
The manufacturing-
application framework
described here lets you
develop software from

components without
programming. The

framework's design
generalizes the class

structure which models a
fixed domain application

through a sequence of
transformations.

HANS ALBRECHT SCHMID
Fochhochschule Konstonz

anufacturing systems for part-processing metal
industries consist of components-such as
machines, robots, and buffer stores-and a soft-
ware control system. To build a manufacturing
system, little design work is required to tailor
the components to the intended configuration.
The software control system, however, is usually

developed from scratch, which is not only expensive and time-consum-
ing but reuses little-if any-software. An off-the-shelf approach to
software development, achieved by selecting and configuring reusable
software components, would result in significant savings.

I E E E S O F T W A R E

Although creating applications from
reusable coinponents was first pro-
posed in 1968,’ it took inore than a
decade before reuse began to material-
ize. At the same time, object-oriented

emerged, providing a
sound foundation for reuse. The reuse
of domain-independent class libraries
thus gained considerable momentum;
reuse of domain-specific class libraries
was pursued to a lesser degree. Both
kinds of reuse, however, offer only a
limited saving of development effort
and time, largely because you must
develop application logic for each
application. In contrast, 00 frame-
works4 let you reuse application logic.

I initiated and led the development,
design, and structuring of a domain-
specific black-box (DSBB) framework
for automated part-processing manu-
facturing. W e began development of
the Open Software Framework for
Manufacturing, called OSEFA, in
1993. An OSEFA prototype with
strongly restricted flexibility has been
running since early 1994, the full
framework since late 1995, a t the con-
puter-integrated manufacturing model
factory jointly operated by the comput-
er science and mechanical engineering
departments of the Fachhochschule of
Konstanz, Germany.

DSBB frameworks contain compo-
nents that model an application
domain’s entities, concepts, and logic
so you can create an application from
components. Thus, after the initial
development investment, DSBB

frameworks offer significant savings of 1 “frame” classes, usually as abstract
development cost and time over from- classes, describing the allocation of
scratch development. 1 responsibilities to Components and

their interfaces. You can specialize the
framework by deriving application-

~ specific classes from the frame classes , through inheritance, and by complet-
A framework is a set of object classes 1 ing or redefining their methods. One

that collaborate to carry out a set of disadvantage is that you must have
responsibilities;’ it reuses both the high- ~ detailed framework code knowledge.
level design of a program and its imple- Black-box framework.? let you create , m e n t a t i ~ n . ~ Frameworks are classified an application from components rather

i by application and domain and, depend- i than programming. A black-box frame-
ing 011 how an application is created, as , work provides alternative (complete) 1 either white-box or black-box. I classes for a variable aspect, known as a

“hot each class realizing one
Application framework. An application ~ instance of the variability. For example,

framework provides the basic function- for the machining of parts, a black-box
ality of a working application, which framework will provide different

1 can be easily tailored to a specialized ~ machine classes for different machines.
application. Most application frame- You can thus select one or inore suitable

1 works, such as ET++6 and Taligent’s 1 classes when creating an application.
CommonPoint, provide basic adminis- , Thus, an application is developed by

I trative functionality, which is required ’ selecting, parameterizing, and configur-
“horizontally” over a range of applica- ing its components. This does not

i tion domains such as user interfaces , require knowledge of bamework code-
and data administration. But because and is thus easier to use. However, the

1 the specific content that models the 1 development of black-box frameworks
application domain is missing, such requires more careful planning for reuse
frameworks might better be called and more development e f f ~ r t . ~
application - enabling fiamew arks.

1 FRAMEWORKS

1

i i Hot-spot subsystem. Alternative class-
Domain-specific framework. Less com-

mon are domain-specific fyameworks,
which model the domain-specific hnc-
tioiiality via enterprise objects and a
generic application logic that often can
be performed in many different
domain configurations. Wi th a
domain-specific framework, you can
create an application by implementing
a specific configuration with enterprise
objects and then binding the generic
application logic to this configuration.

