
The manufacturing- 
application framework 
described here lets you 
develop software from 

components without 
programming. The 

framework's design 
generalizes the class 

structure which models a 
fixed domain application 

through a sequence of 
transformations. 
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anufacturing systems for part-processing metal 
industries consist of components-such as 
machines, robots, and buffer stores-and a soft- 
ware control system. To build a manufacturing 
system, little design work is required to tailor 
the components to the intended configuration. 
The software control system, however, is usually 

developed from scratch, which is not only expensive and time-consum- 
ing but reuses little-if any-software. An off-the-shelf approach to 
software development, achieved by selecting and configuring reusable 
software components, would result in significant savings. 
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Although creating applications from 
reusable coinponents was first pro- 
posed in 1968,’ it took inore than a 
decade before reuse began to material- 
ize. At the same time, object-oriented 

emerged, providing a 
sound foundation for reuse. The reuse 
of domain-independent class libraries 
thus gained considerable momentum; 
reuse of domain-specific class libraries 
was pursued to a lesser degree. Both 
kinds of reuse, however, offer only a 
limited saving of development effort 
and time, largely because you must 
develop application logic for each 
application. In contrast, 00 frame- 
works4 let you reuse application logic. 

I initiated and led the development, 
design, and structuring of a domain- 
specific black-box (DSBB) framework 
for automated part-processing manu- 
facturing. W e  began development of 
the Open Software Framework for 
Manufacturing, called OSEFA, in 
1993. An OSEFA prototype with 
strongly restricted flexibility has been 
running since early 1994, the full 
framework since late 1995, a t  the con-  
puter-integrated manufacturing model 
factory jointly operated by the comput- 
er science and mechanical engineering 
departments of the Fachhochschule of 
Konstanz, Germany. 

DSBB frameworks contain compo- 
nents that  model an application 
domain’s entities, concepts, and logic 
so you can create an application from 
components. Thus, after the initial 
development investment, DSBB 

frameworks offer significant savings of 1 “frame” classes, usually as abstract 
development cost and time over from- classes, describing the allocation of 
scratch development. 1 responsibilities to Components and 

their interfaces. You can specialize the 
framework by deriving application- 

~ specific classes from the frame classes , through inheritance, and by complet- 
A framework is a set of object classes 1 ing or redefining their methods. One 

that collaborate to carry out a set of disadvantage is that you must have 
responsibilities;’ it reuses both the high- ~ detailed framework code knowledge. 
level design of a program and its imple- Black-box framework.? let you create , m e n t a t i ~ n . ~  Frameworks are classified an application from components rather 

i by application and domain and, depend- i than programming. A black-box frame- 
ing 011 how an application is created, as , work provides alternative (complete) 1 either white-box or black-box. I classes for a variable aspect, known as a 

“hot each class realizing one 
Application framework. An application ~ instance of the variability. For example, 

framework provides the basic function- for the machining of parts, a black-box 
ality of a working application, which framework will provide different 

1 can be easily tailored to a specialized ~ machine classes for different machines. 
application. Most application frame- You can thus select one or inore suitable 

1 works, such as  ET++6 and Taligent’s 1 classes when creating an application. 
CommonPoint, provide basic adminis- , Thus, an application is developed by 

I trative functionality, which is required ’ selecting, parameterizing, and configur- 
“horizontally” over a range of applica- ing its components. This  does not  

i tion domains such as user interfaces , require knowledge of bamework code- 
and data administration. But because and is thus easier to use. However, the 

1 the specific content that models the 1 development of black-box frameworks 
application domain is missing, such requires more careful planning for reuse 
frameworks might better be called and more development e f f ~ r t . ~  
application - enabling fiamew arks. 

1 FRAMEWORKS 

1 

i i Hot-spot subsystem. Alternative class- 
Domain-specific framework. Less com- 

mon are domain-specific fyameworks, 
which model the domain-specific hnc-  
tioiiality via enterprise objects and a 
generic application logic that often can 
be performed in many different 
domain configurations. Wi th  a 
domain-specific framework, you can 
create an application by implementing 
a specific configuration with enterprise 
objects and then binding the generic 
application logic to this configuration. 

