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Chapter
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Some Patterns for Software
Architectures
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Mary Shaw
Carnegie Mellon University

Software designers rely on informal patterns, or idioms, to describe the architec-

tures of their software systems—the configurations of components that make up

the systems.  At the first PLoP, I identified seven patterns that guide high-level

system design and discussed the way they guide the composition of systems

from particular types of components [Shaw 95].  This paper extends the descrip-

tions of those patterns (plus one) in response to the discussion at the conference.

Most significantly, it adds information on the kinds of problems each pattern

handles best.

Software designers describe overall system architectures using a rich vocabulary

of abstractions.  Although the descriptions and the underlying vocabulary are

imprecise and informal, designers nevertheless communicate with some success.

They depict the architectural abstractions both in pictures and words.

“Box-and-line” diagrams often illustrate system structure.  These diagrams use

different shapes to suggest structural differences among the components, but they

make little discrimination among the lines—that is, among different kinds of
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interactions. The architectural diagrams are often highly specific to the systems

they describe, especially in the labeling of components.
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The diagrams are supported by prose descriptions.  This prose uses terms with

common, if informal, definitions:

"Camelot is based on the client-server model and uses remote procedure
calls both locally and remotely to provide communication among
applications and servers."  [Spector 87]

"Abstraction layering and system decomposition provide the appearance of
system uniformity to clients, yet allow Helix to accommodate a diversity
of autonomous devices.  The architecture encourages a client-server model
for the structuring of applications."  [Fridrich 85]

"We have chosen a distributed, object-oriented approach to managing
information."  [Linton 87]

"The easiest way to make the canonical sequential compiler into a concur-
rent compiler is to pipeline the execution of the compiler phases over a
number of processors. ... A more effective way [is to] split the source
code into many segments, which are concurrently processed through the
various phases of compilation [by multiple compiler processes] before a
final, merging pass recombines the object code into a single program."
[Seshadri 88]

"The ARC network [follows] the general network architecture specified by
the ISO in the Open Systems Interconnection Reference Model.  It
consists of physical and data layers, a network layer, and transport,
session, and presentation layers."  [Paulk 85]

We studied sets of such descriptions and found a number of abstractions that

govern the overall organization of the components and their interactions.   A few

of the patterns (e.g., object organizations [Booch 86 and blackboards [Nii 86])

have been carefully refined, but others are still used quite informally, even

unconsciously.  Nevertheless, the architectural patterns are widely recognized.

System designs often appeal to several of these patterns, combining them in

various ways.

Garlan and Shaw [Garlan and Shaw 93] describe several common patterns for ar-

chitectures.  This is not, of course, an exhaustive list; it offers rich opportunities

for both elaboration and structure.  These idiomatic patterns differ in four major

respects:  the underlying intuition behind the pattern, or the system model; the

kinds of components that are used in developing a system according to the pat-

tern; the connectors, or kinds of interactions among the components; and the

control structure or execution discipline.  By using the same descriptive scheme,

we improve our ability to identify significant differences among the patterns.

Once the informal pattern is clear, the details can be formalized [Allen and Garlan
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94].  Further, choosing the architecture for a system should include matching

characteristics of the architecture to properties of the problem [Jackson 94, Lane

90]; having uniform descriptions of the available architectures should simplify

this task.

Systems are composed from identifiable components of various distinct types.

The components interact in identifiable, distinct ways.  Components roughly

correspond to compilation units of conventional programming languages and

other user-level objects such as files.  Connectors  mediate interactions among

components; that is, they establish the rules that govern component interaction

and specify any auxiliary implementation mechanism required.  Connectors do

not in general correspond individually to compilation units; they manifest them-

selves as table entries, instructions to a linker, dynamic data structures, system

calls, initialization parameters, servers that support multiple independent connec-

tions, and the like.  A pattern is based on selected types of components and con-

nectors, together with a control structure that governs execution.  An overall

system model captures the intuition about how these are integrated [Shaw et al

95].

We turn now to patterns for some of the major architectural abstractions.  The

purpose of each of these patterns is to impose an overall structure for a software

system or subsystem that

• is appropriate to the problem the system or subsystem is solving

• clarifies designer’s intentions about the organization of the system or
subsystem

• provides a paradigm that will help establish and maintain internal
consistency

• allows for appropriate checking and analysis

• preserves information about the structure for reference during later
maintenance

In practice, a designer adopts one or more of these patterns to shape the design.

Patterns may be used in combination either by providing complementary views

during initial design -- as both a repository and an interpreter [Garlan and Shaw

93] -- or by elaborating a component of one pattern using some other pattern --

as a layered system in which some layers are elaborated as pipelines and others as

data abstractions.  This progressive elaboration can be continued repeatedly until

Architectural patterns
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the architectural issues are resolved, at which point conventional programming

techniques take over.

The description of each pattern includes notes on

• Problem:   What problem the pattern addresses.  That is, what
characteristics of the application requirements lead the designer to select
this pattern?

• Context:  What aspects of the setting (computation environment or
other constraints on the implementation) constrain the designer in the use
of this pattern?

