
How to deduce a hot spot implementation
from its specification.

Avariable aspect of an application domain is
called a hot spot [6, 8]. Different applica-
tions from a domain differ from one another

with regard to some (at least one) of the hot spots.
An application supplies, for each hot spot, one (or
several) of the different possible alternatives of the

Hans Albrecht Schmid

Systematic

Framework Design
by Generalization

A framework [5] is a generic application that allows the creation of different appli-

cations from an application (sub)domain. Due to the inherent flexibility and vari-

ability of a framework, framework design is much more complex than application design

[4]. Our experience (first gained when designing a manufacturing framework [8, 9]) shows

that the complexity of framework design is reduced by separating clearly different issues:

the design of a class model for an application from the framework domain; the analysis and

specification of the domain variability and flexibility; and its stepwise implementation by

a sequence of generalizing transformations. Since application design is a well-known activ-

ity, we will concentrate on the specification of the variable aspects, on the design of a (local)

class structure that provides each with the required variability, and on how to transform a

(global) class structure for generalization. For more details see [10].

48 October 1997/Vol. 40, No. 10 COMMUNICATIONS OF THE ACM

variability. All differ-
ent alternatives to be
supplied for a hot spot
have a responsibility,
named R in Figure 1,
in common.

A hot spot lets you
“plug-in” an applica-
tion-specific class or
subsystem, either by
selection from a set of
those supplied with a
black-box framework,
or by programming a
class or subsystem in a
white-box framework
(see Figure 1 left). In
this way, you create an
application from the
framework.

The variability
required from a hot
spot is classified by the
following characteris-
tics (from which the
implementation will be
derived directly):

• The common responsibility R that generalizes the
different alternatives.

• The different alternatives that realize R.

• The kind of variability required. You might
require the following variability:
Example 1: a common interface with different
implementations, like a set collection class with
each a linked-list, binary tree and hash implemen-
tation;
Example 2: different kinds of bank accounts
where the operation to withdraw money defines a
common sequence of actions like check with-
drawer identity, check amount, and take off
amount. However, the check amount may differ
for different kinds of accounts; and
Example 3: a document with a tree structure of
variable depth and size, as chapters, sections and
subsections of text elements, that provides uni-
form services like “get next text element.”

• The multiplicity gives the number (either one, or
n) and structuring (for n alternatives: either chain-
structured or tree-structured) of the alternatives
that may be bound to a hot spot. The multiplicity

characteristic is directly
related to the kind of
variability. For Example 1
and Example 2, the mul-
tiplicity is one, whereas
for Example 3, it is n and
tree-structured.

• The binding time charac-
terizes the point of time
at which an alternative is
selected: at the time of
creating an application by
the application developer;
at run time, by an end
user. At run time, the
binding may be done
either once and fixed, or
repeatedly.

Hot Spot Subsystem
A hot spot is implemented
by a hot spot subsystem
[8]. Note that we use the

Coad/Yourdon notation [2] as
generated from the tool
ObjectiF to represent class

diagrams. A hot spot subsystem contains (see Figure
1, right):

• A (typically abstract) base class, which defines the
interface for common responsibilities.

• Concrete derived classes, each representing one of
the different alternatives for the variable aspect.

• Possibly additional classes and relationships.

Also, a polymorphic reference typed with the base
class is contained in or attached to a hot spot subsys-
tem. Setting the reference to a subclass object, which
is done when configuring the hot spot subsystem, lets
you bind the hot spot. A method calling a base class
operation (called template method and hook method
[6]) via this reference is dynamically bound to the sub-
class method executed. The effects of calling a hook
operation are generic: they depend on the way the hot
spot subsystem has been configured. Thus, a hot spot
subsystem introduces variability that is (usually)
transparent to the remainder of the framework.

We classify hot spot subsystems similarly to meta-
patterns [6], into the different categories: non-recursive,
in which a requested service is provided essentially
from only one object; chain-structured (1:1) recursive:
wherein a requested service may be provided by a
chain of subclass objects; and tree-structured (1:n) recur-

R R1

R2

Rn
Hot
Spot

R

Hot
Spot R3

Occurrences of
variability

White-box hot spotBlack-box hot spot

Abstract
Base Class R

Hookmethod

Alternative R2Alternative R1 Alternative Rn

HookmethodHookmethod Hookmethod

Figure 1. Hot spot in a black-box and white-box framework
(left) and hot spot subsystem (right)

COMMUNICATIONS OF THE ACM October 1997/Vol. 40, No. 10 49

sive, meaning a requested service may be provided by
a tree of subclass objects.

Recursive hot spot subsystems have a contains-
relationship among a subclass (or the base class) and
the base class (see Figure 2). Design patterns, which
describe typical, common, and frequently observed
relationships among classes, help determine the
detail structure of a hot spot subsystem. Each of the
design patterns from [4] (except for the Singleton,
Facade, Flyweight and Memento patterns) provides a
different kind of variability. Thus, a design pattern
presents a proved solution for how to internally
structure a hot spot subsystem in detail. All design
patterns are non-recursive hot spot subsystems,
except Chain of Responsibility and Decorator, which
are chain-structured recursive, and Composite and
Interpreter, which are tree-structured recursive hot
spot subsystems.

Binding of hot spots at run time (by interaction
with an end user or by a lookup in tables or in a plan
[8, 9]) requires a supporting class structure. In con-
trast, binding them at the time of application cre-
ation does not require this since this is a kind of

meta-activity from the application programmer side.

From Hot Spot Characteristics
to Hot Spot Subsystem Structure

You may deduce the detailed class structure of
a hot spot subsystem straightforwardly from
the hot spot characteristics.

• The multiplicity directly indicates the hot spot
subsystem category.

