

JavaServer PagesTM Fundamentals
About This Short Course

By

Short Course| Exercises | Download

The Java Developer ConnectionSM (JDC) presents a Short Course
written by JavaTM Software licensee jGuru (formerly named the
MageLang Institute). This Short Course provides an introduction to
JavaServer PagesTM (JSPTM) technology.

jGuru has been dedicated to promoting the growth of the Java
technology community through evangelism, education, and
software since 1995. You can find out more about their activities,
including community-driven FAQs and online learning, at
jGuru.com.

Please send comments about the course to
jdc-tutorial-feedback@jguru.com.

JSP is the way to separate the look and feel of the web page from
the underlying business logic, so that it is web server and platform
independent. This course teaches you how to use JSP to develop
dynamic web sites, by exploring the syntax and components of JSP
development.

NOTE: Using JSP with JDBC will be covered in a future JDC course
that explains JDBC.

Concepts

After completing this module you will understand the:
Advantages of JSP technology●

JSP architecture●

Life cycle of a JSP page●

JSP syntax and semantics●

Role of JavaBeanTM components within JSP pages●

jGuru: Introduction to JavaServer Pages technology

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/ (1 of 3) [9/22/2000 8:41:44 AM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://www.jguru.com/
http://developer.java.sun.com/developer/onlineTraining/JSPIntro/JSPIntro.zip
http://www.jguru.com/
mailto:jdc-tutorial-feedback@jguru.com

Objectives

By the end of this module you will be able to:
Manage session-related information from JSP●

Communicate between JSP pages●

Process forms with JSP●

Prerequisites
A general familiarity with object-oriented programming concepts
and the Java programming language. If you are not familiar with
these capabilities, see the Java Tutorial. The exercises require the
ability to modify and build simple Java programs and HTML-like
pages. It may also help to understand the fundamentals of Web
computing and servlets. For help on servlet-specific issues, see the
earlier Fundamentals of Java Servlets course, though that is based
on the Servlets 2.1 API, instead of the newer 2.2 version.

About the Author
Govind Seshadri is Software Guru for the jGuru portal. He is a
frequent speaker on advanced Java development issues at
Java/Object conferences worldwide, and has over 10 years of
software development experience. Govind is also the author of
Enterprise Java Computing: Applications and Architecture from
Cambridge University Press (1999).

Start the Short Course

Copyright 1996-2000 jGuru.com. All Rights Reserved.

Reader Feedback

Tell us what you think of this tutorial.

 Very worth reading Worth reading Not worth
reading

If you have other comments or ideas for future technical
content, please type them here:

jGuru: Introduction to JavaServer Pages technology

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/ (2 of 3) [9/22/2000 8:41:44 AM]

http://java.sun.com/docs/books/tutorial/
http://developer.java.sun.com/developer/onlineTraining/Servlets/Fundamentals/index.html
http://www.jguru.com/
http://www1.fatbrain.com/asp/BookInfo/BookInfo.asp?theisbn=0521657121&from=ZSR345
http://www.jguru.com/

Have a question about JavaTM programming? Use Java Online
Support.

 [This page was updated: 21-Sep-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

jGuru: Introduction to JavaServer Pages technology

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/ (3 of 3) [9/22/2000 8:41:44 AM]

http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

JavaServer PagesTM Fundamentals
Exercises

By

[Short Course| About This Short Course]

Exercise Outline

About Exercises

The Anatomy of an Exercise❍

Exercise Design Goals❍

●

JavaServer Pages Fundamentals Exercises

Installing and Configuring Tomcat❍

Exception Handling in JSP❍

Understanding JSP Object Scope❍

Form Processing Using JSP❍

●

Welcome to the jGuru exercises for the JavaServer PagesTM

Fundamentals Short Course.

These exercises demonstrate how to use Tomcat -- the JSP 1.1
Reference Implementation, as well as how to design, implement,
and deploy JSPs.

When you finish these exercises, you will know the basic steps for
designing, compiling, and deploying JSP web components.

About Exercises

A jGuru exercise is a flexible exercise that provides varying levels
of help according to the student's needs. Some students may
complete the exercise using only the information and the task list
in the exercise body; some may want a few hints (Help); while
others may want a step-by-step guide to successful completion
(Solution). Since complete solutions are provided in addition to
help, students can skip an exercise and still complete later
exercises that required the skipped one(s).

jGuru: Exercises: JavaServer Pages Fundamentals

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises.html (1 of 4) [9/22/2000 8:42:03 AM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://www.jguru.com/
http://developer.java.sun.com/developer/onlineTraining/JSPIntro/index.html

The Anatomy of an Exercise

Each exercise includes a list of any prerequisite exercises, a list of
skeleton code to start with, links to necessary API pages, and a
text description of the exercise's educational goal. In addition,
buttons link you to the following information:

Help: Gives you help or hints on the current exercise, an
annotated solution. For ease of use, the task information is
duplicated on the help page with the actual help information
indented beneath it.

●

Solution: The <applet> tag and Java source resulting in the
expected behavior.

●

API Documentation: A link directly to any necessary online
API documentation.

●

Exercise Design Goals

There are three fundamental exercise types that you may
encounter:
"Blank screen"

You are confronted with a "blank screen" and you create the
entire desired functionality yourself.

Extension
You extend the functionality of an existing, correctly-working
program.

Repair
You repair undesirable behavior in an existing program.

To make learning easier, exercises, where possible, address only
the specific technique being taught in that exercise. Irrelevant,
unrelated, and overly complex materials are avoided.

Where possible, exercises execute on the Web. However, exercises
that must access Java features or library elements that could cause
security violations are not executed on the web.

JavaServer Pages Fundamentals Exercises

Exercises

Installing and Configuring Tomcat

This exercise steps you through the process of downloading
and installing Tomcat--the JSP 1.1 Reference Implementation
(RI). Tomcat comprises of a simple HTTP server as well as a
Web container that can run JSP pages and servlets. Tomcat
supports the Servlet 2.2 and JSP 1.1 specifications. We use
this server for the subsequent exercises.

1.

jGuru: Exercises: JavaServer Pages Fundamentals

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises.html (2 of 4) [9/22/2000 8:42:03 AM]

Educational goal(s):
Install Tomcat.❍

Configure your machine properly for compiling and
deploying JSPs.

❍

Exception Handling in JSP

In this exercise you learn how to redirect runtime exceptions
occurring within a JSP page to an error handling page.

Educational goal(s):
Learn how to handle runtime exceptions occurring within
JSP pages by automatically forwarding them to an error
handler page.

❍

Understand how exceptions can be accessed from within
a JSP error handler page.

❍

2.

Understanding JSP Object Scope

In this exercise you observe the behavior of a Counter bean
when used within a JSP page with different scope attributes.

Educational goal(s):
Understand the importance of the scope attribute when
instantiating beans using the useBean tag.

❍

Examine the difference between session and application
scope.

❍

3.

Form Processing Using JSP

In this exercise you learn how to process HTML forms using
JSPs, and understand the introspective features provided by
the JSP engine.

Educational goal(s):
Understand the ease with which HTML forms can be
processed using JSP pages.

❍

Understand the role played by beans in streamlining form
processing.

❍

4.

Copyright 1996-2000 jGuru.com. All Rights Reserved.

 [This page was updated: 21-Sep-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

jGuru: Exercises: JavaServer Pages Fundamentals

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises.html (3 of 4) [9/22/2000 8:42:03 AM]

http://www.jguru.com/
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

jGuru: Exercises: JavaServer Pages Fundamentals

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises.html (4 of 4) [9/22/2000 8:42:03 AM]

http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

JavaServer PagesTM Fundamentals
Short Course

By

About This Short Course| Exercises

Course Outline

Introduction

JSP Advantages❍

Comparing JSP with ASP❍

JSP or Servlets?❍

●

JSP Architecture●

JSP Access Models●

JSP Syntax Basics

Directives

Page Directive■

Include Directive■

❍

Declarations❍

Expressions❍

Scriptlets❍

Comments❍

●

Object Scopes●

JSP Implicit Objects●

Synchronization Issues●

Exception Handling●

Session Management●

Standard Actions

Using JavaBean Components❍

Forwarding Requests

Request Chaining■

❍

Including Requests❍

●

Web Sites●

Documentation and Specs●

Articles●

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (1 of 19) [9/22/2000 8:42:29 AM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://www.jguru.com/
http://developer.java.sun.com/developer/onlineTraining/JSPIntro/index.html

Introduction

While there are numerous technologies for building web applications that serve
dynamic content, the one that has really caught the attention of the
development community is JavaServer PagesTM (JSPTM). And not without ample
reason either. JSP not only enjoys cross-platform and cross-Web-server support,
but effectively melds the power of server-side Java technology with the
WYSIWYG features of static HTML pages.

