martin Fowler. 2005. Language workbenches: The killer-app for domain
specific languages? (Blog post). Retrieved from http://www.martinfowl
er.com/articles/languageWorkbench.html

[19] Martin Fowler. 2005. Generating code for DSLs (blog post). Retrieved
from https://www.martinfowler.com/articles/codeGenDsl.html

[20] Martin Fowler. 2005. CommandQuerySepration (blog post). Retrieved
from https://www.martinfowler.com/bliki/CommandQuerySeparation.ht
ml

[21] Martin Fowler. 2005. FluentInterface (blog post). Retrieved from https:
//martinfowler.com/bliki/FluentInterface.html

[22] Martin Fowler. 2008. One lair and twenty Ruby DSLs. In The Thought-
Works anthology: Essays on software technology and innovation, Thought-
Works, Inc. (ed.). Pragmatic Bookshelf, Raleigh, North Carolina, USA.
Retrieved from https://media.pragprog.com/titles/twa/martin_fowler.
pdf

[23] Martin Fowler. 2008. DomainSpecificLanguage (blog post). Retrieved
from https://www.martinfowler.com/bliki/DomainSpecificLanguage.htm
l

[24] Martin Fowler and Rebecca Parsons. 2010. Domain specific languages.
Addison-Wesley, Boston, Massachusetts, USA.

[25] Steve Freeman and Nat Pryce. 2006. Evolving an embedded domain-
specific language in Java. In Companion to the conference on object-
oriented programming languages, systems, and applications, Portland,
Oregon, USA, 855–865. Retrieved from http://jmock.org/oopsla2006.pdf

[26] Jim Freeze. 2006. Creating DSLs with Ruby. Retrieved from https:
//www.artima.com/articles/creating-dsls-with-ruby

[27] Daniel P. Friedman and Matthias Felleisen. 1995. The little schemer
(Fourth ed.). MIT Press, Cambridge, Massachusetts, USA.

[28] Daniel P. Friedman and Matthias Felleisen. 1995. The seasoned schemer
(Second ed.). MIT Press, Cambridge, Massachusetts, USA.

24

https://elixir-lang.org
https://www.w3.org/publishing/epub32/epub-spec.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
https://www.martinfowler.com/articles/codeGenDsl.html
https://www.martinfowler.com/bliki/CommandQuerySeparation.html
https://www.martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html
https://media.pragprog.com/titles/twa/martin_fowler.pdf
https://media.pragprog.com/titles/twa/martin_fowler.pdf
https://www.martinfowler.com/bliki/DomainSpecificLanguage.html
https://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://jmock.org/oopsla2006.pdf
https://www.artima.com/articles/creating-dsls-with-ruby
https://www.artima.com/articles/creating-dsls-with-ruby

[29] Jeremy Gibbons and Nicolas Wu. 2014. Folding domain-specific languages:
Deep and shallow embeddings (functional pearl). In Proceedings of the
19th ACM SIGPLAN international conference on functional programming,
Gothenburg, Sweden, 339–347. Retrieved from https://www.cs.ox.ac.uk/
jeremy.gibbons/publications/embedding.pdf

[30] David Goodger. 2022. reStructuredText: Markup syntax and parser
component of Docutils. Docutils Project. Retrieved from https://docutils
.sourceforge.io/rst.html

[31] John Gruber. 2022. Markdown. Retrieved from https://daringfireball.ne
t/projects/markdown/

[32] David Hagen. 2022. Parsita. Retrieved from https://pypi.org/project/p
arsita/

[33] Haskell Organization. 2022. Parsec: Monadic parser combinators. Re-
trieved from https://hackage.haskell.org/package/parsec

[34] Rich Hickey. 2020. A history of Clojure. Proceedings of the ACM on
Programming Languages 4, HOPL, Article 71 (2020), 1–46.