• Solution:  The system model captured by the pattern, together with the
components, connectors, and control structure that make up the pattern.

• Diagram:  A figure showing a typical pattern, annotated to show the
components and connectors.

• Significant Variants:  For some patterns, notes some major variants
of the basic pattern.

• Examples:  References to examples or more extensive overviews of
systems that apply this pattern
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The pipeline architectural
pattern

Problem:  This pattern is suitable for applications that require a defined
series of independent computations to be performed on ordered data.  It is
particularly useful when each of the computations can be performed in-
crementally on a data stream.  In such cases the computations can, at least
in principle, proceed in parallel; when this is possible it can reduce the
latency of the system.

Context:  The pattern relies on being able to decompose the problem into
a set of computations, or filters, that transform one or more input streams
incrementally to one or more output streams.  The usual implementation
embeds each transformation in a separate process and relies on operating
system operations, or pipes, to stream the data from one process to
another.  The analysis is simplest if the filters do not interact except via
the explicitly defined pipes.

Solution:

System model data flow between components, with components that
incrementally map data streams to data streams

Components filters (purely computational, local processing,
asynchronous)

Connectors data streams (ASCII data streams for unix pipelines)

Control structure data flow
Data flowASCII stream

filterComputation

Significant Variants:  This pattern is commonly mentioned by unix
programmers, who often use it for prototyping.  Note that the pattern
calls for “pure” filters, with local processing and little state.  Unix
“filters”, however, often consume the entire input stream before producing
output.  This still works for systems without loops, but it interrupts the
smooth flow of information through the system and can cause starvation
if the data flow topology includes loops.

Examples:  [Allen and Garlan 92] [Bach 86] [Barbacci et al 88] [Delisle
and Garlan 90] [Seshadri 88] [Kahn 74]
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The data abstraction
architectural pattern

Problem:  This pattern is suitable for applications in which a central issue
is identifying and protecting related bodies of information, especially
representation information.  When the solution is decomposed to match
the natural structure of the data in the problem domain, the components of
the solution can encapsulate the data, the essential operations on the data,
and the integrity constraints, or invariants, of the data and operations.

Context:  Numerous design methods provide strategies for identifying nat-
ural objects.  Newer programming languages support various variations
on the theme, so if the language choice or the methodology is fixed, that
will strongly influence the flavor of the decomposition.

Solution:

System model localized state maintenance

Components managers (e.g., servers, objects, abstract data types)

Connectors procedure call

Control structure decentralized, usually single thread

Proc call

ADTManager

obj

obj

obj

obj

obj

obj

objobj

op
op

op
op

op

op
op

op
op

op

op

op
op

op

op

op

obj is a manager

op is an invocation

Significant Variants:  Classical objects (non-concurrent, interacting via
procedure-like methods) are closely related.  They differ largely in the use
of inheritance to manage collections of related definitions and in the use of
run-time binding for procedure calls (method invocation is essentially
procedure call with dynamic binding).

Examples:  [Booch 86] [GoF 95] [Linton 87] [Parnas 72]
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The communicating
processes architectural
pattern

Problem:  This pattern is suitable for applications that involve a collec-
tion of distinct, largely independent computations whose execution should
proceed independently.  The computations involve coordination of data or
control at discrete points in time.  As a result, correctness of the system
requires attention to the routing and synchronization of the messages.
Note that this pattern should be distinguished from data flow, which is
generally taken to be of smaller granularity, higher regularity, and unidi-
rectional flow.  Although many other patterns may be implemented with
message passing, the message-passing pattern is intended to apply when
the essential character or the abstraction involves communication.

Context:  The selection of a communication strategy is often dictated by
the communication support provided by the available operating system.

Solution:

System model independent communicating processes

Components processes that send and receive messages to/from
explicitly selected recipients

Connectors discrete messages (no shared data) with known
communication partners.

Control structure each process has its own thread of control, which may
either suspend or continue at communication points

Composite,
including
controller

Link

proc is a process

msg is a message

proc

proc

proc

proc

proc

proc

procproc

msg
msg

msg
msg

msg

msg
msg

msg
msg

msg

msg

msg

msgmsg

msg

msg

Significant Variants:  Specific patterns of communication have proven
useful in specific situations.  The major points of variance include the
topology of the communication network, the requirements on delivery,
synchronization, and the number of recipients of each message (e.g.,
simple messages, broadcast, multicast).

Examples:  [Andrews 91] [Paulk 85]
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The implicit invocation
architectural pattern

Problem:  This pattern is suitable for applications that involve loosely
coupled collection of components, each of which carries out some opera-
tion and may in the process enable other operations.  These are often reac-
tive systems.  The pattern is particularly useful for applications that must
be reconfigurable on the fly, either by changing a service provider or by
enabling and disabling capabilities.

Context:  Implicit invocation systems usually require an event handler
that registers components’ interest in receiving events and notifies them
when events are raised.  They differ in the kind and amount of information
that accompanies the event, so it’s important to choose one that fits the
problem.  Reasoning about the correctness of the system depends very
heavily on reasoning about the kinds of events, the collection of compo-
nents, and their collective effect; this is trickier than reasoning about
correctness when the execution order is known.