White and black boxes. E’hite-box 
frameworks, such as the model view 
controller framework from Smalltalk- 
80, or ET++, are the original frame- 
works. T h e y  provide incomplete 

es of a black-box framework are orga- 
1 nized in a hot-spot subsystem9 to let 

you dynamically configure an applica- 
1 tion without recompilation. A hot-spot 

subsystem contains a base class defin- 
~ ing the common responsibilities of the 

variable aspect and, in simple cases, 1 only alternative subclasses derived 
1 from it (interface inheritance). In more 

complex cases, however, additional 
classes and relationships among the 

1 base class, the derived classes, and 
1 classes external to a hot-spot subsystem 

may exist. Usually, the classes and rela- 
~ tionships are structured according to a 

design pat tern.”  Th i s  knowledge 
1 makes it easier for you to develop the 
1 struchire of hot-spot subsystems. 
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When a class sends a message to an 
object of a hot-spot subsystem class, the 
message-requesting class refers to the 
service-providing object by a polymor- 
phc  reference typed with the base class. 
The polymorphic reference is set to one 
of the subclasses when configuring an 
application from the framework. 
Subclasses can be added to a hot-spot 
subsystem without requiring recompila- 
don of the existing black-box framework. 

parts in the cell store. The cell consists 
of a computerized numerical control Abstract application logic. After the sys- 
(CNC) lathe, which machines raw tem reads the machine order and sets up 
parts, a pallet buffer store, a portal , required resources (such as numerical 
robot, and a store for pallets. The por- control programs), the system performs 
tal robot is used both to move pallets I the abstract application logic in a seven- 
to and from a buffer store, using a pal- ' step sequence, simplified as follows. 

MANUFACTURING 
APPLICATION DOMAIN 

Configuration variability. All manufac- 
turing cells and systems in the applica- 
tion subdomain are composed of a 
store and one or more machines, han- 
dling units, transport systems, and 
buffer stores. However, there are three 

Processing control Store . - Get position 
Process machine i 

order list :- - 

Buffer 

Get pallet 

Robot - Load robot control program 

- Start robot control program 

I 

CNC lathe machine - Load numerical control program 

- Start numerical control program 

Direct 
numerical control 

coupling 

@ Buffer store 
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Figure 2. Coudh'owdon diupam of a munufucturing cell. 

gle or double gripper, can load a part 
into a machine; which tool is used 
depends on the machine order .  
Different local equipment and tools 
require different sequences for pro- 
cessing the parts, making it difficult to 
reuse the application logic. 

The  three areas of variability that 
affect the manufacturing subdomain 
are also characteristic of other  
domains. In many domains, there are 

+ the use of different, but similar 
devices; 

+ the  use of different kinds of 
devices to achieve the same service for 
an application; and 

+ variations in a procedure or in the 
application logic. 

Given this, if you know how to 
structure a framework for manufachir- 
iiig that embodies these variable areas, 
you should be able to apply the same 
structuring techniques to similar appli- 
cation domains. 

00 ANALYSIS 

As the first step in our framework 
design, we developed the class struc- 
ture of the control software for a spe- 
cific manufacturing cell in the OSEFA 
subdomain, modeling the cell's enti- 
ties using an 00 analysis methodolo- 
gy.' The  lathe machine, portal robot, 
and store were modeled by the objects 
shown in the upper portion of Figure 1. 
In addition, a ProcessingControl  
object modeled the workers' knowl- 
edge about parts processing. 

An object is described and defined by 
its application-relevant dynamic behav- 
ior, that is, the actions it can perform in 

the application world. For example, a 
lathe machine object can load and exe- 
cute numerical-control programs, among 
other services; a portal-robot object can 
load and execute robot control programs; 
and a store object can give the position of 
a pallet in the store. An object may 
request another object to provide a ser- 
vice specifymg its details by additional 
information. For example, the 
ProcessingControl object may request a 
CNC lathe machine to load a numerical- 
control program with a given number. 

Because a manufacturing control sys- 
tem is reactive, many objects (such as 
CNC machines or robots) are directly 
coupled to the real-world entities they 
model through communication lines, as 
Figure 1 shows. A coupled object can 
send a command to the entity it models 
to make it perform a service. 