• Look for a design pattern in the respective hot
spot subsystem category that provides the
required kind of variability. You may need to add
classes and relationships to the base class and sub-
classes, and refine the classes and collaborations
following the design pattern. When an appropri-
ate design pattern is not found, you design the
detailed structure by refining the selected hot
spot subsystem category. For example: The multi-
plicity and variability requirements of Example 1
are met by a non-recursive subsystem structured
according to interface inheritance, those of Exam-
ple 2 by a non-recursive subsystem structured fol-

50 October 1997/Vol. 40, No. 10 COMMUNICATIONS OF THE ACM

TextComponent

Edit

Collection

Character Character Composite

TextComponent

Edit

Figure 3. Hot spot transformation generalizing the aggregation of TextComponent

SubClass1A SubClass1B

BaseClass1

SubClass2A SubClass2B

BaseClass2

0:1 0:n

BaseClass3

SubClass3A SubClass3B

1 1

Figure 2. A non-recursive, a chain-structured recursive, and a tree-structured recursive hot spot subsystem

COMMUNICATIONS OF THE ACM October 1997/Vol. 40, No. 10 51

lowing the template method design pattern, and
those of Example 3 by a tree-structured recursive
subsystem structured following the composite
design pattern.

• The abstract base class interface realizes the com-
mon responsibilities R and the pattern-related
responsibility. A derived class implements one of
the different alternatives of the variable aspect
and the pattern-related responsibility.

• The binding time indicates if a class structure in
support of binding is to be added or not.

Generalization Transformation

The variability of a hot spot is introduced
into a framework by generalizing the class
structure [8] (compare generative design

patterns [1]). The class structure contains, before
generalization, a specialized class (or classes) that
has a direct and fixed relationship to other classes,
representing the respective aspect as a frozen spot.
When a generalization transformation is per-
formed, this specialized class (possibly also directly
related classes) is replaced by a hot spot subsystem,
and the direct relationship between a client and a
specialized class is replaced by a polymorphic (indi-
rect) relationship.

Figure 3 takes up Example 3. It shows how the
fixed relationship among an Editor and a collection of
TextComponents (left side) is generalized to a variable
relationship among an Editor and a variable aggre-
gation hierarchy of TextComponents (right side). This
is done by replacing the specialized class Collection
and TextComponent by the hot spot subsystem
derived for Example 3.

Conclusion
Decomposing the complex tasks of framework
design into the following set of basic activities
makes framework design easier:

1. The modeling activity designs the class structure
of a (specialized, fixed) application from the frame-
work domain.

2. The hot spot analysis activity collects the hot
spots and describes the characteristics of each hot
spot in a “hot spot variability requirements” spec-
ification.

3. The generalization activity generalizes a special-
ized class structure to incorporate the domain vari-
ability, by applying by a sequence of generalization
transformation steps, each one for a hot spot. In
each step, a specialized class is replaced by a hot
spot subsystem, the structure of which follows
from the hot spot characteristics.

Outlook

When developing a framework, don’t plan
to do all design activities described here
in one development cycle. Framework

development should be based on experience, nobody
will develop a useful framework from scratch in one
development cycle [7]. Therefore, the design activi-
ties should be distributed over different develop-
ment cycles. Very often an application class structure
will be designed and (parts of it) implemented in the
initial development cycle(s). Then a rough analysis
of all hot spots will be performed, followed by a hot
spot detail analysis, class structure generalization
and implementation, each for one or a few hot spots
at a time, in subsequent development cycles.
Though not part of the ideal development, in prac-
tice restructuring cycles [3] may be required if the
requirements were not well understood or if pre-
planning was not done or did not work out properly
for a hot spot. Systematic framework design, how-
ever, will reduce the need for restructuring.

References

1. Beck, K. and Johnson, R. Pattern generate architectures. In Proceedings
of ECOOP 1994, Springer Lecture Notes in Computer Science, Berlin. 1994.

2. Coad, P. and Yourdon, E. Object Oriented Analysis. Prentice-Hall, Engle-
wood Cliffs, NJ, 1991.

3. Foote, B. and Opdyke, W. Life cycle and refactoring patterns that sup-
port evolution and reuse. In Pattern Languages of Program Design, Addi-
son-Wesley, Reading, Mass., 1995.

4. Gamma, E., Helm, E., Johnson, R.R. and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
Mass., 1994.

5. Johnson, R.E. and Foote, B. Designing reusable classes. J. Object-Ori-
ented Programming 1, 2 (June 1988), 22–35.

6. Pree, W. Design Patterns for Object-Oriented Software Development. Addi-
son-Wesley, Reading, Mass., 1994.

7. Roberts, D. and Johnson, R. Evolve frameworks into domain-specific
languages. In Pattern Languages of Program Design 3, Addison-Wesley,
Reading, Mass., 1997.

8. Schmid, H.A. Design patterns for constructing the hot spots of a man-
ufacturing framework. J. Object-Oriented Programming 9, 3 (June 1996),
25–37.

9. Schmid, H.A. Creating the architecture of a manufacturing framework
by design patterns. In Proceedings of OOPSLA’95, ACM, NY 1995, pp.
370–384.

10. Schmid, H.A. Framework design by systematic generalization: From
hot spot specification to hot spot subsystem. In Implemenatation in Object-
Oriented Application Frameworks. M. Fayad, D.C. Schmidt, R. Johnson,
Eds., Wiley, NY, to appear.

Hans Albrecht Schmid (schmidha@fh-konstanz.de) is a
professor of computer science at the Fachhochschule Konstanz in
Konstanz, Germany.

The Deutsche Forschungsgemeinschaft (DFG) provided partial support for this
project.

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe-
cific permission and/or a fee.

© ACM 0002-0782/97/1000 $3.50

c

