
Designing a Flexible Framework for a Table
Abstraction

H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

1 Department of Computer and Information Science, University of Mississippi,
University, MS 38677 USA

2 Department of Electrical Engineering and Computer Science, South Dakota
State University, Brookings, SD 57007 USA

3 Acxiom Corporation, 1001 Technology Drive, Little Rock, AR 72223 USA

1 INTRODUCTION

In a provocative essay from the mid-1980s, Brooks asserts that “building software
will always be hard” because software systems are inherently complex, must con-
form to all sorts of physical, human, and software interfaces, must change as the
system requirements evolve, and are inherently invisible entities (Brooks 1986).
A decade later Brooks again observes, “The best way to attack the essence of
building software is not to build it at all.” (Brooks 1995) That is, software engi-
neers should reuse both software and, more importantly, software designs.

The concept of software family (Parnas 1976) is one of the responses to the
need for software reuse. Parnas (Parnas 1976) defines a software family as “a set
of programs with so many common properties that it is worthwhile to study the set
as a group”. Thus, by developers analyzing and exploiting the “common aspects
and predicted variabilities” (Weiss and Lai 1999) among the members of a soft-
ware family, the resulting software system can be constructed to reuse code for the
common parts and to enable convenient adaptation of the variable parts (Cunning-

2 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

ham et al. 2006a). Some writers use the terms frozen spot to denote a common as-
pect of the family and hot spot to denote a variable aspect of the family (Pree
1995; Schmid 1996).

A software framework (Johnson and Foote 1988) is a form of software family.
A framework is “a generic application that allows different applications to be cre-
ated from a family of applications” (Schmid 1999). In general, a framework rep-
resents the skeleton of a system that can be customized for a particular purpose.
The frozen spots embody the overall structure of the framework (that is, the over-
all design) and are reused by the entire family of applications. In the context of an
object-oriented language, frozen spots are expressed as a set of abstract and con-
crete classes that collaborate to embody the solutions to problems in the applica-
tion domain. The hot spots are represented by the abstract classes, which can be
extended to provide customized implementations of the variable aspects of a fam-
ily. A specific set of implementations of the hot spots yields a member of the
software family.

A framework is a system that is designed with generality and reuse in mind.
Software design patterns (Gamma et al. 1995; Buschmann et al. 1996), which are
well-established solutions to program design problems that commonly occur in
practice, are intellectual tools for achieving the desired level of generality and re-
use (Cunningham et al. 2006a). They are the building blocks for reusing designs.
Building a software framework for a family is more costly than building a single
application, but a well-designed framework can yield considerable benefit if many
members of the family eventually need to be constructed.

In software design it is always important to specify precisely what a software
artifact is to do. This is especially important in software frameworks, where the
implementations of the hot spots vary from one application to another and are not
usually developed at the same time nor by the same team as the framework itself.
Framework designers must specify interfaces that do not change regardless of
which implementation is “plugged in” to a hot spot. The specification should
guide the users of the framework to provide appropriate implementations of the
hot spots. Parnas and his colleagues (Parnas 1978; Britton et al. 1981) call this an
abstract interface because it gives the assumptions that are common to all imple-
mentations. Meyer’s Design by Contract (Meyer 1992, 1997; Mitchell and
McKim 2002) method provides an effective formal technique for specifying the
expected behaviors of abstract interfaces.

This chapter shows how commonality and variability analysis, software de-
sign patterns, and Meyer-like formal design contracts can be applied in the design
of a small Java software framework for building implementations of the Table Ab-
stract Data Type (ADT). A previous paper (Cunningham and Wang 2001) presents
an earlier version of the framework design developed in a careful, but ad hoc
manner. This chapter expands on that work by revisiting the design from the per-
spective of commonality and variability analysis, improving the formal specifica-
tions, specifying additional framework features, and examining how the frame-
work can evolve.

The Table ADT represents a collection of records that can be accessed by the
unique keys of the records. The framework design should encompass a wide

Designing a Flexible Framework for a Table Abstraction 3

range of possible implementations of the Table ADT—simple array-based data
structures in memory, B-tree file structures on disk, perhaps even structures dis-
tributed across a network. By approaching this as a family, the goal is to be able to
assemble a Table implementation by selecting the combination of record access
structures and storage structures to meet a specific application need.

The design process first analyzes the Table ADT as a family and then takes
advantage of several well-known software design patterns to structure the frame-
work. The commonality/variability analysis (in particular, the desire to decouple
the record access mechanism from the storage mechanism) suggests a hierarchical
structure based on the Layered Architecture (Buschmann et al. 1996; Shaw 1996)
and Interface (Grand 1998) design patterns. Given the layered architecture, the
Bridge and Proxy patterns (Gamma et al. 1995; Grand 1998) then suggest how to
organize the interactions among the various layers. The Iterator pattern (Gamma
et al. 1995; Grand 1998) is also helpful; it provides a systematic mechanism for
accessing groups of records. The Template Method, Strategy, Decorator, and
Composite patterns (Gamma et al. 1995; Grand 1998) provide standard structures
for plugging variable components into the framework. Furthermore, as the
framework evolves, it follows the general development path documented by the
Evolving Frameworks system of patterns (Roberts and Johnson 1998).

The rest of the chapter is organized as follows. Section 2 briefly describes the
requirements of the Table ADT and applies commonality and variability analysis
to recognize the frozen spots and hot spots of the Table ADT framework. Section
3 briefly introduces the technique of using formal design contracts, which is ap-
plied in the specification of the interface design in the sections that follow. Section
4 applies Layered Architecture design pattern to build the top-level framework ar-
chitecture. Sections 5, 6 and 7 apply several patterns to the design of interfaces
among the different layers. Section 8 describes a utility module needed by the
lower levels of the architecture. Section 9 applies the Iterator pattern to enhance
the framework design. Section 10 illustrates the patterns of evolving frameworks
that can be adopted into the Table framework design. Section 11 discusses the re-
lated work and Section 12 gives a conclusion.

2 ANALYSIS OF THE TABLE ADT

The Table ADT is an abstraction of a widely used set of data and file structures. It
represents a collection of records, each of which consists of a finite sequence of
data fields. The value of one (or a composite of several) of these fields uniquely
identifies a record within the collection; this field is called the key. For the pur-
poses here, the values of the keys are assumed to be elements of a totally ordered
set. The operations provided by the Table ADT allow a record to be stored and re-
trieved using its key to identify it within the collection.

In (Cunningham and Wang 2001), Cunningham and Wang consider the de-
sign of the Table framework to have the following requirements:

4 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

1. It must provide the functionality of the Table ADT for a large domain of
client-defined records and keys.

2. It must support many possible representations of the Table ADT, includ-
ing both in-memory and on-disk structures and a variety of indexing
mechanisms.

3. It must separate the key-based record access mechanisms from the
mechanisms for storing records physically.

4. All interactions among its components should only be through well-
defined interfaces that represent coherent abstractions.

5. Its design should use appropriate software design patterns to increase re-
liability, understandability, and consistency.

In building a framework, it is important to separate the concerns. The design-
ers must separate the frozen spots, the aspects common to the entire family mem-
bers, from the hot spots, the aspects specific to one family member. Furthermore,
they must separate the various common and variable aspects from each other and
consider them somewhat independently (Cunningham et al. 2006a). Commonality
and variability analysis (Coplien et al. 1998; Weiss and Lai 1999) is a means of
identifying the frozen spots and hot spots. The analysis produces commonalities,
a list of assumptions that are true to all the members of the family, and variabil-
ities, a list of assumptions that are true for only some members of the family.
Thus, frozen spots and hot spots are chosen on the basis of commonalities and
variabilities, respectively. In this chapter, the commonalities and variabilities of
the Table ADT are examined based on the requirements of the Table ADT and the
prototype implementations (Wang 2000).

The requirements stated above mix concerns in the framework design—
commonalities, variabilities, and non-functional aspects of the design and code.
These need to be more cleanly separated than is done in (Cunningham and Wang
2001). Requirements 1 and 2 describe functional requirements of the family,
which are our primary concerns here. Requirements 3 and 4 express desired char-
acteristics of the framework. Requirement 5 suggests characteristics of the design
process. By analyzing the functional requirements, we identify one primary com-
monality, i.e., frozen spot, as follows:

1. All clients of the framework use the Table ADT’s key-based access
methods to the collections of records stored in table. (Requirement #1)

We also identify five variabilities, i.e., hot spots, as follows:

1. Variability in the keys. Clients of the Table framework can define the
keys using many different data structures. (Requirement #1)

2. Variability in the records. Clients of the Table framework can define the
records using many different data structures. (Requirement #1)

Designing a Flexible Framework for a Table Abstraction 5

3. Variability in the external representation of the record state. For tables
stored on external devices, it must be possible to store the state of a re-
cord accurately on the external device and restore it to memory when
needed. This process may vary somewhat depending upon the nature of
the record and the external device. (Requirements #1 and #2)

4. Variability in the indexing mechanisms. Different customizations of the
Table framework can use different algorithms for indexing the records.
(Requirement #2)

5. Variability in the storage mechanisms. Different customizations of the
framework can use different mechanisms for storing the records. (Re-
quirement #2)

The hot spots #1 and #2 are not completely independent of each other. However,
to separate the concerns, we choose to separate the variabilities of keys and re-
cords into two different hot spots. Hot spot #3 is a bit subtle, but the need for this
variability should be clear as we proceed with the design.

