
Examples of pic Macros

W. Richard Stevens

This document contains examples of the pic macros used in my books. Using pic requires
developing a set of macros to do common tasks. These macros have been developed and
tweaked over the past 7 years. Many of the macros, especially the splines, were developed by
Gary Wright.

The following shows the compass points on a circle.
A: circle rad 0.5

arrow up 0.2 from A.n
arrow up 0.2 right 0.2 from A.ne
arrow right 0.2 from A.e
arrow down 0.2 right 0.2 from A.se
arrow down 0.2 from A.s
arrow down 0.2 left 0.2 from A.sw
arrow left 0.2 from A.w
arrow up 0.2 left 0.2 from A.nw
" check the compass points on a circle" at A.e + (0.3, 0) ljust

check the compass points on a circle

And the compass points on an ellipse.
A: ellipse wid 0.5 ht 0.3

arrow up 0.2 from A.n
arrow up 0.2 right 0.2 from A.ne
arrow right 0.2 from A.e
arrow down 0.2 right 0.2 from A.se
arrow down 0.2 from A.s
arrow down 0.2 left 0.2 from A.sw
arrow left 0.2 from A.w
arrow up 0.2 left 0.2 from A.nw
" check the compass points on a ellipse" at A.e + (0.3, 0) ljust

check the compass points on a ellipse

- 2 -

I use four macros to draw braces in all our directions. Each macro defines the location Bracept
and text can be placed there after drawing the brace. When multiple lines of text are needed at
the Bracept I draw a box of width 0.1, position the box at the Bracept and then either left jus-
tify or right justify each line. Note that I use the left_space macro to add 2 inches of spacing
to the left of the picture. This is because the text items have no width.
B: box at (2.0, 0)

right_brace(B.ne, B.se)
" \fCright_brace\fP" at Bracept ljust

left_brace(B.nw, B.sw)
box invis wid 0.1 with .c at Bracept \

"this is from the " rjust \
"\fCleft_brace\fP " rjust \
"macro " rjust

left_space(Bracept, 2.0)
top_brace(B.nw, B.ne)

"\fCtop_brace\fP" at Bracept above
bottom_brace(B.sw, B.se)

" \fCbottom_brace\fP" at Bracept below

right_brace
this is from the
left_brace

macro

top_brace

bottom_brace

The two macros label_above and label_below draw labels above or below a box. You have
to measure the lines to the right and left of the arrows, to leave enough space for the text in the
middle.
A: box wid 3.0 ht 0.4

label_above(A.nw, A.ne, 1.2, "a label")
label_below(A.sw, A.se, 1.0, "another label")

a label

another label

- 3 -

The line_gap_down and line_gap_right macros draw a line with a squiggle in the middle.
A: line right 0.2
B: line right 0.2 with .start at A.start + (0, -0.8)

line_gap_down(A.c, B.c)

C: line down 0.2 with .start at A.end + (2.0, 0)
D: line down 0.2 with .start at C.start + (1.0, 0)

line_gap_right(C.c, D.c)

This is the vv_spline macro. The dash_box macro draws a dashed box around anything,
given the lower-left and upper-right locations.
A: box ht 0.2 wid 0.2
B: box ht 0.2 wid 0.2 with .n at A.s + (0, -1.0)

vv_spline(A.e, B.ne, -0.05, 0.5, ->)

C: box ht 0.2 wid 0.2 with .w at A.e + (2.0, 0)
D: box ht 0.2 wid 0.2 with .n at C.s + (0, -1.0)

vv_spline(C.e, D.ne, -0.10, 0.3, ->)
dash_box(D.sw, C.ne + (0.2, 0))

"the last line drawn" at last line.c below
" the 2nd last line drawn" at 2nd last line.c ljust

the last line drawn

the 2nd last line drawn

- 4 -

The hz_spline macro with some different values for the overrun argument.
down

A1: box ht 0.2 wid 0.2
A2: box ht 0.2 wid 0.2
B: box ht 0.2 wid 0.2 with .sw at A1.ne + (1.0, 0.5)
C: box ht 0.2 wid 0.2 with .nw at A1.se + (3.0, -0.5)

hz_spline(A1.e, B.w, 0.05, 0, ->, 0.5, -0.2)
hz_spline(A2.e, C.w, 0, 0.10, <-, 0.5, -0.2)
" overrun = \(mi0.2" at B.e ljust

down
A1: box ht 0.2 wid 0.2 with .n at A1.s + (0, -1.7)
A2: box ht 0.2 wid 0.2
B: box ht 0.2 wid 0.2 with .sw at A1.ne + (1.0, 0.5)
C: box ht 0.2 wid 0.2 with .nw at A1.se + (3.0, -0.5)

hz_spline(A1.e, B.w, 0.05, 0, ->, 0.5, -0.1)
hz_spline(A2.e, C.w, 0, 0.10, <-, 0.5, -0.1)
" overrun = \(mi0.1" at B.e ljust