Solution:

System model independent reactive processes

Components processes that signal significant events without
knowing recipients of signals

Connectors automatic invocation of processes that have registered
interest in events

Control structure decentralized; individual components are not aware of
recipients of signal

!
!

! !
!

!

!

?

?

?
??

?
?

Implicit Invocation

Object or Process

Examples:  [Balzer 86] [Garlan et al 92] [Gerety 89] [Habermann and
Notkin 86] [Hewitt 69] [Krasner and Pope 88] [Reiss 90]  [Shaw et al 83]



Shaw 9

The repository
architectural pattern

Problem:  This pattern is suitable for applications in which the central is-
sue is establishing, augmenting, and maintaining a complex central body
of information.   Typically the information must be manipulated in a
wide variety of ways.  Often long-term persistence may also be required.
Different variants support radically different control strategies.

Context:  Repositories often require considerable support, either an aug-
mented runtime system (such as a database) or a framework or generator to
process the data definitions.

Solution:

System model centralized data, usually richly structured

Components one memory, many purely computational processes

Connectors computational units interact with memory by direct
data access or procedure call

Control structure varies with type of repository; may be external
(depends on input data stream, as for databases), prede-
termined (as for compilers), or internal (depends on
state of computation, as for blackboards)

Blackboard
(shared

data)

ks1 ks2

ks3

ks4

ks5ks6

ks7

ks8

Direct access Computation

Memory

Significant Variants:  The repository pattern covers large centralized
transaction-oriented databases, the blackboard systems used for some AI
applications, and systems with predetermined execution patterns in which
different phases add information to a single complex data structures (e.g.,
compilers).  These variants differ chiefly in their control structure.

Examples:  [Ambriola 90] [Nii 86] [Barstow et al 84]
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The interpreter
architectural pattern

Problem:  This pattern is suitable for applications in which the most ap-
propriate language or machine for executing the solution is not directly
available.  The pattern is also suitable for applications in which the core
problem is defining a notation for expressing solutions, for example as
scripts.  Interpreters are sometimes used in chains, translating from the
desired language/machine to an available language/machine in a series of
stages.

Context:  The interpreter will most often be designed to bridge the gap
between the desired machine or language and some (possibly virtual)
machine or language already supported by the execution environment.

Solution:

System model virtual machine

Components one state machine (the execution engine) and three
memories (current state of execution engine, program
being interpreted, current state of program being
interpreted)

Connectors data access and procedure call

Control structure usually state-transition for execution engine; input-
driven for selection of what to interpret

Data
(program

state)

Inputs

Outputs

Selected data

Selected instructionSimulated
Interp-
retation
Engine

Internal
Interpreter

State

Program
Being

Interpreted

Memory

Computation
state mach

Data access
Fetch/store

Significant Variants:  Expert systems are often implemented as inter-
preters for the collections of rules, or productions, that represent the ex-
pertise.  Because the productions require a complex selection rule, special-
ized forms of interpreters have evolved.

Examples:  [Hayes-Roth 85]
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The main program and
subroutines architectural
pattern

Problem:   This pattern is suitable for applications in which the
computation can appropriately be defined via a hierarchy of procedure
definitions.  It is usually used with a single thread of control.

Context:  Many programming languages provide natural support for defin-
ing nested collections of procedures and for calling them hierarchically.
These languages often allow collections of procedures to be grouped into
modules, thereby introducing name-space locality.  The execution envi-
ronment usually provides a single thread of control in a single name
space.

Solution:

System model call and definition hierarchy, subsystems often defined
via modularity

Components procedures and explicitly visible data

Connectors procedure calls and explicit data sharing

Control structure single thread

Call/return

Main  

Sub 1 Sub 2 Sub 3

comp

mem

manager

controller

mem

Subroutines

Significant Variants:  The model of procedure call as the organizing
principle is preserved across processes through the Remote Procedure Call
(RPC).  Although RPC is typically implemented by communication
messages, the abstraction it presents is of single-threaded procedure call.

Examples:  [Parnas 72] [Spector 87]
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The layered architectural
pattern

Problem:  This pattern is suitable for applications that involve distinct
classes of services that can be arranged hierarchically.  Often there are lay-
ers for basic system-level services, for utilities appropriate to many
applications, and for specific tasks of the application.

Context:  Frequently, each class of service is assigned to a layer and sev-
eral different patterns are used to refine the various layers.  Layers are
most often used at the higher levels of design, using different patterns to
refine the layers.

Solution:

System model hierarchy of opaque layers

Components usually composites; composites are most often
collections of procedures

Connectors depends on structure of components; often procedure
calls under restricted visibility, might also be client-
server

Control structure single thread

Composites of
various elements

Usually
procecure calls

Core
Level

Basic Utility

Useful Systems

Users

Significant Variants:  (a) Layers may be transparent (interfaces from
lower layers show through) or opaque (only the interface defined by this
layer may be used by the next layer up).  (b) Layered systems are often
organized as chains of virtual machines or interpreters.

Examples:   [Batory and O’Malley 91] [Fridrich 85] [Lauer and
Satterthwaite 19] [Paulk 85]
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