[35] Paul Hudak. 1996. Building domain-specific embedded languages. ACM
Computing Surveys 28, 4 (1996), 196–201. Retrieved from https://dl.acm
.org/doi/fullHtml/10.1145/242224.242477

[36] Paul Hudak. 1998. Modular domain specific languages and tools. In
Proceeding of the 5th international conference on software reuse (ICSR’98),
IEEE, Victoria, British Columbia, Canada, 134–142.

[37] Paul Hudak, John Peterson, Joseph H. Fasel, and Reuben Thomas. 2000.
A gentle introduction to Haskell 98. Retrieved from https://www.haskell.
org/tutorial/

[38] Roberto Ierusalimschy. 2009. A text pattern-matching tool based on
parsing expression grammars. Software: Practice and Experience 39, 3
(2009), 221–258. Retrieved from http://www.inf.puc-rio.br/~roberto/lpe
g/lpeg.html

[39] Roberto Ierusalimschy. 2022. LPeg: Parsing expression grammars for Lua,
version 1.0. Retrieved from http://www.inf.puc-rio.br/~roberto/lpeg/

[40] json-schema.org. 2022. JSON Schema. Retrieved from https://json-
schema.org

[41] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Voelkel. 2009. Design guidelines for domain
specific languages. In Proceedings of OOPSLA workshop on domain-
specific modeling, Vancouver, British Columbia, Canada. Retrieved from
https://arxiv.org/pdf/1409.2378

[42] Brian W. Kernighan. 1984. PIC—a graphics language for typesetting,
revised user manual. Bell Laboratories, Computing Science, Murray Hill,
New Jersey, USA. Retrieved from http://doc.cat-v.org/unix/v8/picmem
o.pdf

25

https://www.cs.ox.ac.uk/jeremy.gibbons/publications/embedding.pdf
https://www.cs.ox.ac.uk/jeremy.gibbons/publications/embedding.pdf
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/rst.html
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://pypi.org/project/parsita/
https://pypi.org/project/parsita/
https://hackage.haskell.org/package/parsec
https://dl.acm.org/doi/fullHtml/10.1145/242224.242477
https://dl.acm.org/doi/fullHtml/10.1145/242224.242477
https://www.haskell.org/tutorial/
https://www.haskell.org/tutorial/
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html
http://www.inf.puc-rio.br/~roberto/lpeg/
https://json-schema.org
https://json-schema.org
https://arxiv.org/pdf/1409.2378
http://doc.cat-v.org/unix/v8/picmemo.pdf
http://doc.cat-v.org/unix/v8/picmemo.pdf

[43] Michael E. Lesk and Eric Schmidt. 1975. Lex: A lexical analyzer generator.
Bell Laboratories, Murray Hill, New Jersey, USA. Retrieved from http:
//mbzz.de/unix/ultrix/etc/lex.pdf

[44] John R. Levine and Tony Mason andd Doug Brown. 1992. Lex & yacc
(Second ed.). O’Reilly Media, Sebastopol, California, USA.

[45] Peter Linz. 2011. Formal languages and automata (Fifth ed.). Jones &
Bartlett, Burlington, Massachusetts, USA.

[46] John MacFarlane. 2022. Pandoc: A universal document converter.
Retrieved from https:///www.pandoc.org

[47] Simon Marlow. 2022. Alwx: A lexical analyzer generator for Haskell.
Retrieved from https://www.haskell.org/alex/

[48] Simon Marlow. 2022. Happy: The parser generator for Haskell. Retrieved
from https://www.haskell.org/happy/

[49] John McCarthy. 1978. History of LISP. ACM SIGPLAN Notices 8 (1978),
217–223. Retrieved from https://pages.cs.wisc.edu/~horwitz/CS704-
NOTES/PAPERS/mccarthy.pdf

[50] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P.
Hart, and Michael I. Levin. 1962. LISP 1.5 programmer’s manual.
MIT Press, Cambridge, Massachusetts, USA. Retrieved from https:
//apps.dtic.mil/sti/pdfs/AD0406138.pdf

[51] Robert Mecklenburg. 2004. Managing projects with GNU Make: The
power of GNU Make for building anything (Third ed.). O’Reilly Media.