down
A1: box ht 0.2 wid 0.2 with .n at A1.s + (0, -1.7)
A2: box ht 0.2 wid 0.2
B: box ht 0.2 wid 0.2 with .sw at A1.ne + (1.0, 0.5)
C: box ht 0.2 wid 0.2 with .nw at A1.se + (3.0, -0.5)

hz_spline(A1.e, B.w, 0.05, 0, ->, 0.5, 0.1)
hz_spline(A2.e, C.w, 0, 0.10, <-, 0.5, 0.1)
" overrun = 0.1" at B.e ljust

down
A1: box ht 0.2 wid 0.2 with .n at A1.s + (0, -1.7)
A2: box ht 0.2 wid 0.2
B: box ht 0.2 wid 0.2 with .sw at A1.ne + (1.0, 0.5)
C: box ht 0.2 wid 0.2 with .nw at A1.se + (3.0, -0.5)

hz_spline(A1.e, B.w, 0.05, 0, ->, 0.5, 0.2)
hz_spline(A2.e, C.w, 0, 0.10, <-, 0.5, 0.2)
" overrun = 0.2" at B.e ljust

- 5 -

overrun = −0.2

overrun = −0.1

overrun = 0.1

overrun = 0.2

- 6 -

The spline_dl draws a spline down on the left side, and the spline_ur goes up on the right
side. There are also spline_dr and spline_ul macros.

down
A: box ht 0.2 wid 1.0 "A"
B: box ht 0.2 wid 1.0 "B"
C: box ht 0.2 wid 1.0 "C"
D: box ht 0.2 wid 1.0 "D"
E: box ht 0.2 wid 1.0 "E"
F: box ht 0.2 wid 1.0 "F"
G: box ht 0.2 wid 1.0 "G"
H: box ht 0.2 wid 1.0 "H"

spline_dl(A.w, H.w, 0.1, 0.5, ->)
spline_dl(B.w, G.w, 0.1, 0.4, ->)
spline_dl(C.w, F.w, 0.1, 0.3, ->)
spline_ur(H.e, A.e, -0.1, 0.4, ->)
spline_ur(G.e, B.e, -0.1, 0.3, ->)
spline_ur(F.e, C.e, -0.1, 0.2, ->)

A
B
C
D
E
F
G
H

The following four demonstrate macros right-up-right, right-down-right, left-up-left, and left-
down-left.

down
A1: box ht 0.2 wid 0.2
A2: box ht 0.2 wid 0.2
B: box ht 0.2 wid 0.2 with .sw at A1.ne + (1.0, 0.5)
C: box ht 0.2 wid 0.2 with .nw at A1.se + (2.0, -0.5)
D: box ht 0.2 wid 0.2 with .se at A1.nw + (-1.0, 0.5)
E: box ht 0.2 wid 0.2 with .ne at A1.sw + (-2.0, -0.5)

spline_rur(A1.e, B.w, -0.05, 0, ->)
spline_rdr(A2.e, C.w, -0.05, 0, ->)
spline_lul(A1.w, D.e, 0.05, 0, ->)
spline_ldl(A2.w, E.e, 0.05, 0, ->)

- 7 -

Sometimes I need a custom spline when one of the macros just shown does not fit the job. This
example is from page 322 of UNPv1. When making a curve I divide the distance into quarters,
with one move per quarter.
boxwid = 0.8
boxht = 0.2
Box1: box
Box2: box with .w at Box1.e + (0.55, 0)
Box3: box with .w at Box2.e + (0.55, 0)

Start: Box1.e
Dest: Box3.w

line left 0.05 from Start
spline -> from Start \

right 0.55/4 \
then right 0.55/4 down 0.2 \
then right 0.55/4 down 0.2 \
then right 0.55/4 \
then right boxwid \
then right 0.55/4 \
then right 0.55/4 up 0.2 \
then right 0.55/4 up 0.2 \
then right 0.55/4

Draw the "points" in this spline definition.
A: line invis right 0.55/4 from Start
B: line invis right 0.55/4 down 0.2
C: line invis right 0.55/4 down 0.2
D: line invis right 0.55/4
E: line invis right boxwid
F: line invis right 0.55/4
G: line invis right 0.55/4 up 0.2
H: line invis right 0.55/4 up 0.2
I: line invis right 0.55/4

circle rad 0.02 fill 1 at A.end
circle rad 0.02 fill 1 at B.end
circle rad 0.02 fill 1 at C.end
circle rad 0.02 fill 1 at D.end
circle rad 0.02 fill 1 at E.end
circle rad 0.02 fill 1 at F.end
circle rad 0.02 fill 1 at G.end
circle rad 0.02 fill 1 at H.end
circle rad 0.02 fill 1 at I.end

The erase macro is used to white out some portion of a figure when lines cross. I first specify a
second argument of 1 (draw the circle all black) to check the position of the circle, then change the
argument to 0 to erase the circle.

- 8 -

right
A: box dashed
B: box dashed

line from A.nw to A.se
erase(A.c, 1, 0.05) # draw a black circle
line from A.sw to A.ne
line from B.nw to B.se
erase(B.c, 0, 0.05) # draw a white circle
line from B.sw to B.ne