White and black boxes. E’hite-box
frameworks, such as the model view
controller framework from Smalltalk-
80, or ET++, are the original frame-
works. T h e y provide incomplete

es of a black-box framework are orga-
1 nized in a hot-spot subsystem9 to let

you dynamically configure an applica-
1 tion without recompilation. A hot-spot

subsystem contains a base class defin-
~ ing the common responsibilities of the

variable aspect and, in simple cases, 1 only alternative subclasses derived
1 from it (interface inheritance). In more

complex cases, however, additional
classes and relationships among the

1 base class, the derived classes, and
1 classes external to a hot-spot subsystem

may exist. Usually, the classes and rela-
~ tionships are structured according to a

design pat tern.” Th i s knowledge
1 makes it easier for you to develop the
1 struchire of hot-spot subsystems.

N O V E M B E R 1 9 9 6

When a class sends a message to an
object of a hot-spot subsystem class, the
message-requesting class refers to the
service-providing object by a polymor-
phc reference typed with the base class.
The polymorphic reference is set to one
of the subclasses when configuring an
application from the framework.
Subclasses can be added to a hot-spot
subsystem without requiring recompila-
don of the existing black-box framework.

parts in the cell store. The cell consists
of a computerized numerical control Abstract application logic. After the sys-
(CNC) lathe, which machines raw tem reads the machine order and sets up
parts, a pallet buffer store, a portal , required resources (such as numerical
robot, and a store for pallets. The por- control programs), the system performs
tal robot is used both to move pallets I the abstract application logic in a seven-
to and from a buffer store, using a pal- ' step sequence, simplified as follows.

MANUFACTURING
APPLICATION DOMAIN

Configuration variability. All manufac-
turing cells and systems in the applica-
tion subdomain are composed of a
store and one or more machines, han-
dling units, transport systems, and
buffer stores. However, there are three

Processing control Store . - Get position
Process machine i

order list :- -

Buffer

Get pallet

Robot - Load robot control program

- Start robot control program

I

CNC lathe machine - Load numerical control program

- Start numerical control program

Direct
numerical control

coupling

@ Buffer store

I E E E S O F T W A R E

Machink orders I Work' sheet j!

H 1
Robot ' I Lathc rnachiie I Store ' I Ruffer ' 1

Figure 2. Coudh'owdon diupam of a munufucturing cell.

gle or double gripper, can load a part
into a machine; which tool is used
depends on the machine order .
Different local equipment and tools
require different sequences for pro-
cessing the parts, making it difficult to
reuse the application logic.

The three areas of variability that
affect the manufacturing subdomain
are also characteristic of other
domains. In many domains, there are

+ the use of different, but similar
devices;

+ the use of different kinds of
devices to achieve the same service for
an application; and

+ variations in a procedure or in the
application logic.

Given this, if you know how to
structure a framework for manufachir-
iiig that embodies these variable areas,
you should be able to apply the same
structuring techniques to similar appli-
cation domains.

00 ANALYSIS

As the first step in our framework
design, we developed the class struc-
ture of the control software for a spe-
cific manufacturing cell in the OSEFA
subdomain, modeling the cell's enti-
ties using an 00 analysis methodolo-
gy.' The lathe machine, portal robot,
and store were modeled by the objects
shown in the upper portion of Figure 1.
In addition, a ProcessingControl
object modeled the workers' knowl-
edge about parts processing.

An object is described and defined by
its application-relevant dynamic behav-
ior, that is, the actions it can perform in

the application world. For example, a
lathe machine object can load and exe-
cute numerical-control programs, among
other services; a portal-robot object can
load and execute robot control programs;
and a store object can give the position of
a pallet in the store. An object may
request another object to provide a ser-
vice specifymg its details by additional
information. For example, the
ProcessingControl object may request a
CNC lathe machine to load a numerical-
control program with a given number.

Because a manufacturing control sys-
tem is reactive, many objects (such as
CNC machines or robots) are directly
coupled to the real-world entities they
model through communication lines, as
Figure 1 shows. A coupled object can
send a command to the entity it models
to make it perform a service.

Classes and interrelationships. T h e
objects and their interrelationships in
Figure 1 can be represented more
abstractly by the CoadNourdon dia-
gram' in Figure 2 . This shows the
classes introduced in Figure I , Lathe
Machine, Robot, Store, and Buffer, as
well as the object classes Celloperator,
ProcessingControl (with the Machine
Orders and Work Sheet information),
and aggregate ManufacturingCell. The
relationships among them are

+ a ManufacturingCell contains
(any number of) Store, Buffer, Lathe
Machine, Robot, ProcessingControl.
and CellOperator objects; and

+ ProcessiiigControl requests ser-
vices from these objects and provides
services to the Celloperator object.