JSP pages typically comprise of:
Static HTML/XML components.●

Special JSP tags●

Optionally, snippets of code written in the Java programming language
called "scriptlets."

●

Consequently, you can create and maintain JSP pages by conventional
HTML/XML tools.

It is important to note that the JSP specification is a standard extension defined
on top of the Servlet API. Thus, it leverages all of your experience with servlets.

There are significant differences between JSP and servlet technology. Unlike
servlets, which is a programmatic technology requiring significant developer
expertise, JSP appeals to a much wider audience. It can be used not only by
developers, but also by page designers, who can now play a more direct role in
the development life cycle.

Another advantage of JSP is the inherent separation of presentation from
content facilitated by the technology, due its reliance upon reusable component
technologies like the JavaBeansTM component architecture and Enterprise
JavaBeansTM technology. This course provides you with an in-depth introduction
to this versatile technology, and uses the Tomcat JSP 1.1 Reference
Implementation from the Apache group for running the example programs.

JSP Advantages

Separation of static from dynamic content: With servlets, the logic for
generation of the dynamic content is an intrinsic part of the servlet itself, and is
closely tied to the static presentation templates responsible for the user
interface. Thus, even minor changes made to the UI typically result in the
recompilation of the servlet. This tight coupling of presentation and content
results in brittle, inflexible applications. However, with JSP, the logic to generate
the dynamic content is kept separate from the static presentation templates by
encapsulating it within external JavaBeans components. These are then created
and used by the JSP page using special tags and scriptlets. When a page
designer makes any changes to the presentation template, the JSP page is
automatically recompiled and reloaded into the web server by the JSP engine.

Write Once Run Anywhere: JSP technology brings the "Write Once, Run
Anywhere" paradigm to interactive Web pages. JSP pages can be moved easily
across platforms, and across web servers, without any changes.

Dynamic content can be served in a variety of formats: There is nothing that
mandates the static template data within a JSP page to be of a certain format.
Consequently, JSP can service a diverse clientele ranging from conventional
browsers using HTML/DHTML, to handheld wireless devices like mobile phones
and PDAs using WML, to other B2B applications using XML.

Recommended Web access layer for n-tier architecture: Sun's J2EETM Blueprints,

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (2 of 19) [9/22/2000 8:42:29 AM]

http://jakarta.apache.org/tomcat/
http://java.sun.com/j2ee/blueprints/

which offers guidelines for developing large-scale applications using the
enterprise Java APIs, categorically recommends JSP over servlets for serving
dynamic content.

Completely leverages the Servlet API: If you are a servlet developer, there is
very little that you have to "unlearn" to move over to JSP. In fact, servlet
developers are at a distinct advantage because JSP is nothing but a high-level
abstraction of servlets. You can do almost anything that can be done with
servlets using JSP--but more easily!

Comparing JSP with ASP

Although the features offered by JSP may seem similar to that offered by
Microsoft's Active Server Pages (ASP), they are fundamentally different
technologies, as shown by the following table:

JavaServer Pages Active Server Pages

Web Server
Support

Most popular web
servers including
Apache, Netscape, and
Microsoft IIS can be
easily enabled with
JSP.

Native support only within Microsoft
IIS or Personal Web Server. Support
for select servers using third-party
products.

Platform
Support

Platform independent.
Runs on all
Java-enabled
platforms.

Is fully supported under Windows.
Deployment on other platforms is
cumbersome due to reliance on the
Win32-based component model.

Component
Model

Relies on reusable,
cross-platform
components like
JavaBeans, Enterprise
JavaBeans, and
custom tag libraries.

Uses the Win32-based COM
component model.

Scripting
Can use the Java
programming language
or JavaScript.

Supports VBScript and JScript for
scripting.

Security Works with the Java
security model.

Can work with the Windows NT
security architecture.

Database
Access

Uses JDBC for data
access.

Uses Active Data Objects for data
access.

Customizable
Tags

JSP is extensible with
custom tag libraries.

Cannot use custom tag libraries and is
not extensible.

JSP or Servlets?

It is true that both servlets and JSP pages have many features in common, and
can be used for serving up dynamic web content. Naturally, this may cause
some confusion as to when to opt for one of the technologies over the other.
Luckily, Sun's J2EE Blueprints offers some guidelines towards this.

According to the Blueprints, use servlets strictly as a web server extension
technology. This could include the implementation of specialized controller
components offering services like authentication, database validation, and so
forth. It is interesting to note that what is commonly known as the "JSP engine"

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (3 of 19) [9/22/2000 8:42:29 AM]

http://java.sun.com/j2ee/blueprints/

itself is a specialized servlet running under the control of the servlet engine.
Since JSP only deals with textual data, you will have to continue to use servlets
when communicating with Java applets and applications.

Use JSP to develop typical web applications that rely upon dynamic content. JSP
should also be used in place of proprietary web server extensions like
server-side includes as it offers excellent features for handling repetitive
content.

Exercise

Installing and Configuring Tomcat1.

JSP Architecture

The purpose of JSP is to provide a declarative, presentation-centric method of
developing servlets. As noted before, the JSP specification itself is defined as a
standard extension on top the Servlet API. Consequently, it should not be too
surprisingly that under the covers, servlets and JSP pages have a lot in
common.

Typically, JSP pages are subject to a translation phase and a request processing
phase. The translation phase is carried out only once, unless the JSP page
changes, in which case it is repeated. Assuming there were no syntax errors
within the page, the result is a JSP page implementation class file that
implements the Servlet interface, as shown below.

The translation phase is typically carried out by the JSP engine itself, when it
receives an incoming request for the JSP page for the first time. Note that the
JSP 1.1 specification also allows for JSP pages to be precompiled into class files.
Precompilation may be especially useful in removing the start-up lag that occurs
when a JSP page delivered in source form receives the first request from a
client. Many details of the translation phase, like the location where the source
and class files are stored are implementation dependent. The source for the
class file generated by Tomcat for this example JSP page (shown in the above
figure) is as follows:

package jsp;

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (4 of 19) [9/22/2000 8:42:29 AM]

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.util.Vector;
import org.apache.jasper.runtime.*;
import java.beans.*;
import org.apache.jasper.JasperException;
import java.text.*;
import java.util.*;

public class _0005cjsp_0005cjsptest_0002ejspjsptest_jsp_0
 extends HttpJspBase {

 static {
 }
 public _0005cjsp_0005cjsptest_0002ejspjsptest_jsp_0() {
 }

 private static boolean _jspx_inited = false;
 public final void _jspx_init() throws JasperException {
 }

 public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 String _value = null;
 try {
 if (_jspx_inited == false) {
 _jspx_init();
 _jspx_inited = true;
 }
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html");
 pageContext = _jspxFactory.getPageContext(this,
 request,response, "", true, 8192, true);

 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();
 // begin
 out.write("\r\n<html>\r\n<body>\r\n");
 // end

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (5 of 19) [9/22/2000 8:42:29 AM]

 // begin [file="E:\\jsp\\jsptest.jsp";from=(3,2);to=(5,0)]
 Date d = new Date();
 String today = DateFormat.getDateInstance().format(d);
 // end
 // begin
 out.write("\r\nToday is: \r\n ");
 // end
 // begin [file="E:\\jsp\\jsptest.jsp";from=(7,8);to=(7,13)]
 out.print(today);
 // end
 // begin
 out.write(" \r\n</body>\r\n</html>\r\n");
 // end
 } catch (Exception ex) {
 if (out.getBufferSize() != 0)
 out.clear();
 pageContext.handlePageException(ex);
 } finally {
 out.flush();
 _jspxFactory.releasePageContext(pageContext);
 }
 }
}

The JSP page implementation class file extends HttpJspBase, which in turn
implements the Servlet interface. Observe how the service method of this class,
_jspService(), essentially inlines the contents of the JSP page. Although
_jspService() cannot be overridden, the developer can describe initialization and
destroy events by providing implementations for the jspInit() and jspDestroy()
methods within their JSP pages.