[52] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and
how to develop domain specific languages. ACM Computing Surveys 37,
4 (2005), 316–344. Retrieved from https://pdfs.semanticscholar.org/bd0
6/01088d5f217dc136a898f577763df92891cb.pdf

[53] Bertrand Meyer. 1997. Object-oriented program construction (Second
ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.

[54] Martin Odersky, Lex Spoon, and Bill Venners. 2021. Programming in
Scala (Fifth ed.). Artima, Inc., Walnut Creek, California, USA.

[55] Terence Parr. 2009. Language implementation patterns: Create your own
domain-specific and general programming languages. Pragmatic Bookshelf,
Raleigh, North Carolina, USA.

[56] Terence Parr. 2022. ANTRL. Retrieved from https://www.antlr.org/

[57] PLT Inc. 2022. Racket. Retrieved from https://www.racket-lang.org

[58] Christian Queinnec. 2003. Lisp in small pieces. Cambridge University
Press, Cambridge, UK.

[59] Eric S. Raymond. 1995. Making pictures with GNU PIC. Retrieved from
https://lists.gnu.org/r/groff/2011-08/pdfbLauVhlfQs.pdf

26

http://mbzz.de/unix/ultrix/etc/lex.pdf
http://mbzz.de/unix/ultrix/etc/lex.pdf
https:///www.pandoc.org
https://www.haskell.org/alex/
https://www.haskell.org/happy/
https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/PAPERS/mccarthy.pdf
https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/PAPERS/mccarthy.pdf
https://apps.dtic.mil/sti/pdfs/AD0406138.pdf
https://apps.dtic.mil/sti/pdfs/AD0406138.pdf
https://pdfs.semanticscholar.org/bd06/01088d5f217dc136a898f577763df92891cb.pdf
https://pdfs.semanticscholar.org/bd06/01088d5f217dc136a898f577763df92891cb.pdf
https://www.antlr.org/
https://www.racket-lang.org
https://lists.gnu.org/r/groff/2011-08/pdfbLauVhlfQs.pdf

[60] Arnold Robbins. 2015. Effective AWK programming: : Universal text
processing and pattern matching (Fourth ed.). O’Reilly Media, Sebastopol,
California, USA.

[61] Ruby Community. 2022. Ruby: A programmer’s best friend. Retrieved
from https://www.ruby-lang.org

[62] Scala Language Organization. 2022. The Scala programming language.
Retrieved from https://www.scala-lang.org/

[63] Diomidis Spinellis. 2001. Notable design patterns for domain-specific
languages. Journal of Systems and Software 56, 1 (2001), 91–99. Retrieved
from https://www.spinellis.gr/pubs/jrnl/2000-JSS-DSLPatterns/html/d
slpat.html

[64] Richard M. Stallman and Zachary Weinberg. 2022. The c preprocessor.
Retrieved from https://gcc.gnu.org/onlinedocs/cpp/

[65] Johnson Stephen C. 1975. Yacc: Yet another compiler-compiler. Bell
Laboratories, Murray Hill, New Jersey, USA. Retrieved from http://dino
saur.compilertools.net/yacc/

[66] The Graphviz Authors. 2022. DOT Language. Retrieved from https:
//graphviz.org/doc/info/lang.html

[67] The Graphviz Authors. 2022. Graphviz. Retrieved from https://learnxin
yminutes.com/docs/haskell/

[68] The LaTeX Project. 2022. LaTeX: A document preparation system.
Retrieved from https://www.latex-project.org/

[69] The R Foundation. 2022. R: The R project for statistical programming.
Retrieved from https://www.r-project.org/

[70] Scott Thibault, Renaud Marlet, and Charles Consel. 1999. Domain-
specific languages: From design to implementation–Application to video
device driver generation. IEEE Transactions on Software Engineering 25,
3 (1999), 363–377.