The derived class structure does not
exhibit specific 00 characteristics, such
as specialization, generalization, poly-

morphism, or dynamic binding.
Instead, it represents an object-based
approach that builds on abstract data
types and data encapsulation.

Concrete application logic. Processing-
Control performs a seven-step part-
processing sequence that is a concrete
instance of the abstract part-processing
application logic described earlier.

I . T o move the pallet with raw parts
from the store to the buffer store,
ProcessingControl sends a request to
the robot to

+ load the robot program A;
+ load, as a parameter of program

+ start program A.
2. T o load a part from the buffer

s tore into the lathe machine,
ProcessingControl sends a request to
the robot to

+ load and start robot control pro-
gram €3, which exchanges the pallet
gripper for a part gripper;

+ load the robot control program
C, which loads the part;

+ load parameters of program C
with the part position on the pallet; and

+ start program C.
3. After the robot has loaded the

part, ProcessingControl sends a
request to the lathe machine to start
the numerical-control program that
machines the part.

4. The part is unloaded onto the
pallet, similar to step 2.

S. Steps 2 to 4 are repeated until all
parts of the pallet are processed.

6. The processed pallet i s transport-
ed back to the central store, similar to
step 1.

7. Steps I to 6 are repeated until all
pallets in the order are processed.

The concrete application logic is
bound to the particular configuration
of the sample cell. Requests for appli-
cation-logic-related services-such as
performing a transport task-are
rep1 aced by device - re1 a t ed service

A, the pallet position in the store; and

N O V E M B E R 1 9 9 6

requests, such as parameterizing (and
starting) a robot control program.

Because these requcsts are bound to

/----I ManufacturingCell -

I
ProcessingControl - t I

1- ~- rl-- --F?
r-5

I

CNC machine

Standardized Standar
robot lathe machine

specific devices, ProcessingControl is i Figure 3. Generalizing machines with dynamic binding. The shaded area indicates a
clearly not reusable with different con-
figurations. The result of an 00 analy-
sis without a domain analysis is a class
structure with classes tailored to the
specific cell configuration. Even for a
simple configuration modification,
such as exchanging machines that have
different interfaces, ProcessingControl
requires major modifications.

Consequently, reusability is still
limited, and the derived class struc-
ture is unsuitable as the basis for a
black-box framework. T o make i t
reusable, we generalize the class struc-
ture by a sequence of transformations.
Each transformation’ introduces parts
of the configuration variability identi-
fied earlier into the framework class
structure.

FIRST TRANSFORMATION:
DEVICE GENERALIZATION

This transformation deals with the
simplest area of variability: the variabil-
ity of similar machines and devices. T o
make ProcessingControl reusable
when exchanging machines, all
machines must have the same interface,
and thus different machines must be
generalized by common properties and
services. The difficulty is in trying to
establish a valid concept of a general-
ized machine. Its services must be
defined such that they can be provided
by-and implemented efficiently on-
“every” machine (where “every” means
“sufficiently many”).

In OSEFA, we defined a general-
ized CNC-Machine class and, we
believe, proved the validity of this con-
cept. This class has properties common
to different CNC machines and robots
and includes all machines (from robots
to coordinate-measurement machines)

hot-spot subsystem. I

that are controlled by numerical con-
trol or robot programs. Services shared
by these machines include

+ uploading and downloading
numerical-control and robot control
programs, data, and parameters;

+ starting and stopping a down-
loaded program; and

+ interrogating the machine state;

Standardized interface. With these ser-
vices we have a standardized interface
that features the common functionality
of CNC machines. This interface was
realized by declaring an abstract base
class CNC-Machine. From this base
class, we derived subclasses modeling
the real C N C machines. The CNC-
Machine base class and subclasses form a
hot-spot subsystem of a domain-specific
black-box framework. According to tlie
rules for structuring hot-spot subsys-
tems, ManufacturingCell should contain
polymorphic references, typed with the
CNC-Machine base class, via which a
message is sent. Figure 3 represents this
as a “has-as-part” relationship from
manufacturing cell to CNC machine. In
this way, no recompilation is required
when machines are exchanged. This is a
distinct advantage of object orientation
over object-based languages.