Once this class file is loaded within the servlet container, the _jspService() method
is responsible for replying to a client's request. By default, the _jspService()
method is dispatched on a separate thread by the servlet container in processing
concurrent client requests, as shown below:

JSP Access Models

The early JSP specifications advocated two philosophical approaches, popularly

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (6 of 19) [9/22/2000 8:42:29 AM]

known as Model 1 and Model 2 architectures, for applying JSP technology. These
approaches differ essentially in the location at which the bulk of the request
processing was performed, and offer a useful paradigm for building applications
using JSP technology.

Consider the Model 1 architecture, shown below:

In the Model 1 architecture, the incoming request from a web browser is sent
directly to the JSP page, which is responsible for processing it and replying back
to the client. There is still separation of presentation from content, because all
data access is performed using beans.

Although the Model 1 architecture is suitable for simple applications, it may not
be desirable for complex implementations. Indiscriminate usage of this
architecture usually leads to a significant amount of scriptlets or Java code
embedded within the JSP page, especially if there is a significant amount of
request processing to be performed. While this may not seem to be much of a
problem for Java developers, it is certainly an issue if your JSP pages are
created and maintained by designers--which is usually the norm on large
projects. Another downside of this architecture is that each of the JSP pages
must be individually responsible for managing application state and verifying
authentication and security.

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (7 of 19) [9/22/2000 8:42:29 AM]

The Model 2 architecture, shown above, is a server-side implementation of the
popular Model/View/Controller design pattern. Here, the processing is divided
between presentation and front components. Presentation components are JSP
pages that generate the HTML/XML response that determines the user interface
when rendered by the browser. Front components (also known as controllers) do
not handle any presentation issues, but rather, process all the HTTP requests.
Here, they are responsible for creating any beans or objects used by the
presentation components, as well as deciding, depending on the user's actions,
which presentation component to forward the request to. Front components can
be implemented as either a servlet or JSP page.

The advantage of this architecture is that there is no processing logic within the
presentation component itself; it is simply responsible for retrieving any objects
or beans that may have been previously created by the controller, and
extracting the dynamic content within for insertion within its static templates.
Consequently, this clean separation of presentation from content leads to a clear
delineation of the roles and responsibilities of the developers and page designers
on the programming team. Another benefit of this approach is that the front
components present a single point of entry into the application, thus making the
management of application state, security, and presentation uniform and easier
to maintain.

JSP Syntax Basics

JSP syntax is fairly straightforward, and can be classified into directives,
scripting elements, and standard actions.

Directives

JSP directives are messages for the JSP engine. They do not directly produce
any visible output, but tell the engine what to do with the rest of the JSP page.
JSP directives are always enclosed within the <%@ ... %> tag. The two primary
directives are page and include. (Note that JSP 1.1 also provides the taglib
directive, which can be used for working with custom tag libraries, although this
isn't discussed here.)

Page Directive

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (8 of 19) [9/22/2000 8:42:29 AM]

Typically, the page directive is found at the top of almost all of your JSP pages.
There can be any number of page directives within a JSP page, although the
attribute/value pair must be unique. Unrecognized attributes or values result in
a translation error. For example,

<%@ page import="java.util.*, com.foo.*" buffer="16k" %>

makes available the types declared within the included packages for scripting
and sets the page buffering to 16K.

Include Directive

The include directive lets you separate your content into more manageable
elements, such as those for including a common page header or footer. The
page included can be a static HTML page or more JSP content. For example, the
directive:

<%@ include file="copyright.html" %>

can be used to include the contents of the indicated file at any location within
the JSP page.

Declarations

JSP declarations let you define page-level variables to save information or define
supporting methods that the rest of a JSP page may need. While it is easy to get
led away and have a lot of code within your JSP page, this move will eventually
turn out to be a maintenance nightmare. For that reason, and to improve
reusability, it is best that logic-intensive processing is encapsulated as JavaBean
components.

Declarations are found within the <%! ... %> tag. Always end variable
declarations with a semicolon, as any content must be valid Java statements:

<%! int i=0; %>

You can also declare methods. For example, you can override the initialization
event in the JSP life cycle by declaring:

<%! public void jspInit() {
 //some initialization code
 }
%>

Expressions

With expressions in JSP, the results of evaluating the expression are converted
to a string and directly included within the output page. Typically expressions
are used to display simple values of variables or return values by invoking a
bean's getter methods. JSP expressions begin within <%= ... %> tags and do not
include semicolons:

 <%= fooVariable %>
 <%= fooBean.getName() %>

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (9 of 19) [9/22/2000 8:42:29 AM]

Scriptlets

JSP code fragments or scriptlets are embedded within <% ... %> tags. This Java
code is run when the request is serviced by the JSP page. You can have just
about any valid Java code within a scriptlet, and is not limited to one line of
source code. For example, the following displays the string "Hello" within H1,
H2, H3, and H4 tags, combining the use of expressions and scriptlets:

<% for (int i=1; i<=4; i++) { %>
 <H<%=i%>>Hello</H<%=i%>>
<% } %>

Comments

Although you can always include HTML comments in JSP pages, users can view
these if they view the page's source. If you don't want users to be able to see
your comments, embed them within the <%-- ... --%> tag:

<%-- comment for server side only --%>

A most useful feature of JSP comments is that they can be used to selectively
block out scriptlets or tags from compilation. Thus, they can play a significant
role during the debugging and testing process.

Object Scopes

Before we look at JSP syntax and semantics, it is important to understand the
scope or visibility of Java objects within JSP pages that are processing a request.
Objects may be created implicitly using JSP directives, explicitly through actions,
or, in rare cases, directly using scripting code. The instantiated objects can be
associated with a scope attribute defining where there is a reference to the
object and when that reference is removed. The following diagram indicates the
various scopes that can be associated with a newly created object:

JSP Implicit Objects

As a convenience feature, the JSP container makes available implicit objects that
can be used within scriptlets and expressions, without the page author first
having to create them. These objects act as wrappers around underlying Java

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (10 of 19) [9/22/2000 8:42:29 AM]

classes or interfaces typically defined within the Servlet API. The nine implicit
objects:

request: represents the HttpServletRequest triggering the service invocation.
Request scope.

●

response: represents HttpServletResponse to the request. Not used often by
page authors. Page scope.

●

pageContext: encapsulates implementation-dependent features in
PageContext. Page scope.

●

application: represents the ServletContext obtained from servlet configuration
object. Application scope.

●

out: a JspWriter object that writes into the output stream. Page scope.●

config: represents the ServletConfig for the JSP. Page scope.●

page: synonym for the "this" operator, as an HttpJspPage. Not used often by
page authors. Page scope.

●

session: An HttpSession. Session scope. More on sessions shortly.●

exception: the uncaught Throwable object that resulted in the error page
being invoked. Page scope.

●

Note that these implicit objects are only visible within the system generated
_jspService() method. They are not visible within methods you define yourself in
declarations.

Synchronization Issues

By default, the service method of the JSP page implementation class that
services the client request is multithreaded. Thus, it is the responsibility of the
JSP page author to ensure that access to shared state is effectively
synchronized. There are a couple of different ways to ensure that the service
methods are thread-safe. The easy approach is to include the JSP page
directive:

<%@ page isThreadSafe="true" %>

This causes the JSP page implementation class to implement the
SingleThreadModel interface, resulting in the synchronization of the service
method, and having multiple instances of the servlet to be loaded in memory.
The concurrent client requests are then distributed evenly amongst these
instances for processing in a round-robin fashion, as shown below:

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (11 of 19) [9/22/2000 8:42:29 AM]

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/jsp/PageContext.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletContext.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/jsp/JspWriter.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletConfig.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/jsp/HttpJspPage.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html
http://java.sun.com/products/jdk/1.2/docs/api/java/lang/Throwable.html

The downside of using this approach is that it is not scalable. If the wait queue
grows due to a large number of concurrent requests overwhelming the
processing ability of the servlet instances, then the client may suffer a
significant delay in obtaining the response.