Following the design method outlined above, the framework should allow the
five variabilities to be realized independently from each other, which has an im-
plication for the architecture of the Table framework. Before we proceed further,
let’s look a bit more at the use of formal design contracts for specifying software
behaviors.

 3 FORMAL DESIGN CONTRACTS

Design by Contract is a design approach developed by Meyer (Meyer 1992,
1997). It is motivated by an analogy with a contract in business. In the business
setting a contract defines an agreement between a supplier and a client:

1. The supplier must satisfy certain obligations, such as providing the prod-
uct the client ordered, and expects certain benefits, such as the client pay-
ing the established price for the product.

2. The client must satisfy certain obligations, such as paying the supplier the
established price for the product, and expects the benefits, such as getting
the product.

3. Both the supplier and the client must satisfy certain obligations that apply
to all contracts, such as laws and regulations.

Meyer (Meyer 1992, 1997) adopts the concepts of “client”, “supplier” and
“contract” into object-oriented design. Building upon earlier work on program
verification (Hoare 1969), information hiding (Parnas 1972), data abstraction
(Hoare 1972), and abstract data types (Guttag 1977), Meyer introduces logical as-
sertions to describe the contract between the clients (users) of an abstract data type
(ADT) and the suppliers (i.e., developers) of the ADT. In Meyer’s approach to

6 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

object-oriented design and programming, an ADT is normally represented by a
class. The key assertions are of three types: preconditions, postconditions, and in-
variants.

Preconditions and postconditions are assertions attached to each operation of
an ADT. A precondition expresses requirements that any call of the operation
must satisfy if it is to be correct. A postcondition expresses properties that are en-
sured in return by the execution of the call. If the precondition is not satisfied, the
operation is not guaranteed to return a correct value or to even return at all. For
example, an operation to delete a record from a collection might have a precondi-
tion requiring that a record with that key exists and a postcondition requiring that
it no longer be an element of the collection.

An invariant is a constraint attached to an ADT that must hold true for each
instance of the ADT whenever an operation is not being performed on that in-
stance. In object-oriented design, this type of invariant is often called a class in-
variant. For example, in the Table ADT, an invariant might state that the table
must not have more than one record with a particular key. The invariant gives a
condition that must be satisfied to maintain the integrity of the table.

In the client-supplier context,

• a client must satisfy the obligation (the precondition) of an operation to
expect to receive the benefit (the postcondition) of getting a correct result
from the operation,

• a supplier must satisfy the obligation to make the postcondition of the
operation hold upon return whenever the precondition of the operations is
satisfied by the call,

• both the client and the supplier must maintain certain properties, the
invariants.

In specifying the design of the interfaces of the Table framework, we not only
need to give the method signatures (i.e., parameters and return type) but also to
express their semantics (i.e. behaviors), using preconditions and postconditions for
each method and invariants for the ADT as a whole (Cunningham and Wang
2001).

The simple application of Design by Contract is not by itself sufficient for
formal proofs of correctness of the desired properties of framework applications.
The concrete classes that implement hot spots in a framework must, of course,
preserve the general expectations of the framework specification, that is, they
should be behavioral subtypes (Liskov and Wing 1994) of the abstract classes they
extend. However, the concrete implementations exhibit richer behaviors than the
minimum required by the framework specification. Thus extended techniques are
needed to handle these richer behaviors (Soundarajan and Fridella 2000; Hall-
strom and Soundarajan 2002). Nevertheless, simple design contract techniques
are still quite useful in helping designers explore and refine the requirements and
framework designs.

Designing a Flexible Framework for a Table Abstraction 7

4 LAYERED ARCHITECTURE

The overall architecture of the Table framework should embody the frozen spot
and, as much as possible, separate the concerns related to each hot spot into an in-
dependent component. That is, it should hide the implementation of each hot spot
within a separate component, behind a well-defined interface. To use the termi-
nology from Parnas’ information-hiding approach to modular software design, the
implementation details for a hot spot should be a “secret” of the component that is
hidden behind an appropriate “abstract interface” (Parnas 1972; Britton et al.
1981; Cunningham et al. 2004).

Clearly, there is a mix of high- and low-level issues among the hot spots. Cli-
ents can define their own key (hot spot #1) and record (hot spot #2) structures and
then call the table (frozen spot) to store the records. The table implementation
may use some key-based record access mechanism (hot spot #4) paired with some
storage structure (hot spot #5).

This mix of high- and low-level issues suggests a hierarchical architecture
based on the Layered Architecture pattern (Buschmann et al. 1996; Shaw 1996).
When there are several distinct groups of services that can be arranged hierarchi-
cally, this pattern assigns each group to a layer. Each layer can then be developed
independently. A layer is implemented using the services of the layer below and,
in turn, provides services to the layer above. In the simplest version of this pat-
tern, services in a layer cannot directly call upon services defined more than one
layer down. It cannot directly call services defined in a layer above except using
specific call-backs that it is supplied in calls from the higher level.

As shown in Fig. 1, we can define three layers in the Table framework design.
From the top to the bottom these include:

Fig. 1. Applying the Layered Architecture pattern

Client Layer. This layer consists of the client-level programs that use the table
implementation in the layer below to store and retrieve records. Clients of the
Table framework implement the user-defined data types for keys and records,
which are the variabilities expressed by hot spots #1 and #2.

Access Layer. This layer must provide client programs key-based access to the re-

cords in the table. It uses the layer below to store the records physically. Im-
plementations of this layer provide the data structures and algorithms for in-

8 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

dexing the records, which is hot spot #4. The interface to this layer represents
the frozen spot.

Storage Layer. This layer must provide facilities to store and retrieve the records

from the chosen physical storage medium. Implementations of this layer pro-
vide the data structures and algorithms for storing the records, for example, a
structure in the computer's main memory or a random-access file on disk.
The layer expresses hot spot #5.

For example, suppose we want a simple indexed file structure with an in-

memory index that uses an array-like relative file to store the records on disk (Folk
et al. 1998). The implementation of the index would be part of the Access Layer;
the implementation of the relative file would be in the Storage Layer. A program
that uses the simple indexed file structure would be in the Client Layer.

What about hot spot #3? This hot spot involves the ability to represent a “re-
cord” in an external form suitable for storage on some physical storage medium
(e.g., rendering it as a sequence of bytes). So, on the surface, it would seem that
this would be a structure defined by the Client Layer that is passed through the
Access Layer to the Storage Layer, where a call-back to the implementation of the
structure in the client may take place. However, a closer examination reveals a
more complicated situation. The client’s keyed-record may itself consist of a hier-
archy of structures, each of which needs to be converted to the external form inde-
pendently. For some implementations of the Access Layer, a physical record to be
stored by the Storage Layer might consist of a group of client keyed-records (e.g.,
a B-tree node or a hash-table bucket) or it might consist of auxiliary information
about the access structure that needs to be made persistent. Because hot spot #3
does not fit cleanly into any of the layers, we place the needed abstraction in a
utility module called the Externalization Module.

The various layers and modules need to be kept independent from one an-
other. Thus, following the fundamental Interface design pattern (Grand 1998), we
define each layer in terms of a set of related Java interfaces and require that inter-
actions among the layers use only the provided interfaces. Next, let us examine
the design of the each layer and its interfaces.

5 CLIENT LAYER

The design of the Client Layer must enable the Access Layer to access client-
defined keys and records and should avoid requiring unnecessary programming to
use common data types.

Designing a Flexible Framework for a Table Abstraction 9

5.1 Abstract Predicates for Keys and Records

As much as possible, clients (i.e., users) of the table implementations should be
able to define their own key (hot spot #1) and record structures (hot spot #2). The
internal details of the different types of records and keys, which are implemented
in the Client Layer, must be hidden from the Access and Storage Layers. How-
ever, the specification of the Access Layer depends upon certain assumptions
about the nature of the records and keys. In specifying the operations for the inter-
faces in this and other layers, we express key features of the keys and records as
abstract predicates (Meyer 1997) to make these assumptions more explicit. These
are called abstract because they are used for specification only; they do not repre-
sent functions that are to be built as executable code. The precise definition of
these predicates depends upon the particular implementations used in this layer.
The abstract predicates associated with the Client Layer are

• boolean isValidKey(Object key)that is true if and only if
key is an element of the set of meaningful keys supported by the client’s
key class.

• boolean isValidRec(Object rec) that is true if and only if
rec is an element of the set of meaningful records supported by the cli-
ent’s keyed record class.

5.2 Keys and the Comparable Interface

As stated earlier, clients of the table implementations should be able to define their
own record and key structures (hot spot #1). However, any implementation of the
Table ADT must be able to extract the keys from the records and compare them
with each other. Thus we restrict the records to objects from which keys can be
extracted and compared using some client-defined total ordering.

The built-in Java interface Comparable is sufficient to define the function-
ality of the keys. Any class that implements this interface must provide a public
method compareTo, which is defined to have the signature and semantics (de-
sign contract) as defined below.