Classes and interrelationships. T h e  
objects and their interrelationships in 
Figure 1 can be represented more 
abstractly by the CoadNourdon dia- 
gram' in Figure 2 .  This  shows the 
classes introduced in Figure I ,  Lathe 
Machine, Robot, Store, and Buffer, as 
well as the object classes Celloperator, 
ProcessingControl (with the Machine 
Orders and Work Sheet information), 
and aggregate ManufacturingCell. The 
relationships among them are 

+ a ManufacturingCell contains 
(any number of) Store, Buffer, Lathe 
Machine, Robot, ProcessingControl. 
and CellOperator objects; and 

+ ProcessiiigControl requests ser- 
vices from these objects and provides 
services to the Celloperator object. 

The derived class structure does not 
exhibit specific 00 characteristics, such 
as specialization, generalization, poly- 

morphism, or  dynamic binding. 
Instead, it represents an object-based 
approach that builds on abstract data 
types and data encapsulation. 

Concrete application logic. Processing- 
Control performs a seven-step part- 
processing sequence that is a concrete 
instance of the abstract part-processing 
application logic described earlier. 

I .  T o  move the pallet with raw parts 
from the store to the buffer store, 
ProcessingControl sends a request to 
the robot to 

+ load the robot program A; 
+ load, as a parameter of program 

+ start program A. 
2. T o  load a part from the buffer 

s tore  into the lathe machine, 
ProcessingControl sends a request to 
the robot to 

+ load and start robot control pro- 
gram €3, which exchanges the pallet 
gripper for a part gripper; 

+ load the robot control program 
C, which loads the part; 

+ load parameters of program C 
with the part position on the pallet; and 

+ start program C. 
3.  After the robot has loaded the 

part, ProcessingControl sends a 
request to the lathe machine to start 
the numerical-control program that 
machines the part. 

4. The  part is unloaded onto the 
pallet, similar to step 2. 

S. Steps 2 to 4 are repeated until all 
parts of the pallet are processed. 

6. The processed pallet i s  transport- 
ed back to the central store, similar to 
step 1. 

7. Steps I to 6 are repeated until all 
pallets in the order are processed. 

The  concrete application logic is 
bound to the particular configuration 
of the sample cell. Requests for appli- 
cation-logic-related services-such as 
performing a transport task-are 
rep1 aced by device - re1 a t ed service 

A, the pallet position in the store; and 
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requests, such as parameterizing (and 
starting) a robot control program. 

Because these requcsts are bound to 

/----I ManufacturingCell - 

I 
ProcessingControl - t I 

1- ~- rl-- --F? 
r-5 

I 

CNC machine 

Standardized Standar 
robot lathe machine 

specific devices, ProcessingControl is i Figure 3. Generalizing machines with dynamic binding. The shaded area indicates a 
clearly not reusable with different con- 
figurations. The result of an 00 analy- 
sis without a domain analysis is a class 
structure with classes tailored to the 
specific cell configuration. Even for a 
simple configuration modification, 
such as exchanging machines that have 
different interfaces, ProcessingControl 
requires major modifications. 

Consequently, reusability is still 
limited, and the derived class struc- 
ture is unsuitable as the basis for a 
black-box framework. T o  make i t  
reusable, we generalize the class struc- 
ture by a sequence of transformations. 
Each transformation’ introduces parts 
of the configuration variability identi- 
fied earlier into the framework class 
structure. 

FIRST TRANSFORMATION: 
DEVICE GENERALIZATION 

This transformation deals with the 
simplest area of variability: the variabil- 
ity of similar machines and devices. T o  
make ProcessingControl reusable 
when exchanging machines, all 
machines must have the same interface, 
and thus different machines must be 
generalized by common properties and 
services. The  difficulty is in trying to 
establish a valid concept of a general- 
ized machine. Its services must be 
defined such that they can be provided 
by-and implemented efficiently on- 
“every” machine (where “every” means 
“sufficiently many”). 