A better approach is to explicitly synchronize access to shared objects (like
those instances with application scope, for example) within the JSP page, using
scriptlets:

<%
synchronized (application) {
 SharedObject foo = (SharedObject)
 application.getAttribute("sharedObject");
 foo.update(someValue);
 application.setAttribute("sharedObject",foo);
}
%>

Exception Handling

JSP provides a rather elegant mechanism for handling runtime exceptions.
Although you can provide your own exception handling within JSP pages, it may
not be possible to anticipate all situations. By making use of the page directive's
errorPage attribute, it is possible to forward an uncaught exception to an error
handling JSP page for processing. For example,

<%@ page isErrorPage="false" errorPage="errorHandler.jsp" %>

informs the JSP engine to forward any uncaught exception to the JSP page
errorHandler.jsp. It is then necessary for errorHandler.jsp to flag itself as a error
processing page using the directive:

<%@ page isErrorPage="true" %>

This allows the Throwable object describing the exception to be accessed within a
scriptlet through the implicit exception object.

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (12 of 19) [9/22/2000 8:42:29 AM]

Exercise

Exception Handling in JSP2.

Session Management

By default, all JSP pages participate in an HTTP session. The HttpSession object
can be accessed within scriptlets through the session implicit JSP object. Sessions
are a good place for storing beans and objects that need to be shared across
other JSP pages and servlets that may be accessed by the user. The session
objects is identified by a session ID and stored in the browser as a cookie. If
cookies are unsupported by the browser, then the session ID may be maintained
by URL rewriting. Support for URL rewriting is not mandated by the JSP
specification and is supported only within a few servers. Although you cannot
place primitive data types into the session, you can store any valid Java object
by identifying it by a unique key. For example:

<%
Foo foo = new Foo();
session.putValue("foo",foo);
%>

makes available the Foo instance within all JSP pages and servlets belonging to
the same session. The instance may be retrieved within a different JSP page as:

<%
Foo myFoo = (Foo) session.getValue("foo");
%>

The call to session.getValue() returns a reference to the generic Object type. Thus it
is important to always cast the value returned to the appropriate data type
before using it. It is not mandatory for JSP pages to participate in a session;
they may choose to opt out by setting the appropriate attribute of the page
directive:

<%@ page session="false" %>

There is no limit on the number of objects you can store into the session.
However, placing large objects into the session may degrade performance, as
they take up valuable heap space. By default, most servers set the lifetime of a
session object to 30 minutes, although you can easily reset it on a per session
basis by invoking setMaxInvalidationInterval(int secs) on the session object. The
figure below highlights the general architecture of session management:

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (13 of 19) [9/22/2000 8:42:29 AM]

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html

The JSP engine holds a live reference to objects placed into the session as long
as the session is valid. If the session is invalidated or encounters a session
timeout, then the objects within are flagged for garbage collection.

Standard Actions

Actions allow you to perform sophisticated tasks like instantiating objects and
communicating with server-side resources like JSP pages and servlets without
requiring Java coding. Although the same can be achieved using Java code
within scriptlets, using action tags promotes reusability of your components and
enhances the maintainability of your application.

Using JavaBean Components

The component model for JSP technology is based on JavaBeans component
architecture. JavaBeans components are nothing but Java objects which follow a
well-defined design/naming pattern: the bean encapsulates its properties by
declaring them private and provides public accessor (getter/setter) methods for
reading and modifying their values.

Before you can access a bean within a JSP page, it is necessary to identify the
bean and obtain a reference to it. The <jsp:useBean> tag tries to obtain a
reference to an existing instance using the specified id and scope, as the bean
may have been previously created and placed into the session or application
scope from within a different JSP page. The bean is newly instantiated using the
Java class name specified through the class attribute only if a reference was not
obtained from the specified scope. Consider the tag:

<jsp:useBean id="user" class="com.jguru.Person"
 scope="session" />

In this example, the Person instance is created just once and placed into the
session. If this useBean tag is later encountered within a different JSP page, a
reference to the original instance that was created before is retrieved from the
session.

The <jsp:useBean> tag can also optionally include a body, such as

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (14 of 19) [9/22/2000 8:42:29 AM]

<jsp:useBean id="user" class="com.jguru.Person"
 scope="session">
<%
 user.setDate(DateFormat.getDateInstance(
).format(new Date()));
 //etc..
%>
</jsp:useBean>

Any scriptlet (or <jsp:setProperty> tags, which are explained shortly) present
within the body of a <jsp:useBean> tag are executed only when the bean is
instantiated, and are used to initialize the bean's properties.

Once you have declared a JavaBean component, you have access to its
properties to customize it. The value of a bean's property is accessed using the
<jsp:getProperty> tag. With the <jsp:getProperty> tag, you specify the name of the
bean to use (from the id field of useBean), as well as the name of the property
whose value you are interested in. The actual value is then directly printed to
the output:

<jsp:getProperty name="user" property="name" />

Changing the property of a JavaBean component requires you to use the
<jsp:setProperty> tag. For this tag, you identify the bean and property to modify
and provide the new value:

<jsp:setProperty name="user" property="name"
 value="jGuru" />

or

<jsp:setProperty name="user" property="name"
 value="<%=expression %>" />

When developing beans for processing form data, you can follow a common
design pattern by matching the names of the bean properties with the names of
the form input elements. You also need to define the corresponding getter/setter
methods for each property within the bean. The advantage in this is that you
can now direct the JSP engine to parse all the incoming values from the HTML
form elements that are part of the request object, then assign them to their
corresponding bean properties with a single statement, like this:

<jsp:setProperty name="user" property="*"/>

This runtime magic is possible through a process called introspection, which lets
a class expose its properties on request. The introspection is managed by the
JSP engine, and implemented through the Java reflection mechanism. This
feature alone can be a lifesaver when processing complex forms containing a
significant number of input elements.

If the names of your bean properties do not match those of the form's input
elements, they can still be mapped explicitly to your property by naming the
parameter as:

<jsp:setProperty name="user" property="address"
 param="parameterName" />

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (15 of 19) [9/22/2000 8:42:29 AM]

Exercises

Understanding JSP object scope3.

Form processing using JSP4.

Forwarding Requests

With the <jsp:forward> tag, you can redirect the request to any JSP, servlet, or
static HTML page within the same context as the invoking page. This effectively
halts processing of the current page at the point where the redirection occurs,
although all processing up to that point still takes place:

<jsp:forward page="somePage.jsp" />

The invoking page can also pass the target resource bean parameters by placing
them into the request, as shown in the diagram:

A <jsp:forward> tag may also have jsp:param subelements that can provide values
for some elements in the request used in the forwarding:

<jsp:forward page="<%= somePage %>" >
<jsp:param name="name1" value="value1" />
<jsp:param name="name2" value="value2" />
</jsp:forward>

Request Chaining

Request chaining is a powerful feature and can be used to effectively meld JSP
pages and servlets in processing HTML forms, as shown in the following figure:

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (16 of 19) [9/22/2000 8:42:29 AM]

Consider the following JSP page, say Bean1.jsp, which creates a named instance
fBean of type FormBean, places it in the request, and forwards the call to the
servlet JSP2Servlet. Observe the way the bean is instantiated--here we
automatically call the bean's setter methods for properties which match the
names of the posted form elements, while passing the corresponding values to
the methods.