To state logical and mathematical expressions in specifications, this chapter
uses a Java-influenced notation. The symbol && denotes logical conjunction
(“and”), || denotes the logical disjunction (inclusive “or”), ! denotes negation, ⇒
denotes logical implication (“if-then”), and == denotes equality. The symbol ∀
denotes universal quantification (“for all”) and ∃ denotes existential quantification
(“there exists”). For mathematical sets, we use braces { and } to list the elements
explicitly , ∪ to denote union, – to denote set subtraction, ∈ to denote member-
ship, and ∅ to denote the empty set. In appropriate contexts, pairs of parentheses
(and) denote tuple formation. In postconditions, the variable result refers to
the value returned by a function method call and the prefix # attached to a variable
denotes the value at the time the method was called. Unless a new value is explic-

10 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

itly assigned to a variable in the postcondition, its value must not be changed by
the method call.

The description and design contract (pre- and postconditions) for the compa-
reTo method are as follows:

• int compareTo(Object key) that compares the associated ob-
ject (this) with argument key and returns -1 if key is greater, 0 if
they are equal, and 1 if key is less.

 Pre: isValidKey(this) && isValidKey(key)
 Post: result == (if this < key then -1

 else if this == key then 0
 else 1)

Clients can use any existing Comparable class for their keys or implement their
own.

5.3 Records and the Keyed Interface

To enable keys to be extracted from records, we introduce the Java interface
Keyed to represent the type of objects that can be manipulated by a table (hot
spot #2). We model the Keyed abstraction as having an abstract attribute key.
Any class that implements this interface must implement the method getKey,
which has the following description and design contract:

• Comparable getKey() that extracts the key from the associated re-
cord (this).

 Pre: isValidRec(this)
 Post: (result == this.key) && isValidKey(result)

An alternative design for handling the keys and records might be to allow the
client to use any Java objects and then to supply appropriate objects that encapsu-
late the key-extraction and key-comparison operations—developed in accordance
with the Strategy design pattern (Gamma et al. 1995; Grand 1998). This alterna-
tive might enable changes to these operations to be done more dynamically but at
the loss of some type safety and of the ability to use the classes in the API that im-
plement the Comparable interface. With the approach taken in this section, cli-
ents can, if needed, construct wrapper classes that implement the Comparable
and Keyed interfaces and encapsulate the actual key and record objects. This use
the Adapter design pattern (Gamma et al. 1995; Grand 1998) enables clients to
utilize a wide range of pre-defined objects as keys or records as needed.

5.4 Interactions among the Layers

The Client Layer thus consists of the Comparable and Keyed interfaces and
the abstract predicates isValidKey and isValidRec (all of which are part of

Designing a Flexible Framework for a Table Abstraction 11

the framework) and the concrete classes that implement the interfaces (which are
part of the customization of the framework for some specific application). The en-
capsulation of the key and record implementations in the Comparable- and
Keyed-implementing classes, respectively, thus enable the Access Layer to use
the client-defined keys and records without knowing the specifics of their imple-
mentation. A table implementation in the Access Layer can use the getKey
method of the Keyed interface to extract keys from the client-defined records and
can then use the compareTo method of the Comparable interface to compare
the client-defined keys.

6 ACCESS LAYER

The design of the Access Layer must provide the Client Layer programs key-based
access to a collection of records (frozen spot), enable diverse implementations of
the indexing structures (hot spot #4), and support diverse storage structures in the
Storage Layer. The primary abstraction of the Access Layer is the Table ADT.

6.1 Abstract Predicates for Tables

In the specifications in this section, we use the following abstract predicates to
capture assumptions the Table ADT makes about the environment:

• isValidKey(Object key) and isValidRec(Object rec)
which are defined in the Client Layer to identify valid keys and records.

• isStorable(Object rec) which is defined in the Storage Layer to
identify records that can be stored.

The specifications of other interfaces may also depend upon assumptions about
the integrity of a Table ADT instance. We thus introduce the abstract predicate:

• boolean isValidTable(Table t) that is true if and only if t is
a valid instance of Table (i.e., satisfies all the design contracts below).

6.2 Table Interface

We model the collection of records by the variable table, which is a partial
function from the set of keys defined by the type Comparable to the set of re-
cords defined by the type Keyed. For convenience, we use the variable table to
denote either the function or the corresponding set of key-record pairs.

Now, we can define the Table ADT as a Java interface that includes the follow-
ing ADT invariant and public methods. In English, the invariant can be stated:

12 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

All stored keys and records in the table are valid and capable of being
stored on the chosen external device, and the records can be accessed by
their keys.

Stated more formally, the invariant is:
(∀k,r : r == table(k) : isValidRec(r)
 && isStorable(r) && k == r.getKey())

The Table ADT has mutator (i.e., command or setter) operations with the follow-
ing descriptions and design contracts:

• void insert(Keyed r) inserts the Keyed object r into the table.
Pre: isValidRec(r) && isStorable(r) &&
 !containsKey(r.getKey()) && !isFull()
Post: table == #table ∪ {(r.getKey(),r)}

• void delete(Comparable key) deletes the Keyed object with
the given key from the table.
Pre: isValidKey(key) && containsKey(key)
Post: table == #table – {(key,#table(key))}

• void update(Keyed r) updates the table by replacing the existing
entry having the same key as argument r with the argument object.
Pre: isValidRec(r) && isStorable(r) &&
 containsKey(r.getKey())
Post: table == (#table –
 {(r.getKey(),#table(r.getKey()))})
 ∪ {(r.getKey(),r)})

The Table ADT has accessor (i.e., query or getter) operations with the following
descriptions and design contracts:

• Keyed retrieve(Comparable key) searches the table for the
argument key and returns the Keyed object that contains this key.
Pre: isValidKey(key) && containsKey(key)
Post: result == #table(r.getKey())

• boolean containsKey(Comparable key) searches the table
for the argument key.
Pre: isValidKey(key)
Post: result == defined(#table(key))

• boolean isEmpty() checks whether the table is empty.
Pre: true
Post: result == (#table == ∅)

• boolean isFull() checks whether the table is full.
Pre : true

Designing a Flexible Framework for a Table Abstraction 13

Post: result == (#table implementation has no free space to
 store a new record)

• int getSize() returns the size of the table.
Pre: true
Post: result == cardinality(#table)

Note that there are several tacit assumptions being made. Having getSize
return an integer means that the size of the table must be finite, but it is not neces-
sarily bounded. Of course, for unbounded tables isFull would always need to
return the value false. The contracts for the methods other than getSize do
not preclude the definition of an infinite size table (e.g., with some ranges of key
values having records that are generated by a function as needed). However, the
behavior of getSize would need to be defined for infinite tables. Also a class
that implements an infinite table would need to provide a constructor or additional
methods for setting up techniques for calculated records that are not explicitly in-
serted into the table.

6.3 Interactions among the Layers

The Access Layer thus consists of the Table interface and the isValidTable
abstract predicate (which form part of the framework itself) and the concrete
classes that implement Table (which are part of a customization of the frame-
work to create a specific member of the family). Concrete classes that implement
the Comparable and Keyed interfaces are part of the Client Layer. The interac-
tions between the Client Layer and the Access Layer occur as follows:

• The Client Layer calls the Access Layer using the Table interface.

• The Access Layer calls back to the Client classes that implement the
Keyed and Comparable interfaces to do part of its work.

In the design of the Access Layer, the only constraint placed upon the storage
mechanism is that the records inserted into the table are capable of being stored
and retrieved reliably (i.e., satisfy isStorable). Thus the design of the Access
Layer enables client-defined keys and records, diverse record access mechanisms,
and diverse storage mechanisms. Next, let us examine the Storage Layer and its
interface.

7 STORAGE LAYER

The Storage Layer provides facilities to store records to and retrieve records from
a physical storage medium. It encapsulates hot spot #5 and, hence, must enable a
diverse range of physical media. Of course, this layer must also support client-
defined records in the Client Layer and diverse record-access mechanisms in the

14 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

Access Layer. It should also enable the access structures in the Access Layer to be
stored on the physical media and decouple the implementations in the layers above
from the physical media as much as possible.

7.1 Abstract Predicate for Storable Records

The specifications of the Access Layer and the Storage Layer interfaces depend
upon certain assumptions about the nature of records that can be stored on the
physical storage media. In specifying the operations, we express key features of
the media in terms of an abstract predicate to make these assumptions more ex-
plicit. The predicate defined by the Storage Layer is:

• boolean isStorable(Keyed rec) that is true if and only if rec
can be stored on the storage medium being used with the implementation
of the table.

7.2 Bridge Pattern

To define the interfaces between the Access and Storage layers, we adopt a struc-
ture motivated by the Bridge and Proxy design patterns (Gamma et al. 1995;
Grand 1998) to achieve the desired degree of decoupling and collaboration. We
also take into account both the expected characteristics of the storage media and
the expected needs of the implementations of the Table’s indexing mechanisms.