The references, which are set dur-
ing the configuration process, refer to
machines contained in the actual con-
figuration. The Configuration process
must ensure that a reference meant to
refer t o a transport and handling
device does not refer to a processing
machine, and vice versa.

When doing a machining step, it
makes no difference whether it is done
on a milling machine or on a lathe

machine, or that a processing step on a
lathe was replaced by an assembly step
with a robot. In all cases, the process-
ing is exactly the same, both on an
abstract level and on a service request
level. Thus , we made Processing-
Control reusable relative to different
CNC machines and robots.

Programmable logic control devices
are generalized in much the same man-
ner as CNC machines.

Summary. Thus, with different but
similar devices, generalization is possi-
ble. An abstract base class defines tlie
interface and common functionality of
the generalized device. For each differ-
ent real device, a subclass is derived from
the base class. An access to an object of
an original device class is replaced by an
access, via a reference with the polymor-
phic base class type, to an object of a
subclass. The methods are dynamically
bound (virtual functions in C++).

This kind of variability and this
transformation are common in most
domains where technical devices are
used. A transformation can be done as
described only when the original device
classes, like Robot, may be modified and
derived as a subclass (like Standardized
Robot) from the hot-spot subsystem
abstract base class.

SECOND TRANSFORMATION:
DEVICE INDEPENDENCE

This transformation deals with both
the variability of machines and devices
and the variability of associations-that
is, a device is exchanged for a completely
different kind of device with dissimilar