<jsp:useBean id="fBean" class="govi.FormBean"
 scope="request"/>
<jsp:setProperty name="fBean" property="*" />
<jsp:forward page="/servlet/JSP2Servlet" />

The servlet JSP2Servlet now extracts the bean passed to it from the request,
makes changes using the appropriate setters, and forwards the call to another
JSP page Bean2.jsp using a request dispatcher. Note that this servlet, acting as a
controller, can also place additional beans if necessary, within the request.

public void doPost (HttpServletRequest request,
 HttpServletResponse response) {
 try {
 FormBean f = (FormBean) request.getAttribute
 ("fBean");
 f.setName("Mogambo");
 // do whatever else necessary
 getServletConfig().getServletContext().
 getRequestDispatcher("/jsp/Bean2.jsp").
 forward(request, response);
 } catch (Exception ex) {
 . . .
 }
}

The JSP page Bean2.jsp can now extract the bean fBean (and whatever other
beans that may have been passed by the controller servlet) from the request
and extract its properties.

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (17 of 19) [9/22/2000 8:42:29 AM]

<html>
<body>
<jsp:useBean id="fBean" class="govi.FormBean"
 scope="request"/>
<jsp:getProperty name="fBean" property="name" />
</body>
</html>

Including Requests

The <jsp:include> tag can be used to redirect the request to any static or dynamic
resource that is in the same context as the calling JSP page. The calling page
can also pass the target resource bean parameters by placing them into the
request, as shown in the diagram:

For example:

<jsp:include page="shoppingcart.jsp" flush="true"/>

not only allows shoppingcart.jsp to access any beans placed within the request
using a <jsp:useBean> tag, but the dynamic content produced by it is inserted
into the calling page at the point where the <jsp:include> tag occurs. The included
resource, however, cannot set any HTTP headers, which precludes it from doing
things like setting cookies, or else an exception is thrown.

Web Sites

The following sites have product information as well as whitepapers on JSP and
Servlets:

Sun Microsystems, JSP Home Page●

JSP-INTEREST Mailing List Archive●

jGuru's JSP FAQ●

jGuru's Servlets FAQ●

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (18 of 19) [9/22/2000 8:42:29 AM]

http://java.sun.com/products/jsp/
http://archives.java.sun.com/archives/jsp-interest.html
http://www.jguru.com/jguru/faq/faqpage.jsp?name=JSP
http://www.jguru.com/jguru/faq/faqpage.jsp?name=Servlets

Documentation and Specs

The Java Technology site at Sun Microsystems includes a Products and APIs
page which lists enterprise-related products and APIs. Several of the ones
relevant to JSP are listed here:

JSP 1.1 Specification●

Sun Microsystems, Inc. Java 2 Enterprise Edition (J2EE) Home page●

The Tomcat Project●

JSP Technical Resources●

Java Servlet API●

JSP Whitepaper●

JSP Syntax Card●

Articles

Some articles on JSP computing include:
Advanced Form Processing using JSP by Govind Seshadri (JavaWorld,
March 2000)

●

JSP Architectures by Lance Lavandowska, brainopolis.com●

Java serves the Web by John Zukowski, (Builder.com, February 2000)●

Internationalize JSP-based Websites by Govind Seshadri (JavaWorld,
February 2000)

●

The Problems with JSP by Jason Hunter (Servlets.com, January, 2000)●

Understanding JSP Model 2 Architecture by Govind Seshadri (JavaWorld,
December 1999)

●

JSP for the ASP Developer by Cindy Nordahl (ASP Today, October 1999)●

Copyright 1996-2000 jGuru.com. All Rights Reserved.

 [This page was updated: 21-Sep-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

jGuru: JavaServer Pages Fundamentals, Short Course Contents

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html (19 of 19) [9/22/2000 8:42:29 AM]

http://java.sun.com/
http://java.sun.com/products/
http://java.sun.com/products/jsp/download.html
http://java.sun.com/j2ee/
http://java.sun.com/products/jsp/tomcat/
http://java.sun.com/products/jsp/technical.html
http://java.sun.com/products/servlet/
http://java.sun.com/products/jsp/whitepaper.html
http://java.sun.com/products/jsp/syntax.html
http://www.javaworld.com/javaworld/jw-03-2000/jw-0331-ssj-forms.html
http://www.brainopolis.com/jsp/book/jspBook_Architectures.html
http://builder.cnet.com/Programming/JSP/
http://www.javaworld.com/javaworld/jw-03-2000/jw-03-ssj-jsp.html
http://www.servlets.com/soapbox/problems-jsp.html
http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html
http://www.asptoday.com/articles/19991022.htm
http://www.jguru.com/
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Installing and Configuring Tomcat

by

Help | API Docs | Short Course| Exercises

This exercise steps you through the process of downloading and
installing Tomcat--the JSP 1.1 Reference Implementation (RI). The
exercises are specific to Tomcat--if you want to use a different server
for the remainder of these exercises, you should ensure that it is JSP
1.1 compliant and install it now.

Prerequisites

None

Tasks

Check your system requirements to make sure you have an
adequate hardware and software for installing and running
Tomcat.

1.

Download the appropriate version of Tomcat 3.1 from the
Apache website.

2.

Uncompress the file.

3.

Set the environment variable JAVA_HOME to point to the root
directory of your JDK hierarchy. Be sure the Java interpreter is
in your PATH environment variable.

4.

Change to the bin directory and start Tomcat using the
command-line command startup.

5.

Tomcat is now installed and running on port 8080 by default.
Explore the Tomcat documentation within the documentation
site to familiarize yourself more with Tomcat.

6.

Where help exists, the task numbers above are linked to the
step-by-step help page.

jGuru: Installing and Configuring Tomcat

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/SetupTomcat/index.html (1 of 3) [9/22/2000 8:44:04 AM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://www.jguru.com/
http://java.sun.com/products/servlet/2.2/javadoc
http://jakarta.apache.org/downloads/binindex.html
http://java.sun.com/products/jsp/tomcat/
http://java.sun.com/products/jsp/tomcat/

Solution Source

There is no solution to this exercise. When the tasks in this exercise
have been completed, Tomcat will be installed, running, and available
for the subsequent exercises.

Demonstration

When you complete the tasks in this exercise, Tomcat is installed and
running and available for the subsequent exercises.

Running Tomcat using the command-line command startup should
produce output similar to the following:

myhost> startup

Tomcat Web Server Version 3.0
Loaded configuration from: file:E:/tomcat/server.xml
Configuring web service using "default"
Configuring web service using
 "file:E:/tomcat/examples/WEB-INF/web.xml"
default: init
jsp: init
Configuring web service using "default"
Configuring web service using
 "file:E:/tomcat/webpages/WEB-INF/web.xml"
default: init
jsp: init
Starting tcp endpoint on 8080 with
 org.apache.tomcat.service.http.HttpConnectionHandler
Starting tcp endpoint on 8007 with
 org.apache.tomcat.service.connector.Ajp12ConnectionHandler

Next Exercise

Exercises

Short Course

Copyright 1996-2000 jGuru.com. All Rights Reserved.

 [This page was updated: 21-Sep-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

jGuru: Installing and Configuring Tomcat

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/SetupTomcat/index.html (2 of 3) [9/22/2000 8:44:04 AM]

http://www.jguru.com/
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

jGuru: Installing and Configuring Tomcat

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/SetupTomcat/index.html (3 of 3) [9/22/2000 8:44:04 AM]

http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Installing and Configuring Tomcat

by

Exercise | API Docs | Short Course| Exercises

Help is available for each task.

Task 1

Check your system requirements to make sure you have an adequate
hardware and software platform for installing and running Tomcat.

Tomcat has been tested under the following platforms: Windows NT
4.0 Service Pack 4, Solaris 2.6 and 2.7, Windows 98, and Red Hat
Linux 6.0. You will also need to install JDK 1.1.8 or the Java 2 SDK
version onto your system.

Task 2

Download the appropriate version of Tomcat 3.1 from the Apache
website.

Either grab the ZIP or tar.gz version. Most Windows users should just
grab the ZIP version, though WinZip can read the smaller tar.gz

version.

Task 3

Uncompress the file.

This should create a new subdirectory named jakarta-tomcat.

Task 4

Set the environment variable JAVA_HOME to point to the root directory
of your JDK hierarchy. Be sure the Java interpreter is in your PATH
environment variable.