The Bridge design pattern is useful when we wish to decouple the “interface”
of an abstraction from its “implementation” so that the two can vary independently
(Gamma et al. 1995; Grand 1998). In this design (as shown in Fig. 2), the “inter-
face” is the Table abstraction in the Access Layer, which provides key-based ac-
cess to a collection of records; the “implementation” is the RecordStore ab-
straction in the Storage Layer, which provides a physical storage mechanism for
records. These two hierarchies of abstractions collaborate to provide the table
functionality. At the time a table is created, any concrete Table-implementing
class can be combined with any concrete RecordStore-implementing class.

Fig. 2. Applying the Bridge pattern

Designing a Flexible Framework for a Table Abstraction 15

We assume that a storage medium abstracted into the RecordStore ADT
consists of a set of physical “slots”. Each slot has a unique “address”, the exact na-
ture of which is dependent upon the medium. A program may allocate slots from
this set and release allocated slots for reuse. There may, however, be restrictions
upon the characteristics of the records acceptable to the storage medium. For ex-
ample, if a random-access disk file is used, it may be necessary to restrict the re-
cord to data that can be written into a fixed-length block of bytes.

There are many possible implementations of Table in the Access Layer—
such as simple indexes, balanced trees, and hash tables. Any Table implementa-
tion must be able to allocate a new slot, store a record into it, retrieve the record
from it, and then deallocate the slot when it is no longer needed. The Table must
be able to refer to slots in a medium-independent manner. Moreover, most imple-
mentations will need to treat these slot references as data that can be stored in re-
cords and written to a slot. For example, the nodes of a tree-structured table are
“records” that may be stored in a RecordStore; these nodes must include
“pointers” to other nodes, that is, references to other slots.

7.3 Proxy Pattern

Because we cannot expose the internal details of the RecordStore to the Ac-
cess Layer, we need a medium-independent means for addressing the records in
the RecordStore. The approach we take is a variation of the Proxy design pat-
tern (Gamma et al. 1995; Grand 1998).

The idea of the Proxy design pattern is to use a proxy object that acts as a sur-
rogate for a target object. When a client wants to access the target object, it does
so indirectly via the proxy object. Since the target object is not accessed directly
by the client, the exact nature and location, even the existence, of the target object
is not directly visible to the client. The proxy object serves as a “smart pointer” to
the target object, allowing the target’s location and access method to vary.

Fig. 3. Applying the Proxy pattern

In this design, we define the RecordSlot abstraction to represent the prox-
ies for the slots within a RecordStore. As shown in Fig. 3, these two abstrac-
tions collaborate to enable the Access Layer to store and retrieve records in a uni-
form way, no matter which storage medium is used. Because of the need to write
the slot references themselves into records as data, we also assign an integer “han-
dle” to uniquely identify each physical slot in a RecordStore. Since multiple

16 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

RecordStore instances may be in use at a time, each RecordSlot also needs
a reference to the RecordStore instance to which it refers.

7.4 RecordStore Interface

We can now specify the RecordStore and RecordSlot interfaces. The model
for the semantics of these ADTs includes two sets. The set alloc denotes the set
of slot handles that have been assigned to RecordSlot instances. The set
store is a partial function from the set of valid handles to the set of storable ob-
jects. For convenience, the set unalloc is used to denote the set of valid but un-
allocated handles, that is, the complement of the set alloc. The constant
NULLHANDLE represents a special integer code that cannot be assigned as a valid
slot handle; it is neither in alloc nor unalloc. Here we assume that Re-
cordStore is finite, but unbounded in size.

We define the RecordStore ADT as a Java interface that includes the fol-
lowing ADT invariant and public methods. In English, the invariant can be
stated:

All records in the store are capable of being stored on the selected medium
and the stored records can be accessed by their handles.

Stated more formally in logic, the invariant is:
 (∀ h, r : r == store(h) : isStorable(r)) &&
 (∀ h :: h ∈ alloc == defined(store(h)))

The RecordStore ADT has operations with the following descriptions and de-
sign contracts:

• RecordSlot newSlot() allocates a new record slot and returns the
RecordSlot object.
Pre: true
Post: result.getContainer() == this &&
 result.getRecord() == NULLRECORD &&
 result.getHandle() ∉ #alloc &&
 result.getHandle() ∈ alloc ∪ {NULLHANDLE}

• RecordSlot getSlot(int handle) reconstructs a record slot us-
ing the given handle and returns the RecordSlot.
Pre: handle ∈ alloc
Post: result.getContainer() == this &&
 result.getRecord() == #store(handle) &&
 result.getHandle() == handle

• void releaseSlot(RecordSlot slot) deallocates the allocated
record slot.
Pre: slot.getHandle() ∈ alloc ∪ {NULLHANDLE} &&

Designing a Flexible Framework for a Table Abstraction 17

 slot.getContainer() == this
Post: alloc == #alloc - {slot.getHandle()} &&

 store == #store –
 {(slot.getHandle(),slot.getRecord())}

Note that, to support a wide domain of variability in implementation, the pa-
rameterless newSlot method allows lazy allocation of the handle and, hence, of
the associated physical slot. That is, the handle may be allocated here or later upon
its first use to store a record in the RecordStore. For this method, we set the
value of a new slot to be NULLRECORD. This constant denotes an inert, empty
record implemented according to the Null Object design pattern (Woolf 1998;
Grand 1998). That is, NULLRECORD has the same interface as the other records
returned by getRecord (below) except that it has no data associated with it and
the operations have no effect. According to Woolf, “the Null Object encapsulates
the implementation decision to do nothing and hides those details from its collabo-
rators” (Woolf 1998). It sometimes avoids a situation where a caller must take a
special action to capture error returns from operations.

7.5 RecordSlot Interface

The RecordSlot interface represents a proxy for the physical record “slots”
within a RecordStore. The semantics of its operations are, hence, stated in
terms of the effects upon the associated RecordStore instance. We model the
RecordSlot ADT as having two abstract attributes, the container which is a
reference to the associated RecordStore and the integer handle.

We thus define the RecordSlot ADT as a Java interface that includes the
following ADT invariant and public methods. In English, the invariant can be
stated:

The handle of a RecordSlot object denotes a slot of the store that has
been allocated, unless it has the value NULLHANDLE.

Stated more formally in logic, the invariant is:
getHandle() ∈ alloc ∪ {NULLHANDLE}

The RecordSlot ADT has operations with the following descriptions and de-
sign contracts:

• void setRecord(Object rec) stores the argument object rec
into this RecordSlot.
Pre: isStorable(rec)
Post: Let h == getHandle():
 (h ∈ #alloc ⇒ store == (#store –
 {(h,#store(h))}) ∪ (h,rec)})

 && (h == NULLHANDLE ⇒
 (∃ g : g ∈ #unalloc :

18 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

 alloc == #alloc ∪ {g} &&
 store == #store ∪ {(g,rec)}))

Note that this allows the allocation of the handle to be done here or al-
ready done by the newSlot method of RecordStore.

• Object getRecord() returns the record stored in this Record-
Slot.
Pre: true
Post: Let h == getHandle():

(h ∈ #alloc ⇒ result == #store(h)) &&
(h == NULLHANDLE ⇒ result == NULLRECORD)

• int getHandle() returns the handle of this RecordSlot.
Pre: true
Post: result == this.handle

• RecordStore getContainer() returns a reference to the Re-
cordStore with which this RecordSlot is associated.
Pre: true
Post: result == this.container

• boolean isEmpty() determines whether the RecordSlot is
empty (i.e., does not hold a record).
Pre: true
Post: result == (getHandle() == NULLHANDLE ||

 getRecord() == NULLRECORD)

Note that getRecord returns the inert NULLRECORD object if no record has
been stored in the slot. Also note that isEmpty returns true for either an unallo-
cated handle or the NULLRECORD being stored in the slot.

7.6 Interactions among the Layers

The Storage Layer consists of the RecordStore and RecordSlot interfaces
and the abstract predicate isStorable (all of which are part of the framework)
and the concrete classes that implement the interfaces (which are part of an appli-
cation of the framework). A Table implementation in the Access Layer calls a
RecordStore implementation in the Storage Layer to get RecordSlot ob-
ject. The Access Layer code then calls RecordSlot to store and retrieve its re-
cords. If needed, a RecordSlot object calls back to a Record implementation
in Access Layer. The Record interface is part of the Externalization Module,
which we examine in the next section.

The design of the RecordStore and RecordSlot abstractions and the
use of slot handles give the Storage Layer the capability to be implemented using

Designing a Flexible Framework for a Table Abstraction 19

a diverse group of physical media, including both main memory and on-disk struc-
tures. These interfaces provide operations with sufficient functionality and make
the functionality available in manner that is independent from the actual physical
medium used. The combination of these interfaces and the Record interface in
the Externalization Module (defined in the next section) enable the Storage Layer
to be decoupled from the layers above and for the Access Layer to store a wide
range of information in the Storage Layer.

8 EXTERNALIZATION MODULE

How can the RecordSlot mechanism store the records on and retrieve them
from the physical slots on the storage medium? This is an issue because the re-
cords themselves are defined in the layers above and their internal details are,
hence, hidden from the RecordStore. For in-memory implementations of Re-
cordStore this is not a problem; the RecordStore can simply clone the re-
cord (or perhaps copy a reference to it). However, disk-based implementations
must write the record to a (random-access) file and reconstruct the record when it
is read. So, once we allow diverse physical media, we have to handle the external
byte presentation of record state (hot spot #3).