[71] Dave Thomas. 2018. Programming Elixir >= 1.6: Functional |> concur-
rent |> pragmatic |> fun. Pragmatic Bookshelf, Raleigh, North Carolina,
USA.

[72] David Thomas, Chad Fowler, and Andrew Hunt. 2004. Programming
Ruby (Second ed.). Pragmatic Bookshelf, Raleigh, North Carolina, USA.

[73] Simon Thompson. 2011. Haskell: The craft of programming (Third ed.).
Addison-Wesley, Boston, Massachusetts, USA.

[74] Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain specific
languages: An annotated bibliography. ACM SIGPLAN Notices (2000).
Retrieved from https://dl.acm.org/doi/pdf/10.1145/352029.352035

[75] W3C Math Working Group. 2022. W3C math home. Retrieved from
https://www.w3.org/Math/

27

https://www.ruby-lang.org
https://www.scala-lang.org/
https://www.spinellis.gr/pubs/jrnl/2000-JSS-DSLPatterns/html/dslpat.html
https://www.spinellis.gr/pubs/jrnl/2000-JSS-DSLPatterns/html/dslpat.html
https://gcc.gnu.org/onlinedocs/cpp/
http://dinosaur.compilertools.net/yacc/
http://dinosaur.compilertools.net/yacc/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
https://learnxinyminutes.com/docs/haskell/
https://learnxinyminutes.com/docs/haskell/
https://www.latex-project.org/
https://www.r-project.org/
https://dl.acm.org/doi/pdf/10.1145/352029.352035
https://www.w3.org/Math/

[76] W3C SVG Working Group. 2022. Scalable vector graphics (SVG). Re-
trieved from https://www.w3.org/Graphics/SVG/

[77] Martin P. Ward. 1994. Language-oriented programming. Software–
Concepts and Tools 15, 4 (1994), 147–161. Retrieved from http://www.
gkc.org.uk/martin/papers/middle-out-t.pdf

[78] Web Hypertext Application Technology Working Group (WHATWG).
2022. HTML: Living standard. Retrieved from https://html.spec.what
wg.org/

[79] Hadley Wickham. 2019. Advanced R (Second ed.). CRC Press. Retrieved
from https://adv-r.hadley.nz/index.html

[80] Wikpedia: The Free Encyclopedia. 2022. R (programming language).
Retrieved from https://en.wikipedia.org/wiki/R_(programming_langua
ge)

[81] Wikpedia: The Free Encyclopedia. 2022. Lisp (programming language).
Retrieved from https://en.wikipedia.org/wiki/Lisp_(programming_lang
uage)

[82] Wikpedia: The Free Encyclopedia. 2022. Scheme (programming lan-
guage). Retrieved from https://en.wikipedia.org/wiki/Scheme_(progra
mming_language)

[83] Wikpedia: The Free Encyclopedia. 2022. Clojure. Retrieved from
https://en.wikipedia.org/wiki/Clojure

[84] Wikpedia: The Free Encyclopedia. 2022. Unix philosophy. Retrieved
from https://en.wikipedia.org/wiki/Unix_philosophy

[85] Wikpedia: The Free Encyclopedia. 2022. Turing completeness. Retrieved
from https://en.wikipedia.org/wiki/Turing_completeness

[86] Wikpedia: The Free Encyclopedia. 2022. General-purpose language.
Retrieved from https://en.wikipedia.org/wiki/General-purpose_language

[87] Wikpedia: The Free Encyclopedia. 2022. Domain-specific language.
Retrieved from https://en.wikipedia.org/wiki/Domain-specific_language

[88] Wikpedia: The Free Encyclopedia. 2022. PIC (markup lanugage). Re-
trieved from https://en.wikipedia.org/wiki/PIC_(markup_language)

[89] Wikpedia: The Free Encyclopedia. 2022. AWK. Retrieved from https:
//en.wikipedia.org/wiki/AWK

[90] Wikpedia: The Free Encyclopedia. 2022. Lex (software). Retrieved from
https://en.wikipedia.org/wiki/Lex_(software)