Something like the following will work for Windows, depending upon

jGuru: Help: Installing and Configuring Tomcat

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/SetupTomcat/help.html (1 of 3) [9/22/2000 8:44:10 AM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://www.jguru.com/
http://java.sun.com/products/servlet/2.2/javadoc
http://jakarta.apache.org/downloads/binindex.html
http://www.winzip.com/

the JDK installation directory:

SET JAVA_HOME=C:\jdk1.2.2

Task 5

Change to the bin directory and start Tomcat using the command-line
command startup.

Running Tomcat using the command-line command startup should
produce output similar to the following:

myhost> startup

Tomcat Web Server Version 3.1
Loaded configuration from: file:E:/tomcat/server.xml
Configuring web service using "default"
Configuring web service using
 "file:E:/tomcat/examples/WEB-INF/web.xml"
default: init
jsp: init
Configuring web service using "default"
Configuring web service using
 "file:E:/tomcat/webpages/WEB-INF/web.xml"
default: init
jsp: init
Starting tcp endpoint on 8080 with
 org.apache.tomcat.service.http.HttpConnectionHandler
Starting tcp endpoint on 8007 with
 org.apache.tomcat.service.connector.Ajp12ConnectionHandler

Task 6

Tomcat is now installed and running on port 8080 by default. Explore
the Tomcat documentation within the documentation site to
familiarize yourself more with Tomcat.

There is extensive documentation on all aspects of JSP, along with
example code, bundled with your Tomcat install. For additional
information, please see Sun's JSP technical resource page

Copyright 1996-2000 jGuru.com. All Rights Reserved.

 [This page was updated: 21-Sep-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

jGuru: Help: Installing and Configuring Tomcat

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/SetupTomcat/help.html (2 of 3) [9/22/2000 8:44:10 AM]

http://java.sun.com/products/jsp/tomcat/
http://java.sun.com/products/jsp/technical.html
http://www.jguru.com/
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

jGuru: Help: Installing and Configuring Tomcat

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/SetupTomcat/help.html (3 of 3) [9/22/2000 8:44:10 AM]

http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Exception Handling in JSP

by

[Help | API Docs | Short Course| Exercises]

This exercise implements a JSP page (errhandler.jsp), which processes a
POST operation and throws an exception in case of an "incorrect"
answer. You will see how these exceptions can be automatically
forwarded by the JSP engine to an "error handler." You also develop
an error processing JSP page (errorpage.jsp), which receives the
exception by means of the exception implicit variable.

Prerequisites

Installing and Configuring Tomcat●

Skeleton Code

errhandler.jsp●

errorpage.jsp●

Tasks

Design a JSP page called errhandler.jsp that can process a POST
operation.

1.

Indicate an error page, errorpage.jsp, using the page directive for
the JSP page.

2.

Process the posted form elements. Throw an exception if the
value posted for the input element is not equal to an expected
value, else print an acknowledgment back to the user.

3.

Develop an error page, errorpage.jsp, which can access the
runtime exception.

4.

Deploy the JSP files for the example within Tomcat.

5.

Run the error handling example.

6.

Where help exists, the task numbers above are linked to the

jGuru: Exception Handling in JSP

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/index.html (1 of 4) [9/22/2000 8:44:42 AM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://www.jguru.com/
http://java.sun.com/products/servlet/2.2/javadoc

step-by-step help page.

Solution Source

The following files contain a complete implementation of the JSP error
handling example:

errhandler.jsp●

errorpage.jsp●

Demonstration

From your browser, access the URL
http://localhost:8080/examples/jsp/jdc/errHandling/errhandler.jsp

You should see an HTML form as shown below:

Now, make a selection and submit the form. If you made an incorrect
selection, an exception is thrown and the request is forwarded to the
error handler page, which extracts and displays the exception:

jGuru: Exception Handling in JSP

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/index.html (2 of 4) [9/22/2000 8:44:42 AM]

If you made the right choice, you get an acknowledgment from the
JSP page itself:

Next Exercise

Exercises

Short Course

Copyright 1996-2000 jGuru.com. All Rights Reserved.

jGuru: Exception Handling in JSP

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/index.html (3 of 4) [9/22/2000 8:44:42 AM]

http://www.jguru.com/

 [This page was updated: 21-Sep-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

jGuru: Exception Handling in JSP

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/index.html (4 of 4) [9/22/2000 8:44:42 AM]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Exception Handling in JSP

by

[Exercise | API Docs | Short Course| Exercises]

Help is available for each task.

Task 1

Design a JSP page called errhandler.jsp that can process a POST
operation.

For convenience, the HTML form can be developed as part of the
JSP page itself. Note that the form's ACTION clause must point to
the JSP page itself. Also, make sure that the form contains an
input element like a radio button.

Task 2

Indicate an error page, errorpage.jsp, using the page directive for the
JSP page.

Uncaught runtime exceptions are automatically forwarded to an
error page, if specified, by the JSP engine. The location of the
error page can be specified using the errorPage attribute of the page
tag.

Task 3

Process the posted form elements. Throw an exception if the value
posted for the input element is not equal to an expected value,
else print an acknowledgement back to the user.

The form elements can be obtained using the request.getParameter()
method. You can echo a message to the browser using
response.println(). You can throw a generic exception using new
Exception("some message").

jGuru: Help: Exception Handling in JSP

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/help.html (1 of 2) [9/22/2000 8:44:44 AM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://www.jguru.com/
http://java.sun.com/products/servlet/2.2/javadoc

Task 4

Develop an error page, errorpage.jsp, which can access the runtime
exception.

A JSP error page is developed by setting the isErrorPage attribute of
the page tag to true. The runtime exception can be accessed by
means of the JSP implicit variable exception.

Task 5

Deploy the JSP files for the example within Tomcat.

Assuming you have installed Tomcat in say, \jakarta-tomcat, copy
the two JSP files to \jakarta-tomcat\examples\jsp\jdc\errHandling\

Task 6

Run the error handling example.

From your browser, access the URL
http://localhost:8080/examples/jsp/jdc/errHandling/errhandler.jsp

Copyright 1996-2000 jGuru.com. All Rights Reserved.

 [This page was updated: 21-Sep-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

jGuru: Help: Exception Handling in JSP

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/help.html (2 of 2) [9/22/2000 8:44:44 AM]

http://www.jguru.com/
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Understanding JSP Object Scope

by

[Help | API Docs | Short Course| Exercises]

This exercise implements a simple JSP page (Counter.jsp), which
instantiates two instances of a bean which maintains a counter
(CounterBean.java), but with differing scope. One bean is attributed with
session scope, and the other with application scope. Each time the JSP
page in invoked, the count of each of the beans is incremented by
one. You can observe the difference between session and application
scope when you access the counter page from different browsers.
Each browser maintains a distinct count for their session, but share
the counter with application scope, since it is treated as a global
variable.

Prerequisites

Installing and Configuring Tomcat●

Skeleton Code

Counter.jsp●

CounterBean.java●

Tasks

Develop a simple counter bean, CounterBean.java.

1.

Compile the counter bean.

2.

Deploy the bean within Tomcat.

3.

Develop a JSP page, Counter.jsp, which creates two instances of
the counter bean, one with session scope, and the other with
application scope.

4.

Deploy the JSP file for the example within Tomcat.

5.

Run the example.

6.

jGuru: Understanding JSP Object Scope

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/index.html (1 of 3) [9/22/2000 8:45:02 AM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://www.jguru.com/
http://java.sun.com/products/servlet/2.2/javadoc

Where help exists, the task numbers above are linked to the
step-by-step help page.

Solution Source

The following files contain a complete implementation of the example
demonstrating JSP variable scope:

Counter.jsp●

CounterBean.java●

Demonstration

From your browser (say, Netscape Navigator), access the URL
http://localhost:8080/examples/jdc/counter/Counter.jsp

Reload the page a few times. You should see the counters
incremented as shown below:

From using a different browser (say, MSIE), access the same URL.
Observe the difference in the counts:

jGuru: Understanding JSP Object Scope

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/index.html (2 of 3) [9/22/2000 8:45:02 AM]

Next Exercise

Exercises

Short Course

Copyright 1996-2000 jGuru.com. All Rights Reserved.