I E E E S O F T W A R E

1 1

portal robot were replaced by two pro-
grammable logic control units: a convey-

tains a reference to the generalized
device, such as the portal robot, that

A A

C N C Transpor t object could be
replaced by a programmable logic con-

~~~~~ ~ - 

Figure 4. Munufacturiizg cell with Machining, Tyansport, and Handling bot-spot subsystems. 

make this possible, we introduce a hot- 
spot subsystem for addressing trans- 

subclass. The reason is that a device, like 
a robot, “is not a” kind of transport; it 1 Summwry. When a domain has differ- 

t N O V E M B E R  1 9 9 6  



Figure 5. Promsingstrategy pyovides an easily rnodzjable application logic. 

of abstraction with one or more hot- 
spot subsystems. A base class defines 
services specific to an application- 
related task (in this case, transport 
from manufacturing). For this reason, 
we call these classes application 
object classes (also known as business 
object classes) which provide applica- 
tion-related services, thus abstracting 
from the (standardized) devices used 
in the application domain. Since the 
existing device classes cannot  be 
changed, an application object class is 
mapped to the different device classes 
by an adapter design pattern'': For 
each device class used, a subclass is 
derived from the application object 
base class. 

A subclass is parameterized with a 
table that describes how to map applica- 
tion-related service requests to device- 
specific service requests. You can tailor 
the framework according to the specific 
application configuration by providing 
specific table contents. An application 
object transforms a received request for a 
service, and passes it, possibly partitioned 
into several device service requests, to a 
standardized device object. For all con- 
figurations, ProcessingControl requests 
identical services from the application 
object layer. Thus,  i t  has become 
reusable. 

In many application domains the 
same task can be performed by means 
of different devices. T o  send a message 
to a coworker, for example, you could 
send it via phone, fax, or e-mail. Each 
device provides completely different 
services yet accomplishes the same 
result. In all application domains with 
this characteristic, the device indepen- 
dence transformation introducing 
application objects may be applied to 
reuse the application logic. 

THIRD TRANSFORMATION: 
APPLICATION LOGIC EXTRACTION 

This transformation addresses local 
Configuration changes. They require 
slightly different versions of the part- 
processing application logic. For exam- 
ple, a part-processing sequence that 
calls for separate loading and unload- 
ing steps with a single-part gripper can 
combine loading and unloading into 
one step when a double-part gripper is 
used. The upshot is that such changes 
require a complete exchange of the 
ProcessingControl class. 

Breaking i t  down. T o  simplify the 
effort in modifylng the part-processing 
application logic, we divide the 
ProcessingControl class into several 
smaller, more specific classes" as 
shown in Figure 5. In doing so, we fol- 
low the strategy design pattern") and 
introduce a ProcessingStrategy class, 
which provides a ProcessParts service 
that performs the part-processing 
application logic. T o  accommodate dif- 
ferent part-processing sequences, we 
define ProcessingStrategy as an abstract 
base class and derive different process- 
ing subclasses that overwrite 
ProcessParts. T h e  part-processing 
sequence of a ProcessParts method 
requests a set of services like LoadPart 
or Unloadpart from a mediator class 
not shown in Figure 5 (these services 
are also g e n e r a l i ~ e d ) . ~  Thus ,  i t  is 
defined in a manner similar to that in 
which the abstract application logic is 
described. 

Once again, we have introduced a 
hot-spot subsystem to handle applica- 
tion logic variations. When reading the 
next machine order and work sheet 
entry, ProcessingControl dynamically 

sets a polymorphic reference of the 
type ProcessingStrategy to reference 
the specific processing strategy to be 
used depending on the machine order 
equipment configuration. For detailed 
part processing, i t  calls the Process 
Parts method via this reference. 

Summary. In this transformation, dif- 
ferent variations of the application 
logic are performed in different manu- 
facturing configurations. T o  make the 
application logic easy to modify, we 
extract it into a separate hot-spot sub- 
system. The application logic of a sub- 
class strategy is composed of high-level 
service requests (provided by the base 
class or by a mediator class.") This 
transformation can be applied to any 
domain where there are variations of 
the application logic. 

OUTCOME 

As Figure 6 shows, we introduced 
by three transformations three general- 
ization layers into the class structure of 
OSEFA: a standardized machines and 
devices layer, an application objects 
layer, and an application logic layer. In 
these layers, OSEFA contains the fol- 
lowing components: 

+ models of entities such as 
machines and robots; 

+ concepts for transport, handling, 
and machining; and 

+ the  application logic that  
describes how a part is processed. 

I n  addition t o  these principal 
aspects of framework design, we had 
several other design items to address 
before the framework could be imple- 
mented, such as 

+ central structuring" details; 

I E E E  S O F T W A R E  



Figure 6. Layer and subsystem stmctww of  the OSEFA m a n ~ f a c t ~ r i n g ~ a ~ i e ~ o ~ ~ .  

tions, you can incrementally increase 
the number of application components. 

o concurrent execution of an opti- 