[91] Wikpedia: The Free Encyclopedia. 2022. Yacc. Retrieved from https:
//en.wikipedia.org/wiki/Yacc

[92] Wikpedia: The Free Encyclopedia. 2022. Make (software). Retrieved
from https://en.wikipedia.org/wiki/Make_(software)

[93] Wikpedia: The Free Encyclopedia. 2022. C preprocessor. Retrieved from
https://en.wikipedia.org/wiki/C_preprocessor

28

https://www.w3.org/Graphics/SVG/
http://www.gkc.org.uk/martin/papers/middle-out-t.pdf
http://www.gkc.org.uk/martin/papers/middle-out-t.pdf
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/
https://adv-r.hadley.nz/index.html
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/Unix_philosophy
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/General-purpose_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/PIC_(markup_language)
https://en.wikipedia.org/wiki/AWK
https://en.wikipedia.org/wiki/AWK
https://en.wikipedia.org/wiki/Lex_(software)
https://en.wikipedia.org/wiki/Yacc
https://en.wikipedia.org/wiki/Yacc
https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/C_preprocessor

[94] Wikpedia: The Free Encyclopedia. 2022. DOT (graph description lan-
guage). Retrieved from https://en.wikipedia.org/wiki/DOT_(graph_de
scription_language)

[95] Wikpedia: The Free Encyclopedia. 2022. HTML. Retrieved from https:
//en.wikipedia.org/wiki/HTML

[96] Wikpedia: The Free Encyclopedia. 2022. LaTeX. Retrieved from https:
//en.wikipedia.org/wiki/LaTeX

[97] Wikpedia: The Free Encyclopedia. 2022. Markdown. Retrieved from
https://en.wikipedia.org/wiki/Markdown

[98] Wikpedia: The Free Encyclopedia. 2022. reStructuredText. Retrieved
from https://en.wikipedia.org/wiki/ReStructuredText

[99] Wikpedia: The Free Encyclopedia. 2022. EPUB. Retrieved from https:
//en.wikipedia.org/wiki/EPUB

[100] Wikpedia: The Free Encyclopedia. 2022. Office open XML (OOXML).
Retrieved from https://en.wikipedia.org/wiki/Office_Open_XML

[101] Wikpedia: The Free Encyclopedia. 2022. Fluent interface. Retrieved
from https://en.wikipedia.org/wiki/Fluent_interface

[102] Wikpedia: The Free Encyclopedia. 2022. Method chaining. Retrieved
from https://en.wikipedia.org/wiki/Method_chaining

[103] Wikpedia: The Free Encyclopedia. 2022. Command-query separation.
Retrieved from https://en.wikipedia.org/wiki/Command-query_separati
on

[104] Wikpedia: The Free Encyclopedia. 2022. API (application programming
interface). Retrieved from https://en.wikipedia.org/wiki/API

29

https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/ReStructuredText
https://en.wikipedia.org/wiki/EPUB
https://en.wikipedia.org/wiki/EPUB
https://en.wikipedia.org/wiki/Office_Open_XML
https://en.wikipedia.org/wiki/Fluent_interface
https://en.wikipedia.org/wiki/Method_chaining
https://en.wikipedia.org/wiki/Command-query_separation
https://en.wikipedia.org/wiki/Command-query_separation
https://en.wikipedia.org/wiki/API

	Introduction to DSLs
	Chapter Introduction
	What are DSLs?
	Motivation
	Examples
	Definition
	DSL/GPL Boundaries

	External and Internal DSL Syles
	External
	Internal

	Shallow and Deep Embeddings of Internal DSLs
	Shallow embedding
	Deep embedding
	ELI Calculator Language

	DSLs Used to Produce This Document
	Possible Advantages of Using DSLs
	Possible Disadvantages of Using DSLs
	Designing DSLs
	SCV analysis
	DSL design guidelines
	More guidelines for internal DSL design

	What Next?
	Exercises
	Acknowledgements
	Concepts and Terms
	References