 [This page was updated: 21-Sep-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

jGuru: Understanding JSP Object Scope

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/index.html (3 of 3) [9/22/2000 8:45:02 AM]

http://www.jguru.com/
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Understanding JSP Object Scope

by

[Exercise | API Docs | Short Course| Exercises]

Help is available for each task.

Task 1

Develop a simple counter bean, CounterBean.java.

Develop a bean which can maintain a count within say, an integer
property. Provide at least a getter method for this property.

Task 2

Compile the counter bean.

You can compile the bean as javac CounterBean.java

Task 3

Deploy the bean within Tomcat.

Copy CounterBean.class to
jakarta-tomcat\webapps\examples\WEB-INF\jsp\classes\com\jguru\CounterBean.class.
You will need to create the directories below classes for the package the
bean is in.

Task 4

Develop a JSP page, Counter.jsp, which creates two instances of the
counter bean, one with session scope, and the other with application
scope.

You can use the jsp:useBean tag for instantiating the beans. Make sure
you provide the appropriate scope for the scope attribute.

jGuru: Help: Understanding JSP Object Scope

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/help.html (1 of 2) [9/22/2000 8:45:05 AM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://www.jguru.com/
http://java.sun.com/products/servlet/2.2/javadoc

Task 5

Deploy the JSP file for the example within Tomcat.

Assuming you have installed Tomcat in say, \jakarta-tomcat, copy the JSP
file to \jakarta-tomcat\webapps\examples\jsp\jdc\counter\Counter.jsp

Task 6

Run the example.

From your browser (say, Netscape Navigator), access the URL
http://localhost:8080/examples/jsp/jdc/counter/Counter.jsp

Now, start up a different browser (say, MSIE) access the URL
http://localhost:8080/examples/jsp/jdc/counter/Counter.jsp

(Note: If you use only MSIE, you can simply double click on the browser
icon again to run a second instance of MSIE as a separate process. This
is important to ensure that the browser creates a new session and does
not reuse the one created by an earlier instance.)

Click a few times within both browser to increment the counters for the
beans with session and application scope. Observe the difference
between the two counts.

Copyright 1996-2000 jGuru.com. All Rights Reserved.

 [This page was updated: 21-Sep-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

jGuru: Help: Understanding JSP Object Scope

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/help.html (2 of 2) [9/22/2000 8:45:05 AM]

http://www.jguru.com/
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Form Processing Using JSP

by

[Help | API Docs | Short Course| Exercises]

In this exercise, you develop a simple JSP page (form.jsp), which can
process an HTML form containing typical input elements like
textboxes, radio buttons, and checkboxes. You also develop a bean
(FormBean.java), whose property names mirror the input elements of
the form. You will then examine the automatic instantiation of the
bean on a form POST operation, using the introspective features
provided by the JSP engine.

Prerequisites

Installing and Configuring Tomcat●

Skeleton Code

FormBean.java●

form.jsp●

Tasks

You are given the JSP page containing the form. Observe that
the form posts to itself recursively. Instantiate the bean FormBean
when you recognize that a POST operation has taken place. Allow
the setter methods to be called on the bean using introspection.

1.

Deploy the JSP page within Tomcat.

2.

Develop the bean, FormBean.java, with properties matching the
form elements.

3.

Compile the bean source FormBean.java.

4.

Deploy the bean within Tomcat.

5.

Run the example.

6.

Where help exists, the task numbers above are linked to the

jGuru: Form Processing Using JSP

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/index.html (1 of 4) [9/22/2000 8:45:24 AM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://www.jguru.com/
http://java.sun.com/products/servlet/2.2/javadoc

step-by-step help page.

Solution Source

FormBean.java●

form.jsp●

Demonstration

From your browser, access the URL
http://localhost:8080/examples/jsp/jdc/forms/form.jsp.

You should see an HTML form as shown below:

Fill in data for all the form input elements, before performing a
submit:

jGuru: Form Processing Using JSP

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/index.html (2 of 4) [9/22/2000 8:45:24 AM]

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/solution/FormBean.java
http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/solution/form.txt

On submission, you should see the data you entered extracted from
the bean and displayed beneath the form:

Exercises

Short Course

Copyright 1996-2000 jGuru.com. All Rights Reserved.

jGuru: Form Processing Using JSP

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/index.html (3 of 4) [9/22/2000 8:45:24 AM]

http://www.jguru.com/

 [This page was updated: 21-Sep-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

jGuru: Form Processing Using JSP

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/index.html (4 of 4) [9/22/2000 8:45:24 AM]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Form Processing Using JSP

by

[Exercise | API Docs | Short Course| Exercises]

Help is available for each task.

Task 1

You are given the JSP page containing the form. Observe that the
form posts to itself recursively. Instantiate the bean FormBean when
you recognize that a POST operation has taken place. Allow the
setter methods to be called on the bean using introspection.

You can use the useBean tag for instantiating the bean. By
indicating property="*" within the setProperty tag, you can direct the
JSP engine to parse all the incoming values from the HTML form
elements that are part of the request object and assign them to
their corresponding bean properties.

Task 2

Deploy the JSP page within Tomcat.

Assuming you have installed Tomcat in say, \jakarta-tomcat, copy the
JSP file to \jakarta-tomcat\webapps\examples\jsp\jdc\forms\form.jsp

Task 3

Develop the bean, FormBean.java with properties matching the form
elements.

Develop a bean with the names of the bean properties matching
the names of the form input elements. Note that values for certain
form elements like checkbox, need to be mirrored within an
indexed property. Define the corresponding getter/setter methods
for each property within the bean.

jGuru: Help: Form Processing Using JSP

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/help.html (1 of 2) [9/22/2000 8:45:31 AM]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://www.jguru.com/
http://java.sun.com/products/servlet/2.2/javadoc

Task 4

Compile the bean source FormBean.java.

You can compile the bean as javac FormBean.java

Task 5

Deploy the bean within Tomcat.

Copy FormBean.class to
\jakarta-tomcat\webapps\examples\WEB-INF\classes\com\jguru\FormBean.class

Task 6

Run the example.

From your browser, access the URL
http://localhost:8080/examples/jsp/jdc/forms/form.jsp.

Fill in data for the form input elements and hit submit. You should
see the data you entered displayed at the bottom of the page.

Copyright 1996-2000 jGuru.com. All Rights Reserved.

 [This page was updated: 21-Sep-2000]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2000 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

jGuru: Help: Form Processing Using JSP

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/help.html (2 of 2) [9/22/2000 8:45:31 AM]

http://www.jguru.com/
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/index.shtml
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

<html>
<body bgcolor="#c8d8f8">
<form action="/examples/jsp/jdc/forms/form.jsp" method=post>
<center>
<table cellpadding=4 cellspacing=2 border=0>

<th bgcolor="#CCCCFF" colspan=2>
User Registration
</th>

<tr>
<td valign=top>
First Name

<input type="text" name="firstName" size=15></td>
<td valign=top>
Last Name

<input type="text" name="lastName" size=15></td>
</tr>

<tr>
<td valign=top colspan=2>
E-Mail

<input type="text" name="email" size=20>

</td>
</tr>

<tr>
<td valign=top colspan=2>
What languages do you program in?

<input type="checkbox" name="languages" value="Java">Java
<input type="checkbox" name="languages" value="C++">C++
<input type="checkbox" name="languages" value="C">C

<input type="checkbox" name="languages" value="Perl">Perl
<input type="checkbox" name="languages" value="COBOL">COBOL
<input type="checkbox" name="languages" value="VB">VB

</td>
</tr>

<tr>
<td valign=top colspan=2>
How often can we notify you regarding your interests?