The solution taken here is similar to what is done with the Keyed interface.
We introduce a Record interface with three user-defined methods with the fol-
lowing design contracts:

• void writeRecord(DataOutput out) writes this record to
stream out.

 Pre: true
Post: suffix of stream out == this record's state encoded as
 byte sequence

• void readRecord(DataInput in) reads this record from
stream in.

 Pre: true
 Post: this record's state == prefix of stream in decoded from
 byte sequence

• int getLength() returns the number of bytes in the external represen-
tation of this record (e.g., that will be written by writeRecord).

 Pre: true
Post: result == number of bytes in external representation of this
 record

The Record interface must also satisfy a State Restoration Property, defined
as follows:

If, for some Record object, a writeRecord call is followed by a

20 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

readRecord call with the same byte sequence, the observable state of the
Record object will be unchanged.

The concrete implementations of the Record interface appear in either the
Client Layer for client-defined records or in the Access Layer for “records” used
internally within a Table implementation. The Storage Layer calls the Record
methods when it needs to read or write the physical record. The code in the Re-
cord-implementing class does the conversion of the internal record data to and
from a stream of bytes. The RecordStore and RecordSlot implementations
are responsible for routing the stream of bytes to and from the physical storage
medium.

The framework design using the Record interface takes a low-level ap-
proach to handling the conversion of user-defined records to the desired external
form. It requires that the users provide facilities for translating their records
to/from a sequence of bytes by having the records themselves implement the Re-
cord interface. An alternative would be to encapsulate this functionality within
an externalization object developed in accordance with the Strategy pattern
(Gamma et al. 1994). Methods of the externalization object could access the
fields of the user’s record to create the needed external form and vice versa. This
access might be direct using accessor methods the user record provides or it might
be indirect using reflection. Taking this approach further, the Storage Layer might
be parameterized with other Strategy objects that convert from a device-
independent form coming from the externalization object to the form actually
stored on the physical device. Given that strict typing is not maintained when a re-
cord is externalized, this would be an acceptable, possibly more dynamic alterna-
tive to the approach using the Record interface. It would also better support ex-
ternal forms such as an XML representation. However, we opt for the simpler,
low-level approach for the framework design in this chapter.

Fig. 4. Abstraction Usage Replationships

Designing a Flexible Framework for a Table Abstraction 21

In summary, Fig. 4 shows the use relationships among the Client, Access, and
Storage Layer and Externalization Module abstractions. The user program in the
upper-level Client layer calls the Table ADT directly and the lower layers have
callbacks to implementations of the Keyed, Comparable, and Record ab-
stractions defined in the layers above.

9 ITERATORS

So far, we have specified the basic structure of the Table framework. More design
patterns could be applied to enhance the design of the framework. This section il-
lustrates how to apply the Iterator design pattern (Gamma et al. 1995; Grand 1998)
in the Table framework. This design pattern enables the client code to access all
the records in the table in some order without exposing the internal details of the
table implementations. The interface Iterator, defined in the Java API, pro-
vides a standard means for Java programs to support iterators. It includes method
hasNext to check for the existence of another element and method next to re-
turn the next element. We can add several useful iterators and iterator-
manipulating methods to the framework design.

9.1 Table Iterator Methods

As a convenience for clients of the table implementations, we add two iterator ac-
cessor methods, getKeys() and getRecords(), to the Table interface (de-
fined in the Access Layer). Remember that the ADT invariant for Table must
also hold as a precondition and postcondition for these operations.

Here we introduce new notation for describing the semantics of iterators. The
abstract attribute seq of an Iterator denotes the sequence of elements that the
iterator yields on any subsequent calls of the next() method. The suffix predi-
cate nodups operates on sequences and returns true if and only if the sequence
contains no repeated elements. We also overload the ∈ and ∉ operators to work
with sequences as well as sets. The utility function occurs(e,s) returns the
number of occurrences of element e in sequence s.

• Iterator getKeys() returns an iterator that enables the client to
access all the keys in the table one by one.
Pre: true
Post: result.seq.nodups &&
 (∀ k ::
 k ∈ result.seq == defined(#table(k))

• Iterator getRecords() returns an iterator that enables the client
to access all the records in the table one by one.
Pre: true

22 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

Post: result.seq.nodups &&
 (∀ r ::
 r ∈ result.seq == (∃ k :: r = #table(k)))

Similarly, we can add overloaded versions of the insert and delete meth-
ods that take appropriate iterators as arguments.

• void insert(Iterator iter) inserts the Keyed objects denoted
by the iterator iter into the table.
Pre: iter.seq.nodups &&
 (∀ r : r ∈ iter.seq : isValidRec(r) &&
 isStorable(r) && !containsKey(r.getKey()))
Post: table == #table ∪
 {(r.getKey(),r) : r ∈ iter.seq }

• void delete(Iterator iter) deletes the objects from the table
whose keys match those returned by iterator iter.
Pre: iter.seq.nodups &&
 (∀ k: k ∈ iter.seq :
 isValidKey(k) && containsKey(k))
Post: table == #table –
 {(k,#table(k)) : k ∈ iter.seq }

We note that the precondition of the insert(Iterator)method requires all
elements yielded by the iterator to be absent from the table. In practice, this may
be difficult to ensure for all calls. Alternative specifications might be to require
that an insert of an existing key to either be ignored or result in an update opera-
tion, but these would make the iterator version behave differently than the non-
iterator version of insert. A similar situation arises for delete(Iterator)
because its precondition requires the presence of every key.

9.2 Input Iterators

The method insert(Iterator) is a convenient mechanism for loading a ta-
ble with a sequence of items that come from a different format. We add the ab-
stract base class InputIterator to enable users to conveniently create a class
to read records from external files. The design of this class takes advantage of the
Template Method design pattern.

The Template Method design pattern (Gamma et al. 1995; Grand 1998) is a
quite useful pattern for building frameworks. Central to this pattern is an abstract
class that provides a skeleton of the needed behaviors. The class consists of two
kinds of methods:

Template methods are concrete methods that implement the shared functionality of
the class hierarchy. They are not intended to be overridden by subclasses.

Designing a Flexible Framework for a Table Abstraction 23

Hook methods are (often abstract) methods that provide “hooks” for attaching the
functionality that varies among applications. Although hook methods may
have a default definition in the abstract class, in general they are intended to be
overridden by subclasses. A template method calls a hook method to carry out
application-dependent operations.

The InputIterator class implements the Java Iterator interface, pro-
viding the required Iterator methods as template methods. It also includes
two abstract hook methods that are called by the template methods:

• boolean atEnd() that returns true when the end of the input has
been reached.

• Object readNext() that returns the next object in the input stream.

Fig. 5. Applying the Template Method pattern

A client who wishes to use this class must extend the InputIterator class,
providing appropriate concrete definitions for the abstract methods. As shown in
Fig. 5 the InputIterator is itself a small framework, with a hot spot concern-
ing that nature of the source from which data objects are being read.

9.3 Filtering Iterators

Sometimes users need to transform the elements of one sequence into another.
Some elements may need to be deleted and others kept. Sometimes a conversion
operation needs to be applied to every element of a sequence. We can support
these operations on iterators by introducing the FilterIterator class.

24 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

The FilterIterator class is a concrete class that implements the It-
erator interface. Its constructor takes three arguments: an iterator, a selector,
and a converter. Its implementation takes advantage of the Decorator and Strategy
design patterns as shown in Fig. 6.

The Decorator design pattern extends the functionality of an object in a way
that is transparent to the users of that object (Gamma et al. 1995; Grand 1998). A
Decorator object is of the same type as the original object. It serves as a wrapper
around the original object that provides enhanced functionality but it delegates
part of its work to the original object. The FilterIterator is an iterator
whose constructor takes another iterator as an argument; it uses the argument it-
erator as its source of data but selects and transforms the data that is returned by
its next() method. The use of the Decorator design pattern thus allows a Fil-
terIterator to provide enhanced functionality at any place that an Itera-
tor is used.

Fig. 6. Applying the Strategy and Decorator pattern

The Strategy design pattern abstracts a family of related algorithms behind an
interface (Gamma et al. 1995; Grand 1998). The desired algorithm can be se-
lected at runtime and plugged into the object that uses the algorithm. The selector
and converter arguments of the FilterIterator are Strategy objects that en-
capsulate the selection and conversion algorithms, respectively. For example, the
selector is an object of a class that implements the Selector interface. This in-
terface requires that the class implement the method:

• boolean selects(Object obj) that returns true if and only if

obj satisfies the chosen criteria.

The FilterIterator delegates the choice of which objects from its input

sequence to keep to the selects() method of the selector object. The use of the
Strategy design pattern enables the same FilterIterator object to be config-
ured flexibly to have different behaviors as needed.

Designing a Flexible Framework for a Table Abstraction 25

9.4 Query Iterator Methods

The Table abstraction defined in a previous section only provides access based
on the unique, primary key of the record. Sometimes a client may want to access
records based on the values of other fields. Unlike the primary key, these secon-
dary key fields may not uniquely identify the record within the collection.