mized manufacturing logic with shared 
resources such as buffer stores; 

o Concurrent processing in a reac- 
tlve system (similar to that described by 
Giuseppe Menga and his colleagues'*); 

o refinement of areas like store and 
buffer store, sometimes combined with 
additional functionality like the interac- 
tive shop-floor entry of machine order 
lists and worksheets; 

o visualization of the manufacturing 
cell processing for any possible config- 
uration; and 

+ configuration of an application 
from the framework. 

and introduce new part-processing 
sequences to produce the new products. 

Results. It takes roughly a day (a few 
days when we include testing) to create 
an application from the DSBB frame- 
work. Adding a fcw inore days for the 
analysis of a manufacturing cell and 
time for complementing not-yet-exist- 
ing framework components, the overall 
effort and elapsed time is still very small 
compared to the time it usually takes to 
develop the control software in an indi- 
vidual project, which ranges from a few 
person-months to person-years. 

Before starting, our project group 
expected tha t  a framework would 
reduce both cost and time to develop a 
domain-specific application by a factor 

N O V E M B E R  1996 



ACKNOWLEDGMENTS 

Research Council (Deutsche Forschungsgenieinschaft) for partial support of the project. 

REFERENCES 

My thanks to Clemcns Ballarin, Franco Indolfo, Frank Mueller, and Jochen Peters who worked with us to build OSEFA and to the German 

I .  M.D. Mcllroy, “Mass Produced Software Components,” in I’roc. Nuto Cui$ Sofnuare Eizg., Gariiiisch-Partenkirchen, NATO Sciecnc Committee, NATO, 
Rrussells, 1969. 
G. Booch, Object-Oriented Desigz with Applicatiom, Beiijamin/Cummitigs Redwood City, Calif., 1991. 
P. Coad and E. Yourdon, Object~Orjented Analyszs, l’rentice-Hall, Englcwood Cliffs, N.J., 1991. 
R.E. Johnson and B. Foote, “Designing Reusable Classe5,”J. Olyect-Oriented Programming, June 1988, pp. 22-35. 
R.E. Johnson and V. Russo, “Reusing Objcct-Oriented Design,’’ Tech. Report UIUCCDS 9 1-1696, Dept. of Computer Science, Univ. of Illinois, Urbana, 
Ill., 1991. 
A. Weinand, E. Gamma, and R. Marty, “Design and Iinplenieiitation of ET++, a Seamless Ohject-Oriented Application Framework,” Stmctwed Progvmming, 
June 1989, pp. 63-87. 

7. J. Brant and R.E. Johnson, “Creating Tools in HotDraw by Composition,” in T e c b d ~ g ,  ofObjecr-Onented Langzagesand Syrtems TOOLS 13, B. Magnusson et 
al., eds., Prentice-Hall, Englewood Cliffs, N.J., 1994, pp. 445-454. 

8. W. Pree, Design l’attems for Object-O?iented So$warr Development, Addison-Wesley, Reading, Mass., 1994. 
9. 1I.A. Schmid, “Design Patterns for Constructing the Ilot Spots oca Manufacturing Ffiiinework,”y. O/ject-O?-ieizted Programming, June 1996, pp. 25-37. 
10. E. Gamma et al., Design Patterns: Elements o/”Objec-t-Oriented Sqfmmc Architecture, Addison-Wesley, Reading, Mass., 1994. 
11. H.A. Schmid, “Creating the Architecture ofa Manufacturing Framework by Design Patterns,” Z’roc. O O P S U  ’91, ACM, New York, 1995, pp. 370-384. 
12. A. Aarsten, G. Elia, and G. Menga, “G++: A Pattern Language for Computer Intcgrated Manufacturing,” Pwc. PLOPS ’94, J. Coplicn and D. Schmidt, eds., 

13. Domain Analysis and Soj3wm.e Syrtemr~W~delliizg, R. Prieto-Diaz and C;. Arango, eds., IEEE CS Prcss, Los Alaniitos, Calif., 1991. 

2. 
3.  
4. 
5. 

6. 

Addison-Wesley, Reading, Mass., 1995, pp. 91-118. 

Hans Alhrecht Schinid 15 ‘1 professor of cnniputei SLI- 

ence at thc Fnchhoclischule KonstanL, whei e h i 5  intci 
ests are in sotmare engineering, 00 development and  
methods, einphisinng frameworks dnd design partei ns, 
dnd rcxl time system development Before joining FIT 
Konstanz, lie spem 10 years with the IBM 
Development Lxboratory in Boeblingen 

Schmid ieceived An MS i n  elcctricd engineering 
from the Technical University, Stuttgart, a diploma in 
computer science from the In\titute NdtionAe Poly- 

technique de Grenoble, and a PhD in coinputei science from the University 
of I<arlsruhc 

Address questions about this article to  Schinid at Fachhercich Inforinatik, 
Fachhochschnle Konstanz, Brauneggerstrasse 55, D78462  Ihnstanz, Germany; 
phone x-49-753 1-9836-39 or -12; fax, -1 3 ;  sch~nidlia@rz-uxazs.fh-kot~s~a~i~.~lc. 

I E E E  S O F T W A R E  

Call for Participation 
Software Technology and Engineering Practice 

STEP’97 
8th International Workshop (inc. CASE’97) 

14-18 July 1997, London, UK. 
Sponsored by: 
International Workshop on CASE British Telecommunications plc 

Software and systems development, evolution, and management 
are undergoing dramatic change as we move into the 21st century, 
with the result that the processes, skills, and tools which support 
all aspects of software development will undergo radical change 
during the next few years. 
STEP’97 is the premier world event for drawing together 
practitioners and researchers concerned with supporting the 
software and systems development, evolution, and management 
process. Experience reports, research papers, evaluations, and 
surveys of 3-5,000 words are invited on all relevant topics. 
Experience papers which seek to draw out valuable lessons from 
practical software engineering are particularly welcome, as are 
research papers which take an innovative view of future software 
development processes and support tools. 

Send Papers to: Gene Hoffnagle, IBM Corp. 82-205, 
PO Box 218, Route 134, New York, NY 10598-0218 

Important Dates 
30 November 1996 - Submissions deadline 

Further Information 
URL: http://www.co.umist.ac.uk/STEP97 

Email: STEP97@umist.ac.uk 

http://www.co.umist.ac.uk/STEP97
mailto:STEP97@umist.ac.uk