In OSEFA, we defined a general- 
ized CNC-Machine class and, we 
believe, proved the validity of this con- 
cept. This class has properties common 
to different CNC machines and robots 
and includes all machines (from robots 
to coordinate-measurement machines) 

hot-spot subsystem. I 

that are controlled by numerical con- 
trol or robot programs. Services shared 
by these machines include 

+ uploading and downloading 
numerical-control and robot control 
programs, data, and parameters; 

+ starting and stopping a down- 
loaded program; and 

+ interrogating the machine state; 

Standardized interface. With these ser- 
vices we have a standardized interface 
that features the common functionality 
of CNC machines. This interface was 
realized by declaring an abstract base 
class CNC-Machine. From this base 
class, we derived subclasses modeling 
the real C N C  machines. The  CNC- 
Machine base class and subclasses form a 
hot-spot subsystem of a domain-specific 
black-box framework. According to tlie 
rules for structuring hot-spot subsys- 
tems, ManufacturingCell should contain 
polymorphic references, typed with the 
CNC-Machine base class, via which a 
message is sent. Figure 3 represents this 
as a “has-as-part” relationship from 
manufacturing cell to CNC machine. In 
this way, no recompilation is required 
when machines are exchanged. This is a 
distinct advantage of object orientation 
over object-based languages. 

The  references, which are set dur- 
ing the configuration process, refer to 
machines contained in the actual con- 
figuration. The  Configuration process 
must ensure that a reference meant to 
refer t o  a transport and handling 
device does not refer to a processing 
machine, and vice versa. 

When doing a machining step, it 
makes no difference whether it is done 
on a milling machine or on a lathe 

machine, or that a processing step on a 
lathe was replaced by an assembly step 
with a robot. In all cases, the process- 
ing is exactly the same, both on an 
abstract level and on a service request 
level. Thus ,  we made Processing- 
Control reusable relative to different 
CNC machines and robots. 

Programmable logic control devices 
are generalized in much the same man- 
ner as CNC machines. 

Summary. Thus, with different but 
similar devices, generalization is possi- 
ble. An abstract base class defines tlie 
interface and common functionality of 
the generalized device. For each differ- 
ent real device, a subclass is derived from 
the base class. An access to an object of 
an original device class is replaced by an 
access, via a reference with the polymor- 
phic base class type, to an object of a 
subclass. The methods are dynamically 
bound (virtual functions in C++). 

This  kind of variability and this 
transformation are common in most 
domains where technical devices are 
used. A transformation can be done as 
described only when the original device 
classes, like Robot, may be modified and 
derived as a subclass (like Standardized 
Robot) from the hot-spot subsystem 
abstract base class. 

SECOND TRANSFORMATION: 
DEVICE INDEPENDENCE 

This transformation deals with both 
the variability of machines and devices 
and the variability of associations-that 
is, a device is exchanged for a completely 
different kind of device with dissimilar 
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1 1 

portal robot were replaced by two pro- 
grammable logic control units: a convey- 

tains a reference to the generalized 
device, such as the portal robot, that 

A A 

C N C  Transpor t  object could be 
replaced by a programmable logic con- 

~~~~~ ~ - 

Figure 4. Munufacturiizg cell with Machining, Tyansport, and Handling bot-spot subsystems. 

make this possible, we introduce a hot- 
spot subsystem for addressing trans- 

subclass. The reason is that a device, like 
a robot, “is not a” kind of transport; it 1 Summwry. When a domain has differ- 
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Figure 5. Promsingstrategy pyovides an easily rnodzjable application logic. 

of abstraction with one or more hot- 
spot subsystems. A base class defines 
services specific to an application- 
related task (in this case, transport 
from manufacturing). For this reason, 
we call these classes application 
object classes (also known as business 
object classes) which provide applica- 
tion-related services, thus abstracting 
from the (standardized) devices used 
in the application domain. Since the 
existing device classes cannot  be 
changed, an application object class is 
mapped to the different device classes 
by an adapter design pattern'': For 
each device class used, a subclass is 
derived from the application object 
base class. 

A subclass is parameterized with a 
table that describes how to map applica- 
tion-related service requests to device- 
specific service requests. You can tailor 
the framework according to the specific 
application configuration by providing 
specific table contents. An application 
object transforms a received request for a 
service, and passes it, possibly partitioned 
into several device service requests, to a 
standardized device object. For all con- 
figurations, ProcessingControl requests 
identical services from the application 
object layer. Thus,  i t  has become 
reusable. 

In many application domains the 
same task can be performed by means 
of different devices. T o  send a message 
to a coworker, for example, you could 
send it via phone, fax, or e-mail. Each 
device provides completely different 
services yet accomplishes the same 
result. In all application domains with 
this characteristic, the device indepen- 
dence transformation introducing 
application objects may be applied to 
reuse the application logic. 

THIRD TRANSFORMATION: 
APPLICATION LOGIC EXTRACTION 

This transformation addresses local 
Configuration changes. They require 
slightly different versions of the part- 
processing application logic. For exam- 
ple, a part-processing sequence that 
calls for separate loading and unload- 
ing steps with a single-part gripper can 
combine loading and unloading into 
one step when a double-part gripper is 
used. The upshot is that such changes 
require a complete exchange of the 
ProcessingControl class. 

Breaking i t  down. T o  simplify the 
effort in modifylng the part-processing 
application logic, we divide the 
ProcessingControl class into several 
smaller, more specific classes" as 
shown in Figure 5. In doing so, we fol- 
low the strategy design pattern") and 
introduce a ProcessingStrategy class, 
which provides a ProcessParts service 
that performs the part-processing 
application logic. T o  accommodate dif- 
ferent part-processing sequences, we 
define ProcessingStrategy as an abstract 
base class and derive different process- 
ing subclasses that overwrite 
ProcessParts. T h e  part-processing 
sequence of a ProcessParts method 
requests a set of services like LoadPart 
or Unloadpart from a mediator class 
not shown in Figure 5 (these services 
are also g e n e r a l i ~ e d ) . ~  Thus ,  i t  is 
defined in a manner similar to that in 
which the abstract application logic is 
described. 

Once again, we have introduced a 
hot-spot subsystem to handle applica- 
tion logic variations. When reading the 
next machine order and work sheet 
entry, ProcessingControl dynamically 

sets a polymorphic reference of the 
type ProcessingStrategy to reference 
the specific processing strategy to be 
used depending on the machine order 
equipment configuration. For detailed 
part processing, i t  calls the Process 
Parts method via this reference. 

Summary. In this transformation, dif- 
ferent variations of the application 
logic are performed in different manu- 
facturing configurations. T o  make the 
application logic easy to modify, we 
extract it into a separate hot-spot sub- 
system. The application logic of a sub- 
class strategy is composed of high-level 
service requests (provided by the base 
class or by a mediator class.") This 
transformation can be applied to any 
domain where there are variations of 
the application logic. 

OUTCOME 

As Figure 6 shows, we introduced 
by three transformations three general- 
ization layers into the class structure of 
OSEFA: a standardized machines and 
devices layer, an application objects 
layer, and an application logic layer. In 
these layers, OSEFA contains the fol- 
lowing components: 

+ models of entities such as 
machines and robots; 

+ concepts for transport, handling, 
and machining; and 

+ the  application logic that  
describes how a part is processed. 

I n  addition t o  these principal 
aspects of framework design, we had 
several other design items to address 
before the framework could be imple- 
mented, such as 

+ central structuring" details; 
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Figure 6. Layer and subsystem stmctww of  the OSEFA m a n ~ f a c t ~ r i n g ~ a ~ i e ~ o ~ ~ .  

tions, you can incrementally increase 
the number of application components. 

o concurrent execution of an opti- 
mized manufacturing logic with shared 
resources such as buffer stores; 

o Concurrent processing in a reac- 
tlve system (similar to that described by 
Giuseppe Menga and his colleagues'*); 

o refinement of areas like store and 
buffer store, sometimes combined with 
additional functionality like the interac- 
tive shop-floor entry of machine order 
lists and worksheets; 

o visualization of the manufacturing 
cell processing for any possible config- 
uration; and 

+ configuration of an application 
from the framework. 

and introduce new part-processing 
sequences to produce the new products. 

Results. It takes roughly a day (a few 
days when we include testing) to create 
an application from the DSBB frame- 
work. Adding a fcw inore days for the 
analysis of a manufacturing cell and 
time for complementing not-yet-exist- 
ing framework components, the overall 
effort and elapsed time is still very small 
compared to the time it usually takes to 
develop the control software in an indi- 
vidual project, which ranges from a few 
person-months to person-years. 

Before starting, our project group 
expected tha t  a framework would 
reduce both cost and time to develop a 
domain-specific application by a factor 
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