The framework can be readily extended to accommodate access on secondary
keys as well as the primary key. We can, for example, define a MultiKeyed in-
terface in the Client Layer that extends the Keyed interface with additional meth-
ods:

• int getNumOfKeys() that returns the number of keys supported by
the associated record implementation

• Comparable getKey(int k) that extracts the key k from the re-
cord, where key 0 is the primary key

While it is sufficient for the basic Table mechanism to have a simple
method retrieve(Comparable), a table that supports access on multiple
keys needs to allow a variable number of items to be retrieved for each secondary
key value. Therefore, we define a new QueryTable interface that extends the
Table interface and includes several new iterator-returning methods. These in-
clude:

• Iterator selectKeys(int k, Selector sel) that returns
the sequence of primary keys for the records whose key k satisfies the se-
lector sel

• Iterator selectRecords(int k, Selector sel) that re-
turns the sequence of records whose key k satisfies selector sel

As a convenience, it is also useful to allow a query to be done using a combina-
tion of various primary and secondary key values. We can thus define two addi-
tional iterator methods:

• Iterator selectKeys(Query q) that evaluates the query q and
returns the sequence of primary keys of all records that satisfy the query

• Iterator selectRecords(Query q)that evaluates the query q
and returns the sequence of all records that satisfy the query

In this design, Query is the abstract base of a class hierarchy constructed ac-
cording to the Composite design pattern (Gamma et al. 1995; Grand 1998). This
hierarchy, shown in Fig.7, represents the abstract syntax tree of the query com-
mands. The primary operation of the Query classes is the method:

• Iterator eval(QueryTable t) that evaluates the query in the
context of the QueryTable argument t and returns the primary keys
from the table for records that satisfy the query

26 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

The concrete class FieldSelector is a leaf subclass of the Query Com-
posite hierarchy. The class has two attributes, an integer to identify which key
field of the multikeyed table is to be considered and a Selector Strategy object
to determine what values of that (secondary or primary) key field are to be se-
lected for inclusion in the result. When a simple query of this nature is evaluated
(e.g., by the selectKeys method), the set associated with the resulting iterator
consists of all the primary keys from the table for the records that satisfy the
FieldSelector.

Fig.7. Applying the Composition Pattern

Query also has several composite subclasses denoting operations to be per-
formed. For example, the subclass And has two attributes, a left and a right child
query. When an And query is evaluated by the selectKeys method, first the
two sub-queries are evaluated recursively to get two sets of primary keys and then
the intersection of the two sets is returned. Similarly, Or performs a union of the
sets, Diff subtracts the set represented by the second argment from the first, and
Xor constructs the symmetric difference of the two sets (i.e., elements in only one
of the two sets).

The prototype implementation of the Table framework (Wang 2000) imple-
ments a flat query syntax with the same general semantics as described above. The
QueryTable it implements has an index for each primary and secondary key.

10 EVOLVING FRAMEWORKS

The framework design described informally in this chapter is presented from the
perspective of an a priori design approach for frameworks. Such an approach
seeks to derive the framework using systematic analysis (Coplien et al. 1998;
Weiss and Lai 1999) and generalization (Schmid 1999; Cunningham and Tade-
palli 2006) techniques. In a more traditional approach, framework designs tend to
evolve as their usage grows and the developers learn more about the application

Designing a Flexible Framework for a Table Abstraction 27

domain. This evolution often follows the steps documented in the Evolving
Frameworks system of patterns (Roberts and Johnson 1998). The evolution of the
different versions of the Table Framework also exhibits several of these process
patterns.

10.1 Three Examples

In most nontrivial frameworks, it is not easy to come up with the right abstractions
just by thinking about the problem. Domain experts typically do not know how to
express the abstractions in their heads in ways that can be turned into designs for
abstract classes; programmers typically do not have a sufficient understanding of
the domain to derive the proper abstractions immediately (Roberts and Johnson
1998).

Often, three implementation cycles are needed to develop a sufficient under-
standing of the application to construct good abstractions (Roberts and Johnson
1998). The original design of the Table framework was no different despite the
simplicity of the problem (Cunningham and Wang 2001). In the exploration of the
design, Wang constructed three prototype implementations of RecordStore
and two implementations of Table (Wang 2000). Earlier work designing similar
Table libraries also yielded insight. Each implementation effort gave new insights
into what an appropriate set of abstractions were and uncovered potential prob-
lems.

10.2 Whitebox Frameworks

As this framework is defined so far, the Table framework is a pure whitebox
framework (Johnson and Foote 1988; Fayad et al. 1998). In general, a whitebox
framework consists of a set of interrelated abstract base classes. Developers im-
plement new applications by extending these base classes and overriding methods
to achieve the desired new functionality. The implementers must understand the
intended functionality and interactions of the various classes and methods. Such
frameworks are flexible, extensible and easy to build, but they are difficult to learn
and use.

While whitebox frameworks rely upon inheritance to achieve extensibility,
blackbox frameworks use object composition to support extensible systems (John-
son and Foote 1988; Fayad et al. 1998). Such frameworks define interfaces for
components and allow existing components to be plugged into these interfaces.
Appropriate components that conform to these interfaces are collected in a com-
ponent library for ready reuse. Such frameworks can be easy to use and extend.
However, they tend to be difficult to develop because they require the developers
to provide appropriate interfaces for a wide range of potential uses.

28 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

10.3 Component Library

Once a basic whitebox framework is in place, the design usually evolves to-
ward a blackbox framework by the addition of useful concrete classes to a compo-
nent library (Roberts and Johnson 1998). The addition of concrete implementa-
tions of the Table and RecordStore abstractions thus is a natural next step in
the evolution of the Table framework.

A prototype component library has been developed for an earlier version of
Table framework design (Wang 2000). This component library provides three dif-
ferent implementations of the Storage Layer, in particular of the RecordStore
interface:

• VectorStore, an implementation that stores the records in a Java
Vector

• LinkedMemoryStore, an implementation that stores the records in a
linked list

• SlottedFileStore, an implementation that stores the records in a
relative file of fixed length blocks on disk and uses a bit-map to manage
the blocks.

The component library also provides two implementations of the Access Layer,
in particular of the Table interface:

• SimpleIndexedFile, an implementation that uses a simple sorted in-
dex in memory to support the location of records using keys (Folk et al.
1998)

• HashedFileClass, an implementation that uses a hash table to support
the key-based access

In the prototype component library (Wang 2000), the SimpleIndexedFile
component actually implements the QueryTable interface, the extended version
supporting more complex queries.

10.4 Hot Spots

Even if one does attempt to identify some of the frozen and hot spots beforehand,
experience in developing applications with a framework helps to identify more
points of shared functionality and more points of variability. Once identified, the
shared functionality (new frozen spots) can be incorporated into the framework as
concrete classes or as concrete methods of abstract classes. The points of variabil-
ity (new hot spots) can be incorporated into the framework as abstract hook meth-
ods that are refined via inheritance (e.g., using the Template Method pattern). Al-
ternatively, hot spots can be implemented by delegation to classes that encapsulate
the required functionality (e.g., using the Strategy and Decorator patterns).

Designing a Flexible Framework for a Table Abstraction 29

In the Table framework, the input iterator extension is an example of new
functionality that might be added to the framework as a result of user experience.
Users of the framework discover that they are frequently writing new iterator
classes to wrap different data sources. This suggests that a new frozen spot, the
InputIterator Template Method class, be added to the framework. The hook
methods of this class represent a hot spot that can be defined by subclassing the
InputIterator class.

10.5 Pluggable Objects

In early versions of an evolving framework, there is the tendency to have large-
grained hot spots implemented in a whitebox fashion using inheritance. As the
framework is used, it is sometimes discovered that almost the same subclass is be-
ing repeatedly implemented. The solution is to implement the common parts of
these subclasses as a concrete class and parameterize it so that the variable aspects
can be “plugged in” as an argument to the constructor or some setter method.

In the Table framework, the filtering iterator extension is another example of
new functionality that might be added to the framework as a result of user experi-
ence. Users of the framework discover that they are frequently selecting a subset
of the items in the table using a standard iterator and then performing some trans-
formation on each selected item. This suggests a new frozen spot, the Fil-
terIterator concrete decorator class, be added to the framework, with two
new hot spots for the selection and conversion functions. The hot spots are im-
plemented as Strategy objects passed as arguments to the constructor.

The Evolving Frameworks patterns include several other steps that the devel-
opment of long-lived frameworks may take: the gradual inclusion of many useful,
fine-grained objects to eventually enable a fully blackbox framework to be con-
structed and the development of visual builders and language-oriented tools to as-
sist clients to use the framework to develop and test new applications. The Table
framework has not yet evolved to the point where these patterns have been used.

11 DISCUSSION

A key requirement in the framework design presented in this chapter is the separa-
tion of the key-based access mechanisms, represented by the Table interface,
from the physical storage mechanisms for the records, represented by the Re-
cordStore interface. This idea is inspired, in part, by Sridhar's YACL C++ li-
brary's approach to B-trees (Sridhar 1996), which separates the B-tree implemen-
tation from the NodeSpace that supports storage for the B-tree nodes. The design
extends Sridhar's concept with the RecordSlot abstraction, which is inspired,
in part, by Goodrich and Tamassia's Position ADT (Goodrich and Tomassia
1998). The Position ADT abstracts the concept of “place” within a sequence so

30 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

that the element at that place can be accessed uniformly regardless of the actual
implementation of the sequence.

This chapter’s approach generalizes the NodeSpace and Position concepts and
systematizes their design by using standard design patterns. The Layered Archi-
tecture and Bridge patterns motivate the design of the RecordStore abstraction
and the Proxy pattern motivates the design of the RecordSlot mechanism. The
result is a clean structure that can be described and understood in terms of stan-
dard design patterns concepts and terminology. Careful attention to the semantics
of the abstract methods in the various interfaces helps us allocate responsibility
among the various abstractions in the framework and helps us decide what func-
tionality can be supported across many possible implementations.

Framework design involves incrementally evolving a design rather than dis-
covering it in one single step. Historically, this evolution is a process of examin-
ing existing designs for family members, identifying the frozen spots and hot spots
of the family, and generalizing the program structure to enable reuse of the code
for frozen spots and use of different implementations for each hot spot. This gen-
eralization may be done in an informal, organic manner as the Patterns for Evolv-
ing Frameworks (Roberts and Johnson 1998) or it may be done using systematic
techniques such as systematic generalization (Schmid 1997, 1999) and function
generalization (Cunningham and Tadepalli 2006; Cunningham et al. 2006b).

Schmid's methodology seeks a way to identify the hot spots a priori and con-
struct a framework systematically. It identifies four steps for construction of a
framework: (1) creation of a fixed application model, (2) hot spot analysis and
specification, (3) hot spot high-level design, and (4) generalization transformation.
In Schmid's approach, the fixed application model is an object-oriented design for
a specific application within the family. Once a complete model exists, the frame-
work designer analyzes the model and the domain to discover and specify the hot
spots. The hot spot's features are accessed through the common interface of the
abstract class. However, the design of the hot spot subsystem enables different
concrete subclasses of the base class to be used to provide the variant behaviors.

Function generalization (Cunningham and Tadepalli 2006; Cunningham et al.
2006b) is another systematic approach. Instead of generalizing the class structure
for an application design as Schmid's methodology does, the function generaliza-
tion approach generalizes the functional structure of an executable specification to
produce a generic application. It introduces the hot spot abstractions into the de-
sign by replacing concrete operations by more general abstract operations. These
abstract operations become parameters of the generalized functions. That is, the
generalized functions are higher-order, having parameters that are themselves
functions. Such functions can be expressed in functional programming languages,
such as Haskell (Peyton Jones 2003), and also in newer, multiparadigm languages
such as Scala (Odersky et al. 2006) and application languages such as Ruby
(Thomas et al. 2005). After generalizing the various hot spots of the family, the
designers can use the resulting generalized functions to define a framework in an
object-oriented language such as Java.

The Table framework presented here was originally developed in a somewhat
organic fashion but did utilize software design patterns systematically (Cunning-

Designing a Flexible Framework for a Table Abstraction 31

ham and Wang 2001). This chapter revisits that work from the standpoint of more
careful commonality/variability analysis. Future work should examine the frame-
work design using a more formally systematic technique such as function gener-
alization and seek to evolve the framework design more toward a blackbox design.

12 CONCLUSION

This chapter describes how commonality/variability analysis, software design pat-
terns, and formal design contracts are applied advantageously in the design of a
small application framework for building implementations of the Table ADT. The
framework consists of a group of Java interfaces that collaborate to define the
structure and high-level interactions among components of the Table implementa-
tions. The key feature of the design is the separation of the Table’s key-based re-
cord access mechanisms from the physical storage mechanisms. The systematic
application of commonality/variability analysis and the Layered Architecture, In-
terface, Bridge, and Proxy design patterns lead to a design that is sufficiently
flexible to support a wide range of client-defined records and keys, indexing struc-
tures, and storage media. The use of the Template Method, Strategy, Decorator,
and Composite design patterns also enables variant components to be easily
plugged into the framework. The Evolving Frameworks patterns give guidance on
how to modify the framework as more is learned about the family of applications.
The conscious use of these software design patterns increases the understandabil-
ity and consistency of the framework’s design.

13 EXERCISES

1. Suppose you wish to modify the Client Layer design to use comparison and
extraction Strategy objects as described in Section 12.4.3. Discuss the im-
pacts of these changes upon the Client and Access Layer designs.

2. Suppose you wish to modify the Table ADT to allow a (conceptually) infi-
nite number of key-value pairs to be held in the table. How would you mod-
ify the specification? What new operations, if any, would you add? Suggest
an implementation of such a table.

3. Suppose you wish to develop a new map operation (similar to what might be
found in a functional programming language like Haskell or Lisp) in the Ta-
ble ADT. A map operation takes a function and applies the function to
every element of some data structure, leaving the modified element in the
place of the previous element. Define the method map and give its design
contract. What restrictions, if any, on the function must be made to ensure the
integrity of the Table?

32 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

4. Suppose you wish to use a more general approach to externalization of the re-
cord’s internal state than the low-level, byte-stream approach used in this
chapter. (See the discussion in Section 12.8.) Give an alternative design and
identify the impacts of this change upon the Externalization Module and other
aspects of the framework.

5. Characterize the new hot spot(s) introduced into the FilterIterator ab-
straction. What are the variabilities? What design pattern is used to realize
each variability?

6. The InputIterator uses the Template Method design pattern and the
FilterIterator uses the Strategy design pattern. Investigate the litera-
ture on these patterns (Gamma et al 1995; Grand 1998). What are the relative
advantages and disadvantages of these two patterns as means for implement-
ing variability for a hot spot?

7. Using the logical notation of this chapter, state the needed preconditions for
the methods int getNumOfKeys() and Comparable getKey(int)
of the MultiKeyed abstraction defined in Section 12.9.4.

8. Using the logical notation of this chapter, state appropriate design contracts
for the Iterator-returning methods selectKeys(int,Selector)
and selectRecords(int,Selector) of the QueryTable abstraction
defined in Section 12.9.4.

9. Using the logical notation of this chapter, state appropriate design contracts
for the Iterator-returning query methods selectKeys(Query) and
selectRecords(Query) defined in Section 12.9.4. These can use the
eval(QueryTable) method of the Query class hierarchy.

10. Using the logical notation of this chapter, state an appropriate design contract
for the method eval(QueryTable) of the Query class hierarchy defined
in Section 12.9.4.

11. Implement the framework and design an application.

a. Develop a version of the Access Layer (i.e., Table) that uses an ar-
ray in memory (or Vector or ArrayList) to create a sorted index
of the keys.

b. Develop a version of the Storage Layer that uses a Java Vector (or
ArrayList) as the storage medium for the records.

c. Pair the two programs developed in the previous two problems.

d. Test the application with various kinds of keys and records.

12. Continue the programming exercise above and develop new components. De-
velop a version of the Access Layer that uses a hash table and pair it with the
Storage Layer developed above.

Designing a Flexible Framework for a Table Abstraction 33

13. Complete the design and implement an Access Layer based on a multikeyed
table as defined by the QueryTable abstraction in Section 12.9.4.

14. The framework presented in this chapter mostly consists of large-grained
components. Examine one of the detailed designs and implementations of the
Access Layer from the previous three exercises. Suggest additional frozen
spots and hot spots in your design that will allow a useful finer-grained
framework to be constructed by using more “pluggable objects”.

15. Examine the Java API for stream and file input/output. Identify the hot spots
in this framework. How are the hot spots implemented? What design pat-
terns are used to structure the designs?

ACKNOWLEDGEMENTS

The preparation of an earlier version of this chapter was supported, in part, by a
grant from Acxiom Corporation titled “An Acxiom Laboratory for Software Ar-
chitecture and Component Engineering (ALSACE)”. The authors thank Robert
Cook and “Jennifer” Jie Xu for their suggestions for improvements to the paper
(Cunningham and Wang 2001). We also thank the two anonymous reviewers, the
editors, Chuck Jenkins, and Pallavi Tadepalli for their useful comments on this
chapter. As this chapter was being revised, the first author benefited from discus-
sions about various aspects of the framework design with Jenkins. Pallavi Tade-
palli is a collaborator on the related function generalization research (Cunningham
and Tadepalli 2006; Cunningham et al. 2006b) and Cuihua Zhang is involved with
work on the educational aspects of software patterns and framework design (Cun-
ningham et al. 2004, 2006a). This research also benefited from insights provided
by projects completed by the first author’s former students Wei Feng on relative
files, Jian Hu on Table libraries, and Deep Sharma on B-tree libraries.

REFERENCES

Britton KH, Parker RA, Parnas DL (1981) A procedure for designing abstract interfaces for
device interface modules, In: Proceedings of the 5th International Conference on Soft-
ware Engineering, pp 95-204.

Brooks FP Jr (1986) No silver bullet—Essence and accidents in software engineering, In:
Information Processing, Elsevier Science, pp 1069-1076.

Brooks FP Jr (1995) “No Silver Bullet” refired, Chapter 17, In: The mythical man-month,
Anniversary edn, Addison-Wesley.

Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-oriented soft-
ware architecture: A system of patterns, Wiley.

Coplien J, Hoffman D, Weiss D (1998) Commonality and variability in software engineer-
ing, IEEE Software, vol 15, no 6, pp 37-45.

34 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

Cunningham HC, Wang J (2001) Building a layered framework for the table abstraction,
In: Proceedings of the ACM Symposium on Applied Computing, pp 668-674.

Cunningham HC, Tadepalli P (2006) Using function generalization to design a cosequential
processing framework, In: Proceedings of the 39th Hawaii International Conference on
System Sciences, IEEE, 10 pages.

Cunningham HC, Zhang C, Liu Y (2004) Keeping secrets within a family: Rediscovering
Parnas. In: Proceedings of the International Conference on Software Engineering Re-
search and Practice (SERP), CSREA Press, pp 712-718.

Cunningham HC, Liu Y, Zhang C (2006a) Using classic problems to teach Java framework
design. Science of Computer Programming, vol 59, pp 147-169.

Cunningham HC, Liu Y, Tadepalli P (2006b) Framework design using function generaliza-
tion: A binary tree traversal case study. In: Proceedings of the ACM SouthEast Con-
ference, pp 312-318.

Fayad ME, Schmidt DC, Johnson RE (1999) Application frameworks, In: Fayad ME,
Schmidt DC, Johnson RE (eds) Building application frameworks: Object-oriented
foundations of framework design, Wiley, pp 3-27.

Folk MJ, Zoellick B, Riccardi G (1998) File structures: An object-oriented approach with
C++, Addison Wesley.

Gamma R, Helm R, Johnson R, Vlissides J (1995) Design patterns: Elements of reusable
object-oriented software, Addison Wesley.

Goodrich MT, Tomassia R (1998) Data structures and algorithms in Java, Wiley.
Grand M (1998) Patterns in Java, vol 1, Wiley.
Guttag JV (1977) Abstract data types and the development of data structures, Communica-

tions of the ACM, vol 20, no 6, pp 396-404.
Hallstrom J, Soundarajan N (2002) Incremental development using object-oriented frame-

works: A case study, Journal of Object Technology, Special issue TOOLS USA 2002,
vol 1, no 3, pp 189-205.

Hoare CAR (1969) An axiomatic basis for computer programming, Communications of the
ACM, vol 12, no 10, pp 45-58,.

Hoare CAR (1992) Proofs of correctness of data representations, Acta Informatica, vol 1,
pp 271-281.

Johnson RE, Foote B (1998) Designing reusable classes, Journal of Object-Oriented Pro-
gramming, vol 1, no 2, pp 22-35.

Liskov B, Wing J (1994) A behavioral notion of subtyping, ACM Transactions on Pro-
gramming Languages and Systems, vol 16, pp 1811-1840.

Mitchell B, McKim J (2002) Design by contract, by example. Addison-Wesley.
Meyer B (1992) Applying design by contract. IEEE Computer, pp 40- 51.
Meyer B (1997) Object-oriented software construction, second edn, Prentice Hall PTR.
Odersky M, Altherr P, Cremet V, Dragos I, Dubochet G. Emir B, McDirmid S, Micheloud

S, Mihaylov N, Schinz M,. Stenman E, Spoon L, Zenger M (2006) An overview of the
Scala programming language, second edn, LAMP-REPORT-2006-001, Ecole Poly-
technique Federale De Lausanne (EPFL), 20 pages.

Parnas DL (1972) On the criteria to be used in decomposing systems into modules, Com-
munications of the ACM, vol 15, no 12, pp 1053-1058.

Parnas DL (1976) On the design and development of program families, IEEE Transaction
on Software Engineering, vol SE-2, pp 1-9.

Parnas DL (1978) Some software engineering principles. Infotech State of the Art Report
on Structured Analysis and Design, Infotech International, 10 pages, 1978. Reprinted
in: Hoffman DM, Weiss DM (eds) (2000) Software fundamentals: Collected papers by
David L. Parnas, Addison-Wesley.

Designing a Flexible Framework for a Table Abstraction 35

Peyton Jones S (2003) Haskell 98 language and libraries: The revised report, Cambridge
University Press.

Pree W (1995) Design patterns for object-oriented software development, Addison-Wesley.
Roberts D, Johnson R (1998) Patterns for evolving frameworks, In: Martin R, Riehle D,

Buschmann F (eds) Pattern languages of program design 3, Addison-Wesley, pp.471-
486.

Schmid HA (1996) Creating applications from components: A manufacturing framework,
IEEE Software, vol 13, no 6, pp 67-75.

Schmid HA (1999) Framework design by systematic generalization, In: Fayad ME,
Schmidt DC, Johnson RE (eds) Building application frameworks: Object-oriented
foundations of framework design, Wiley, pp 353–378.

Soundarajan N, Fridella S (2000) Framework-based applications: from incremental devel-
opment to incremental reasoning, In: Proceedings of the 6th Interantional Confernce on
Software Reuse (ICSR), LNCS 1844, Springer-Verlag, pp 100-116.

Shaw M (1996) Some patterns for software architecture, In: Vlissides JM, Coplien JO,
Kerth NL (eds), Pattern languages of program design 2, Addison Wesley.

Sridhar MA (1996) Building portable C++ applications with YACL, Addison-Wesley.
Thomas D, Fowler C, Hunt A (2005) Programming Ruby: The pragmatic programmer’s

guide, second edition, The Pragmatic Bookshelf.
Wang J (2000) A flexible Java library for table data and file structures, Technical Report

UMCIS-2000-07, Department of Computer and Information Science, University of
Mississippi.

Weiss DM, Lai CTR (1999) Software product-line engineering: A family-based software
development process, Addison-Wesley.

Woolf B (1998) Null object. In: Martin R, Riehle D, Buschmann F (eds), Pattern languages
of program design 3, Addison-Wesley, pp. 5-18.

36 H. Conrad Cunningham 1, Yi Liu 2, Jingyi Wang 3

INDEX

A

abstract interface, 2
abstract predicate, 11, 14

isStorable, 14
isValidKey, 9
isValidRec, 9
isValidTable, 11

abstract predicates, 9
Access Layer, 7, 11, 33
accessor method, 12
Adapter design pattern. See design

pattern

B

behavioral subtype, 6
blackbox framework, 28
Bridge design pattern. See design

pattern
Brooks, Fred, 1

C

call-back, 7
class invariant. See invariant
Client Layer, 7, 8
commonality/variability analysis, 3
Comparable, 9
component library, 28
Composite design pattern. See design

pattern

D

Decorator design pattern. See design
pattern

Design by Contract, 2, 5
design contract, 6, 12
design pattern, 2

Adapter, 10
Bridge, 14
Composite, 26
Decorator, 24
Interface, 8
Iterator, 21
Layered Architecture, 7
Null Object, 17
Proxy, 15
Strategy, 10, 20, 25, 32, 33
Template Method, 23, 33

E

Evolving Frameworks pattern language,
27
Component Library pattern, 28
Hot Spots pattern, 29
Pluggable Objects pattern, 30
Three Examples pattern, 28
whitebox framework, 28

Externalization Module, 8, 19, 32

F

family. See software family
FieldSelector, 26
FilterIterator, 24, 33
framework. See software framework
frozen spot, 2, 4, 11
function generalization, 31

H

handle, 16
hook method, 23
hot spot, 2, 4, 9, 10, 11, 33

I

infinite table, 13, 32
information hiding, 7

Designing a Flexible Framework for a Table Abstraction 37

InputIterator, 23, 33
Interface design pattern. See design

pattern
invariant, 6, 12, 16, 18
Iterator, 21
Iterator design pattern. See design

pattern

K

key
primary, 25
secondary, 25

key, client-defined, 4
key, primary, 4
Keyed, 10

L

Layered Architecture pattern. See
design pattern

M

map operation, 32
Meyer, Bertrand, 2, 5
MultiKeyed, 25, 33
multikeyed table, 25, 33
mutator method, 12

N

nodups, 22
Null Object design pattern. See design

pattern
NULLHANDLE, 16
NULLRECORD, 17

O

occurs, 22

P

Parnas, David, 1
pluggable object, 30, 34
postcondition, 6
precondition, 6
process pattern, 27
Proxy design pattern. See design pattern

Q

Query, 26, 33
composite subclass, 27
leaf subclass, 26

QueryTable, 26, 33

R

Record, 20
record, client defined, 4
RecordSlot, 16, 18
RecordStore, 15, 16

S

Schmid, Hans Albrecht, 31
seq, 22
Software design patterns. See design

pattern
software family, 1
software framework, 2, 31

evolution, 27
function generalization, 31
systematic generalization, 31

specificatiion notation, 22
specification notation, 9
State Restoration Property, 20
Storage Layer, 8, 14, 33
Strategy design pattern. See design

pattern, See design pattern, See
design pattern

systematic generalization, 31

T

Table, 11, 12, 22
Table ADT, 3
template method, 23
Template Method design pattern. See

design pattern

W

whitebox framework, 28

Y

YACL, 30