<input type="radio" name="notify" value="Weekly" checked>Weekly
<input type="radio" name="notify" value="Monthly">Monthly
<input type="radio" name="notify" value="Quarterly">Quarterly

</td>
</tr>

<tr>
<td align=center colspan=2>
<input type="submit" value="Submit"> <input type="reset" value="Reset">
</td>
</tr>

</table>
</center>
</form>

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/form.txt

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/form.txt (1 of 2) [9/22/2000 8:45:36 AM]

<%-- Create the bean only when the form is posted --%>
<%
if (request.getMethod().equals("POST")) {
%>

<jsp:useBean id="formHandler" class="com.jguru.FormBean">
<%-- provide a setProperty tag and ensure that the setter methods are invoked via
introspection --%>
</jsp:useBean>
<p>
<hr>

You submitted:<P>
First Name:

<%-- invoke the getter method to display the firstName using the getProperty tag --%>

Last Name:

<%-- invoke the getter method to display the lastName using the getProperty tag --%>

Email:

<%-- invoke the getter method to display the email address using the getProperty tag --%>
Languages:

<%
 String[] lang = formHandler.getLanguages();
 if (!lang[0].equals("1")) {
 out.println("");
 for (int i=0; i<lang.length; i++)
 out.println(""+lang[i]);
 out.println("");
 } else out.println("Nothing was selected
");
%>
Notification:

<%-- invoke the getter method to display the ntotification status using the getProperty
tag --%>

<%
}
%>

</body>
</html>

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/form.txt

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/form.txt (2 of 2) [9/22/2000 8:45:36 AM]

package com.jguru;

public class FormBean {
// declare properties for firstname, lastname, notify and email with the names
//matching the corrosponding form input elements
 private String[] languages;

 public FormBean() {
 firstName="";
 lastName="";
 email="";
 languages = new String[] { "1" };
 notify="";
 }

 //write getter methods for firstname, lastname, notify, email and languages

 //write setter methods for firstname, lastname, notify, email and languages

}

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/FormBean.java

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/FormBean.java [9/22/2000 8:45:40 AM]

<%@ page import="com.jguru.CounterBean" %>

<%-- provide appropriate values for the class and scope attributes --%>

<jsp:useBean id="session_counter" class="" scope="" />
<jsp:useBean id="app_counter" class="" scope="" />

<% session_counter.increaseCount();
 synchronized(page) {
 app_counter.increaseCount();
 }
%>
<h3>
Number of accesses within this session:

<%-- provide appropriate values for the name attribute --%>

<jsp:getProperty name="" property="count" />
</h3>
<p>
<h3>
Total number of accesses:

<%-- provide appropriate values for the name attribute --%>

<% synchronized(page) { %>
<jsp:getProperty name="" property="count" />
<% } %>
</h3>

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/Counter.txt

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/Counter.txt [9/22/2000 8:45:51 AM]

package com.jguru;
public class CounterBean {
 //declare a integer for the counter

 public int getCount() {
 //return count
 }

 public void increaseCount() {
 //increment count;
 }
}

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/CounterBean.java

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/CounterBean.java [9/22/2000 8:45:55 AM]

<%-- Indicate the location of the error handler using the page tag --%>
<html>
<body>
<form method=post action="errhandler.jsp">
What's the coolest programming language in the known universe?<p>
Java<input type=radio name=language value="JAVA" checked>
C++<input type=radio name=language value="CPP">
Visual Basic<input type=radio name=language value="VB">
<p>
<input type=submit>
</form>

<%
 if (request.getMethod().equals("POST")) {
 if (request.getParameter("language").equals("JAVA")) {
 out.println("<hr>You got that right!");
 } else {
 //thow a new exception initializing it with some message
 }
 }
%>

</body>
</html>

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/errhandler.txt

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/errhandler.txt [9/22/2000 8:46:19 AM]

<%-- Indicate that this is an error page using the page tag --%>
<html>
<body>
<h1>
Error Page
</h1>
<hr>
<h2>
Received the exception:

<%= exception.toString() %>

</h2>
</body>
</html>

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/errorpage.txt

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/errorpage.txt [9/22/2000 8:46:25 AM]

<%@ page import="com.jguru.CounterBean" %>
<jsp:useBean id="session_counter" class="com.jguru.CounterBean" scope="session" />
<jsp:useBean id="app_counter" class="com.jguru.CounterBean" scope="application" />

<% session_counter.increaseCount();
 synchronized(page) {
 app_counter.increaseCount();
 }
%>
<h3>
Number of accesses within this session:
<jsp:getProperty name="session_counter" property="count" />
</h3>
<p>
<h3>
Total number of accesses:
<% synchronized(page) { %>
<jsp:getProperty name="app_counter" property="count" />
<% } %>
</h3>

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/solution/Counter.txt

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/solution/Counter.txt [9/22/2000 8:46:48 AM]

package com.jguru;
public class CounterBean {
 int count;

 public int getCount() {
 return count;
 }

 public void increaseCount() {
 count++;
 }
}

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/solution/CounterBean.java

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/solution/CounterBean.java [9/22/2000 8:46:51 AM]

<%@ page errorPage="errorpage.jsp" %>
<html>
<body>
<form method=post action="errhandler.jsp">
What's the coolest programming language in the known universe?<p>
Java<input type=radio name=language value="JAVA" checked>
C++<input type=radio name=language value="CPP">
Visual Basic<input type=radio name=language value="VB">
<p>
<input type=submit>
</form>

<%
 if (request.getMethod().equals("POST")) {
 if (request.getParameter("language").equals("JAVA")) {
 out.println("<hr>You got that right!");
 } else {
 throw new Exception("You chose the wrong language!");
 }
 }
%>

</body>
</html>

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/solution/errhandler.txt

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/solution/errhandler.txt [9/22/2000 8:47:31 AM]

<%@ page isErrorPage="true" %>
<html>
<body>
<h1>
Error Page
</h1>
<hr>
<h2>
Received the exception:

<%= exception.toString() %>

</h2>
</body>
</html>

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/solution/errorpage.txt

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/solution/errorpage.txt [9/22/2000 8:47:36 AM]

	sun.com
	jGuru: Introduction to JavaServer Pages technology
	jGuru: Exercises: JavaServer Pages Fundamentals
	jGuru: JavaServer Pages Fundamentals, Short Course Contents

	jGuru: Installing and Configuring Tomcat
	jGuru: Help: Installing and Configuring Tomcat
	jGuru: Exception Handling in JSP
	jGuru: Help: Exception Handling in JSP
	jGuru: Understanding JSP Object Scope
	jGuru: Help: Understanding JSP Object Scope
	jGuru: Form Processing Using JSP
	jGuru: Help: Form Processing Using JSP
	http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/form.txt
	http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Forms/FormBean.java
	http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/Counter.txt
	http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/CounterBean.java
	http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/errhandler.txt
	http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/errorpage.txt
	http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/solution/Counter.txt
	http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/Counter/solution/CounterBean.java
	http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/solution/errhandler.txt
	http://developer.java.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/solution/errorpage.txt

	ANPOELPPGKLGLJGCNPFMFMGCBPAJOBEDAJ:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: 2600
	f2: True
	f3: 3
	f4: jsp_t0900
	f5: Off
	f6:

	f7:
	f8:

	IGNALAHAKIFKCFGBEHFMDAAGDPFLGICGEB:
	form1:
	x:
	f1:

	f2:

	FKKKOICLBENBMFLBNPEKNIHKGGIOHHCH:
	form1:
	x:
	f1:

	f2:

	EDIEGLEKKBOOBHBMCLOKJNDKHCJFBPBI:
	form1:
	x:
	f1:

	f2:

	MOAPAFMPKJDPEHAFIAGJBOELPJNEDNDJ:
	form1:
	x:
	f1:

	f2:

	AIBMEEOAGOENEPMMHJIALPMEPBICKCJF:
	form1:
	x:
	f1:

	f2:

	OABANMILELPJKMAIBOLCGGGDGIEDAJCE:
	form1:
	x:
	f1:

	f2:

	CKIGAJFNFGBIBPMPDNEOOGJPCFADPMJM:
	form1:
	x:
	f1:

	f2:

	KGIAEOOKLJIDIKLMCLPDNKKPJOMBCPEO:
	form1:
	x:
	f1:

	f2:

	EIAHLKCDHFPJCHGHEIKKDBNOEIOBPJDK:
	form1:
	x:
	f1:

	f2:

	CJFACDFPGFLEBLFLHNCKBMFDGJECFKPP:
	form1:
	x:
	f1:

	f2:

