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1 INTRODUCTION 

In a provocative essay from the mid-1980s, Brooks asserts that “building software 
will always be hard” because software systems are inherently complex, must con-
form to all sorts of physical, human, and software interfaces, must change as the 
system requirements evolve, and are inherently invisible entities (Brooks 1986).  
A decade later Brooks again observes, “The best way to attack the essence of 
building software is not to build it at all.” (Brooks 1995)  That is, software engi-
neers should reuse both software and, more importantly, software designs. 

The concept of software family (Parnas 1976) is one of the responses to the 
need for software reuse.  Parnas (Parnas 1976) defines a software family as “a set 
of programs with so many common properties that it is worthwhile to study the set 
as a group”.  Thus, by developers analyzing and exploiting the “common aspects 
and predicted variabilities” (Weiss and Lai 1999) among the members of a soft-
ware family, the resulting software system can be constructed to reuse code for the 
common parts and to enable convenient adaptation of the variable parts (Cunning-
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ham et al. 2006a).  Some writers use the terms frozen spot to denote a common as-
pect of the family and hot spot to denote a variable aspect of the family (Pree 
1995; Schmid 1996). 

A software framework (Johnson and Foote 1988) is a form of software family.  
A framework is “a generic application that allows different applications to be cre-
ated from a family of applications” (Schmid 1999).  In general, a framework rep-
resents the skeleton of a system that can be customized for a particular purpose. 
The frozen spots embody the overall structure of the framework (that is, the over-
all design) and are reused by the entire family of applications.  In the context of an 
object-oriented language, frozen spots are expressed as a set of abstract and con-
crete classes that collaborate to embody the solutions to problems in the applica-
tion domain.  The hot spots are represented by the abstract classes, which can be 
extended to provide customized implementations of the variable aspects of a fam-
ily. A specific set of implementations of the hot spots yields a member of the 
software family.   

A framework is a system that is designed with generality and reuse in mind. 
Software design patterns (Gamma et al. 1995; Buschmann et al. 1996), which are 
well-established solutions to program design problems that commonly occur in 
practice, are intellectual tools for achieving the desired level of generality and re-
use (Cunningham et al. 2006a).  They are the building blocks for reusing designs.  
Building a software framework for a family is more costly than building a single 
application, but a well-designed framework can yield considerable benefit if many 
members of the family eventually need to be constructed. 

In software design it is always important to specify precisely what a software 
artifact is to do.  This is especially important in software frameworks, where the 
implementations of the hot spots vary from one application to another and are not 
usually developed at the same time nor by the same team as the framework itself.  
Framework designers must specify interfaces that do not change regardless of 
which implementation is “plugged in” to a hot spot. The specification should 
guide the users of the framework to provide appropriate implementations of the 
hot spots. Parnas and his colleagues (Parnas 1978; Britton et al. 1981) call this an 
abstract interface because it gives the assumptions that are common to all imple-
mentations.  Meyer’s Design by Contract (Meyer 1992, 1997; Mitchell and 
McKim 2002) method provides an effective formal technique for specifying the 
expected behaviors of abstract interfaces. 

This chapter shows how commonality and variability analysis, software de-
sign patterns, and Meyer-like formal design contracts can be applied in the design 
of a small Java software framework for building implementations of the Table Ab-
stract Data Type (ADT). A previous paper (Cunningham and Wang 2001) presents 
an earlier version of the framework design developed in a careful, but ad hoc 
manner.  This chapter expands on that work by revisiting the design from the per-
spective of commonality and variability analysis, improving the formal specifica-
tions, specifying additional framework features, and examining how the frame-
work can evolve. 

The Table ADT represents a collection of records that can be accessed by the 
unique keys of the records.  The framework design should encompass a wide 
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range of possible implementations of the Table ADT—simple array-based data 
structures in memory, B-tree file structures on disk, perhaps even structures dis-
tributed across a network. By approaching this as a family, the goal is to be able to 
assemble a Table implementation by selecting the combination of record access 
structures and storage structures to meet a specific application need.  

The design process first analyzes the Table ADT as a family and then takes 
advantage of several well-known software design patterns to structure the frame-
work. The commonality/variability analysis (in particular, the desire to decouple 
the record access mechanism from the storage mechanism) suggests a hierarchical 
structure based on the Layered Architecture (Buschmann et al. 1996; Shaw 1996) 
and Interface (Grand 1998) design patterns.  Given the layered architecture, the 
Bridge and Proxy patterns (Gamma et al. 1995; Grand 1998) then suggest how to 
organize the interactions among the various layers.  The Iterator pattern (Gamma 
et al. 1995; Grand 1998) is also helpful; it provides a systematic mechanism for 
accessing groups of records.  The Template Method, Strategy, Decorator, and 
Composite patterns (Gamma et al. 1995; Grand 1998) provide standard structures 
for plugging variable components into the framework.  Furthermore, as the 
framework evolves, it follows the general development path documented by the 
Evolving Frameworks system of patterns (Roberts and Johnson 1998).  

The rest of the chapter is organized as follows. Section 2 briefly describes the 
requirements of the Table ADT and applies commonality and variability analysis 
to recognize the frozen spots and hot spots of the Table ADT framework. Section 
3 briefly introduces the technique of using formal design contracts, which is ap-
plied in the specification of the interface design in the sections that follow. Section 
4 applies Layered Architecture design pattern to build the top-level framework ar-
chitecture. Sections 5, 6 and 7 apply several patterns to the design of interfaces 
among the different layers. Section 8 describes a utility module needed by the 
lower levels of the architecture. Section 9 applies the Iterator pattern to enhance 
the framework design. Section 10 illustrates the patterns of evolving frameworks 
that can be adopted into the Table framework design. Section 11 discusses the re-
lated work and Section 12 gives a conclusion. 

2 ANALYSIS OF THE TABLE ADT  

The Table ADT is an abstraction of a widely used set of data and file structures. It 
represents a collection of records, each of which consists of a finite sequence of 
data fields. The value of one (or a composite of several) of these fields uniquely 
identifies a record within the collection; this field is called the key. For the pur-
poses here, the values of the keys are assumed to be elements of a totally ordered 
set. The operations provided by the Table ADT allow a record to be stored and re-
trieved using its key to identify it within the collection.  

In (Cunningham and Wang 2001), Cunningham and Wang consider the de-
sign of the Table framework to have the following requirements:  
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1. It must provide the functionality of the Table ADT for a large domain of 
client-defined records and keys.  

2. It must support many possible representations of the Table ADT, includ-
ing both in-memory and on-disk structures and a variety of indexing 
mechanisms. 

3. It must separate the key-based record access mechanisms from the 
mechanisms for storing records physically.  

4. All interactions among its components should only be through well-
defined interfaces that represent coherent abstractions. 

5. Its design should use appropriate software design patterns to increase re-
liability, understandability, and consistency. 

In building a framework, it is important to separate the concerns.  The design-
ers must separate the frozen spots, the aspects common to the entire family mem-
bers, from the hot spots, the aspects specific to one family member.  Furthermore, 
they must separate the various common and variable aspects from each other and 
consider them somewhat independently (Cunningham et al. 2006a).  Commonality 
and variability analysis (Coplien et al. 1998; Weiss and Lai 1999) is a means of 
identifying the frozen spots and hot spots.  The analysis produces commonalities, 
a list of assumptions that are true to all the members of the family, and variabil-
ities, a list of assumptions that are true for only some members of the family.  
Thus, frozen spots and hot spots are chosen on the basis of commonalities and 
variabilities, respectively. In this chapter, the commonalities and variabilities of 
the Table ADT are examined based on the requirements of the Table ADT and the 
prototype implementations (Wang 2000).  

The requirements stated above mix concerns in the framework design—
commonalities, variabilities, and non-functional aspects of the design and code.  
These need to be more cleanly separated than is done in (Cunningham and Wang 
2001). Requirements 1 and 2 describe functional requirements of the family, 
which are our primary concerns here.  Requirements 3 and 4 express desired char-
acteristics of the framework. Requirement 5 suggests characteristics of the design 
process. By analyzing the functional requirements, we identify one primary com-
monality, i.e., frozen spot, as follows: 

1. All clients of the framework use the Table ADT’s key-based access 
methods to the collections of records stored in table. (Requirement #1) 
 

We also identify five variabilities, i.e., hot spots, as follows: 

1. Variability in the keys.  Clients of the Table framework can define the 
keys using many different data structures. (Requirement #1) 

2. Variability in the records.   Clients of the Table framework can define the 
records using many different data structures. (Requirement #1) 
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3. Variability in the external representation of the record state. For tables 
stored on external devices, it must be possible to store the state of a re-
cord accurately on the external device and restore it to memory when 
needed. This process may vary somewhat depending upon the nature of 
the record and the external device. (Requirements #1 and #2) 

4. Variability in the indexing mechanisms. Different customizations of the 
Table framework can use different algorithms for indexing the records.  
(Requirement #2) 

5. Variability in the storage mechanisms.  Different customizations of the 
framework can use different mechanisms for storing the records.  (Re-
quirement #2) 

The hot spots #1 and #2 are not completely independent of each other.  However, 
to separate the concerns, we choose to separate the variabilities of keys and re-
cords into two different hot spots. Hot spot #3 is a bit subtle, but the need for this 
variability should be clear as we proceed with the design. 

Following the design method outlined above, the framework should allow the 
five variabilities to be realized independently from each other, which has an im-
plication for the architecture of the Table framework. Before we proceed further, 
let’s look a bit more at the use of formal design contracts for specifying software 
behaviors. 

 3 FORMAL DESIGN CONTRACTS  

Design by Contract is a design approach developed by Meyer (Meyer 1992, 
1997).  It is motivated by an analogy with a contract in business. In the business 
setting a contract defines an agreement between a supplier and a client: 

1. The supplier must satisfy certain obligations, such as providing the prod-
uct the client ordered, and expects certain benefits, such as the client pay-
ing the established price for the product. 

2. The client must satisfy certain obligations, such as paying the supplier the 
established price for the product, and expects the benefits, such as getting 
the product. 

3. Both the supplier and the client must satisfy certain obligations that apply 
to all contracts, such as laws and regulations. 

Meyer (Meyer 1992, 1997) adopts the concepts of “client”, “supplier” and 
“contract” into object-oriented design.  Building upon earlier work on program 
verification (Hoare 1969), information hiding (Parnas 1972), data abstraction 
(Hoare 1972), and abstract data types (Guttag 1977), Meyer introduces logical as-
sertions to describe the contract between the clients (users) of an abstract data type 
(ADT) and the suppliers (i.e., developers) of the ADT.  In Meyer’s approach to 
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object-oriented design and programming, an ADT is normally represented by a 
class. The key assertions are of three types: preconditions, postconditions, and in-
variants. 

Preconditions and postconditions are assertions attached to each operation of 
an ADT. A precondition expresses requirements that any call of the operation 
must satisfy if it is to be correct. A postcondition expresses properties that are en-
sured in return by the execution of the call.  If the precondition is not satisfied, the 
operation is not guaranteed to return a correct value or to even return at all. For 
example, an operation to delete a record from a collection might have a precondi-
tion requiring that a record with that key exists and a postcondition requiring that 
it no longer be an element of the collection. 

An invariant is a constraint attached to an ADT that must hold true for each 
instance of the ADT whenever an operation is not being performed on that in-
stance. In object-oriented design, this type of invariant is often called a class in-
variant. For example, in the Table ADT, an invariant might state that the table 
must not have more than one record with a particular key. The invariant gives a 
condition that must be satisfied to maintain the integrity of the table.  

In the client-supplier context,  

• a client must satisfy the obligation (the precondition) of an operation to 
expect to receive the benefit (the postcondition) of getting a correct result 
from the operation, 

• a supplier must satisfy the obligation to make the postcondition of the 
operation hold upon return whenever the precondition of the operations is 
satisfied by the call, 

• both the client and the supplier must  maintain certain properties, the  
invariants. 

In specifying the design of the interfaces of the Table framework, we not only 
need to give the method  signatures (i.e., parameters and return type) but also to 
express their semantics (i.e. behaviors), using preconditions and postconditions for 
each method and invariants for the ADT as a whole (Cunningham and Wang 
2001). 

The simple application of Design by Contract is not by itself sufficient for 
formal proofs of correctness of the desired properties of framework applications.  
The concrete classes that implement hot spots in a framework must, of course, 
preserve the general expectations of the framework specification, that is, they 
should be behavioral subtypes (Liskov and Wing 1994) of the abstract classes they 
extend. However, the concrete implementations exhibit richer behaviors than the 
minimum required by the framework specification.  Thus extended techniques are 
needed to handle these richer behaviors (Soundarajan and Fridella 2000; Hall-
strom and Soundarajan 2002).  Nevertheless, simple design contract techniques 
are still quite useful in helping designers explore and refine the requirements and 
framework designs. 
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4 LAYERED ARCHITECTURE 

The overall architecture of the Table framework should embody the frozen spot 
and, as much as possible, separate the concerns related to each hot spot into an in-
dependent component. That is, it should hide the implementation of each hot spot 
within a separate component, behind a well-defined interface.  To use the termi-
nology from Parnas’ information-hiding approach to modular software design, the 
implementation details for a hot spot should be a “secret” of the component that is 
hidden behind an appropriate “abstract interface” (Parnas 1972; Britton et al. 
1981; Cunningham et al. 2004). 

Clearly, there is a mix of high- and low-level issues among the hot spots. Cli-
ents can define their own key (hot spot #1)  and record (hot spot #2) structures and 
then call the table (frozen spot) to store the records.  The table implementation 
may use some key-based record access mechanism (hot spot #4) paired with some 
storage structure (hot spot #5).  

This mix of high- and low-level issues suggests a hierarchical architecture 
based on the Layered Architecture pattern (Buschmann et al. 1996; Shaw 1996). 
When there are several distinct groups of services that can be arranged hierarchi-
cally, this pattern assigns each group to a layer. Each layer can then be developed 
independently. A layer is implemented using the services of the layer below and, 
in turn, provides services to the layer above.  In the simplest version of this pat-
tern, services in a layer cannot directly call upon services defined more than one 
layer down.  It cannot directly call services defined in a layer above except using 
specific call-backs that it is supplied in calls from the higher level. 

As shown in Fig. 1, we can define three layers in the Table framework design. 
From the top to the bottom these include: 

  

 
Fig. 1. Applying the Layered Architecture pattern 

Client Layer.  This layer consists of the client-level programs that use the table 
implementation in the layer below to store and retrieve records.  Clients of the 
Table framework implement the user-defined data types for keys and records, 
which are the variabilities expressed by hot spots #1 and #2.  

 
Access Layer.  This layer must provide client programs key-based access to the re-

cords in the table.  It uses the layer below to store the records physically. Im-
plementations of this layer provide the data structures and algorithms for in-
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dexing the records, which is hot spot #4. The interface to this layer represents 
the frozen spot. 

 
Storage Layer.  This layer must provide facilities to store and retrieve the records 

from the chosen physical storage medium.  Implementations of this layer pro-
vide the data structures and algorithms for storing the records, for example, a 
structure in the computer's main memory or a random-access file on disk.  
The layer expresses hot spot #5. 

 
For example, suppose we want a simple indexed file structure with an in-

memory index that uses an array-like relative file to store the records on disk (Folk 
et al. 1998).  The implementation of the index would be part of the Access Layer; 
the implementation of the relative file would be in the Storage Layer.  A program 
that uses the simple indexed file structure would be in the Client Layer. 

What about hot spot #3?  This hot spot involves the ability to represent a “re-
cord” in an external form suitable for storage on some physical storage medium 
(e.g., rendering it as a sequence of bytes). So, on the surface, it would seem that 
this would be a structure defined by the Client Layer that is passed through the 
Access Layer to the Storage Layer, where a call-back to the implementation of the 
structure in the client may take place.  However, a closer examination reveals a 
more complicated situation. The client’s keyed-record may itself consist of a hier-
archy of structures, each of which needs to be converted to the external form inde-
pendently.  For some implementations of the Access Layer, a physical record to be 
stored by the Storage Layer might consist of a group of client keyed-records (e.g., 
a B-tree node or a hash-table bucket) or it might consist of auxiliary information 
about the access structure that needs to be made persistent. Because hot spot #3 
does not fit cleanly into any of the layers, we place the needed abstraction in a 
utility module called the Externalization Module. 

The various layers and modules need to be kept independent from one an-
other. Thus, following the fundamental Interface design pattern (Grand 1998), we 
define each layer in terms of a set of related Java interfaces and require that inter-
actions among the layers use only the provided interfaces.   Next, let us examine 
the design of the each layer and its interfaces. 

5 CLIENT LAYER 

The design of the Client Layer must enable the Access Layer to access client-
defined keys and records and should avoid requiring unnecessary programming to 
use common data types. 
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5.1 Abstract Predicates for Keys and Records 

As much as possible, clients (i.e., users) of the table implementations should be 
able to define their own key (hot spot #1) and record structures (hot spot #2).  The 
internal details of the different types of records and keys, which are implemented 
in the Client Layer, must be hidden from the Access and Storage Layers.  How-
ever, the specification of the Access Layer depends upon certain assumptions 
about the nature of the records and keys.  In specifying the operations for the inter-
faces in this and other layers, we express key features of the keys and records as 
abstract predicates (Meyer 1997) to make these assumptions more explicit. These 
are called abstract because they are used for specification only; they do not repre-
sent functions that are to be built as executable code. The precise definition of 
these predicates depends upon the particular implementations used in this layer. 
The abstract predicates associated with the Client Layer are 

• boolean isValidKey(Object key)that is true if and only if  
key is an element of the set of meaningful keys supported by the client’s 
key class. 

• boolean isValidRec(Object rec) that is true if and only if 
rec is an element of the set of meaningful records supported by the cli-
ent’s keyed record class. 

5.2 Keys and the Comparable Interface 

As stated earlier, clients of the table implementations should be able to define their 
own record and key structures (hot spot #1). However, any implementation of the 
Table ADT must be able to extract the keys from the records and compare them 
with each other. Thus we restrict the records to objects from which keys can be 
extracted and compared using some client-defined total ordering.  

The built-in Java interface Comparable is sufficient to define the function-
ality of the keys. Any class that implements this interface must provide a public 
method compareTo, which is defined to have the signature and semantics (de-
sign contract) as defined below.   

To state logical and mathematical expressions in specifications, this chapter 
uses a Java-influenced notation. The symbol && denotes logical conjunction 
(“and”), || denotes the logical disjunction (inclusive “or”), ! denotes negation, ⇒  
denotes logical implication (“if-then”), and == denotes equality.  The symbol ∀  
denotes universal quantification (“for all”) and ∃  denotes existential quantification 
(“there exists”).  For mathematical sets, we use braces { and } to list the elements 
explicitly , ∪  to denote union, – to denote set subtraction, ∈  to denote member-
ship, and ∅  to denote the empty set. In appropriate contexts, pairs of parentheses 
( and ) denote tuple formation. In postconditions, the variable result refers to 
the value returned by a function method call and the prefix # attached to a variable 
denotes the value at the time the method was called. Unless a new value is explic-
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itly assigned to a variable in the postcondition, its value must not be changed by 
the method call.   

The description and design contract (pre- and postconditions) for the compa-
reTo method are as follows: 

• int compareTo(Object key) that  compares the associated ob-
ject (this) with argument key and returns -1 if  key is greater, 0 if 
they are equal, and 1 if  key is less. 

 Pre:  isValidKey(this) && isValidKey(key) 
 Post: result == (if this < key then -1 

      else if this == key then 0 
      else 1)  

Clients can use any existing Comparable class for their keys or implement their 
own. 

5.3 Records and the Keyed Interface 

To enable keys to be extracted from records, we introduce the Java interface 
Keyed to represent the type of objects that can be manipulated by a table (hot 
spot #2).  We model the Keyed abstraction as having an abstract attribute key. 
Any class that implements this interface must implement the method getKey, 
which has the following description and design contract: 

• Comparable getKey() that extracts the key from the associated re-
cord (this).  

   Pre:  isValidRec(this) 
   Post: (result == this.key) && isValidKey(result) 

An alternative design for handling the keys and records might be to allow the 
client to use any Java objects and then to supply appropriate objects that encapsu-
late the key-extraction and key-comparison operations—developed in accordance 
with the Strategy design pattern (Gamma et al. 1995; Grand 1998).  This alterna-
tive might enable changes to these operations to be done more dynamically but at 
the loss of some type safety and of the ability to use the classes in the API that im-
plement the Comparable interface.  With the approach taken in this section, cli-
ents can, if needed, construct wrapper classes that implement the Comparable 
and Keyed interfaces and encapsulate the actual key and record objects. This use 
the Adapter design pattern (Gamma et al. 1995; Grand 1998) enables clients to 
utilize a wide range of pre-defined objects as keys or records as needed. 

5.4 Interactions among the Layers 

The Client Layer thus consists of the Comparable and Keyed interfaces and 
the abstract predicates isValidKey and isValidRec (all of which are part of 
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the framework) and the concrete classes that implement the interfaces (which are 
part of the customization of the framework for some specific application). The en-
capsulation of the key and record implementations in the Comparable- and 
Keyed-implementing classes, respectively, thus enable the Access Layer to use 
the client-defined keys and records without knowing the specifics of their imple-
mentation.  A table implementation in the Access Layer can use the getKey 
method of the Keyed interface to extract keys from the client-defined records and 
can then use the compareTo method of the Comparable interface to compare 
the client-defined keys.  

6 ACCESS LAYER  

The design of the Access Layer must provide the Client Layer programs key-based 
access to a collection of records (frozen spot), enable diverse implementations of 
the indexing structures (hot spot #4), and support diverse storage structures in the 
Storage Layer.   The primary abstraction of the Access Layer is the Table ADT.  

6.1 Abstract Predicates for Tables 

In the specifications in this section, we use the following abstract predicates to 
capture assumptions the Table ADT makes about the environment: 

• isValidKey(Object key) and  isValidRec(Object rec) 
which are defined in the Client Layer to identify valid keys and records. 

• isStorable(Object rec) which is defined in the Storage Layer to 
identify records that can be stored. 

The specifications of other interfaces may also depend upon assumptions about 
the integrity of a Table ADT instance.  We thus introduce the abstract predicate: 

• boolean isValidTable(Table t) that is true if and only if t is 
a valid instance of Table (i.e., satisfies all the design contracts below). 

6.2 Table Interface  

We model the collection of records by the variable table, which is a partial 
function from the set of keys defined by the type Comparable to the set of re-
cords defined by the type Keyed. For convenience, we use the variable table to 
denote either the function or the corresponding set of key-record pairs.  

Now, we can define the Table ADT as a Java interface that includes the follow-
ing ADT invariant and public methods.  In English, the invariant can be stated: 
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All stored keys and records in the table are valid and capable of being 
stored on the chosen external device, and the records can be accessed by 
their keys. 

Stated more formally, the invariant is: 
(∀k,r : r == table(k) : isValidRec(r)  
       && isStorable(r) && k == r.getKey()) 

The Table ADT has mutator (i.e., command or setter) operations with the follow-
ing descriptions and design contracts: 

• void insert(Keyed r) inserts the Keyed object r into the table.  
Pre:   isValidRec(r) && isStorable(r) &&  
    !containsKey(r.getKey()) && !isFull() 
Post:  table == #table ∪ {(r.getKey(),r)} 

• void delete(Comparable key) deletes the Keyed object with 
the given key from the table.   
Pre:   isValidKey(key) && containsKey(key) 
Post:  table == #table – {(key,#table(key))} 

• void update(Keyed r) updates the table by replacing the existing 
entry having the same key as argument  r with the argument object.  
Pre:  isValidRec(r) && isStorable(r) && 
   containsKey(r.getKey()) 
Post:  table == (#table –  
    {(r.getKey(),#table(r.getKey()))} ) 
    ∪ {(r.getKey(),r)} ) 

The Table ADT has accessor (i.e., query or getter) operations with the following 
descriptions and design contracts: 

• Keyed retrieve(Comparable key) searches the table for the 
argument key and returns the Keyed object that contains this key.  
Pre:  isValidKey(key) && containsKey(key) 
Post: result == #table(r.getKey()) 

• boolean containsKey(Comparable key) searches the table 
for the argument key.  
Pre:   isValidKey(key) 
Post:  result == defined(#table(key)) 

• boolean isEmpty() checks whether the table is empty.  
Pre:   true  
Post:  result == (#table == ∅) 

• boolean isFull() checks whether the table is full.  
Pre :   true 
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Post:   result == (#table implementation has no free space to  
                                    store a new record) 

• int getSize() returns the size of the table.  
Pre:   true 
Post:  result == cardinality(#table) 

Note that there are several tacit assumptions being made.  Having getSize 
return an integer means that the size of the table must be finite, but it is not neces-
sarily bounded.  Of course, for unbounded tables isFull would always need to 
return the value false. The contracts for the methods other than getSize do 
not preclude the definition of an infinite size table (e.g., with some ranges of key 
values having records that are generated by a function as needed).  However, the 
behavior of getSize would need to be defined for infinite tables.  Also a class 
that implements an infinite table would need to provide a constructor or additional 
methods for setting up techniques for calculated records that are not explicitly in-
serted into the table. 

6.3 Interactions among the Layers 

The Access Layer thus consists of the Table interface and the isValidTable 
abstract predicate (which form part of the framework itself) and the concrete 
classes that implement Table (which are part of a customization of the frame-
work to create a specific member of the family).  Concrete classes that implement 
the Comparable and Keyed interfaces are part of the Client Layer. The interac-
tions between the Client Layer and the Access Layer occur as follows: 

• The Client Layer calls the Access Layer using the Table interface. 

• The Access Layer calls back to the Client classes that implement the 
Keyed and Comparable interfaces to do part of its work. 

In the design of the Access Layer, the only constraint placed upon the storage 
mechanism is that the records inserted into the table are capable of being stored 
and retrieved reliably (i.e., satisfy isStorable). Thus the design of the Access 
Layer enables client-defined keys and records, diverse record access mechanisms, 
and diverse storage mechanisms. Next, let us examine the Storage Layer and its 
interface. 

7 STORAGE LAYER 

The Storage Layer provides facilities to store records to and retrieve records from 
a physical storage medium. It encapsulates hot spot #5 and, hence, must enable a 
diverse range of physical media.  Of course, this layer must also support client-
defined records in the Client Layer and diverse record-access mechanisms in the 
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Access Layer. It should also enable the access structures in the Access Layer to be 
stored on the physical media and decouple the implementations in the layers above 
from the physical media as much as possible. 

7.1 Abstract Predicate for Storable Records 

The specifications of the Access Layer and the Storage Layer interfaces depend 
upon certain assumptions about the nature of records that can be stored on the 
physical storage media. In specifying the operations, we express key features of 
the media in terms of an abstract predicate to make these assumptions more ex-
plicit. The predicate defined by the Storage Layer is: 

• boolean isStorable(Keyed rec) that is true if and only if rec 
can be stored on the storage medium being used with the implementation 
of the table. 

7.2 Bridge Pattern 

To define the interfaces between the Access and Storage layers, we adopt a struc-
ture motivated by the Bridge and Proxy design patterns (Gamma et al. 1995; 
Grand 1998) to achieve the desired degree of decoupling and collaboration. We 
also take into account both the expected characteristics of the storage media and 
the expected needs of the implementations of the Table’s indexing mechanisms.  

The Bridge design pattern is useful when we wish to decouple the “interface” 
of an abstraction from its “implementation” so that the two can vary independently 
(Gamma et al. 1995; Grand 1998). In this design (as shown in Fig. 2), the “inter-
face” is the Table abstraction in the Access Layer, which provides key-based ac-
cess to a collection of records; the “implementation” is the RecordStore ab-
straction in the Storage Layer, which provides a physical storage mechanism for 
records. These two hierarchies of abstractions collaborate to provide the table 
functionality.  At the time a table is created, any concrete Table-implementing 
class can be combined with any concrete RecordStore-implementing class. 

 
Fig. 2. Applying the Bridge pattern 
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We assume that a storage medium abstracted into the RecordStore ADT 
consists of a set of physical “slots”. Each slot has a unique “address”, the exact na-
ture of which is dependent upon the medium.  A program may allocate slots from 
this set and release allocated slots for reuse. There may, however, be restrictions 
upon the characteristics of the records acceptable to the storage medium.  For ex-
ample, if a random-access disk file is used, it may be necessary to restrict the re-
cord to data that can be written into a fixed-length block of bytes. 

There are many possible implementations of Table in the Access Layer—
such as simple indexes, balanced trees, and hash tables. Any Table implementa-
tion must be able to allocate a new slot, store a record into it, retrieve the record 
from it, and then deallocate the slot when it is no longer needed. The Table must 
be able to refer to slots in a medium-independent manner. Moreover, most imple-
mentations will need to treat these slot references as data that can be stored in re-
cords and written to a slot. For example, the nodes of a tree-structured table are 
“records” that may be stored in a RecordStore; these nodes must include 
“pointers” to other nodes, that is, references to other slots. 

7.3 Proxy Pattern 

Because we cannot expose the internal details of the RecordStore to the Ac-
cess Layer, we need a medium-independent means for addressing the records in 
the RecordStore. The approach we take is a variation of the Proxy design pat-
tern (Gamma et al. 1995; Grand 1998). 

The idea of the Proxy design pattern is to use a proxy object that acts as a sur-
rogate for a target object. When a client wants to access the target object, it does 
so indirectly via the proxy object. Since the target object is not accessed directly 
by the client, the exact nature and location, even the existence, of the target object 
is not directly visible to the client. The proxy object serves as a “smart pointer” to 
the target object, allowing the target’s location and access method to vary. 

 
Fig. 3. Applying the Proxy pattern 

In this design, we define the RecordSlot abstraction to represent the prox-
ies for the slots within a RecordStore. As shown in Fig. 3, these two abstrac-
tions collaborate to enable the Access Layer to store and retrieve records in a uni-
form way, no matter which storage medium is used. Because of the need to write 
the slot references themselves into records as data, we also assign an integer “han-
dle” to uniquely identify each physical slot in a RecordStore. Since multiple 
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RecordStore instances may be in use at a time, each RecordSlot also needs 
a reference to the RecordStore instance to which it refers. 

7.4 RecordStore Interface  

We can now specify the RecordStore and RecordSlot interfaces. The model 
for the semantics of these ADTs includes two sets. The set alloc denotes the set 
of slot handles that have been assigned to RecordSlot instances.  The set 
store is a partial function from the set of valid handles to the set of storable ob-
jects. For convenience, the set unalloc is used to denote the set of valid but un-
allocated handles, that is, the complement of the set alloc. The constant 
NULLHANDLE represents a special integer code that cannot be assigned as a valid 
slot handle; it is neither in alloc nor unalloc.  Here we assume that Re-
cordStore is finite, but unbounded in size. 

We define the RecordStore ADT as a Java interface that includes the fol-
lowing ADT invariant and public methods.  In English, the invariant can be 
stated:  

All records in the store are capable of being stored on the selected medium 
and the stored records can be accessed by their handles. 

Stated more formally in logic, the invariant is: 
       (∀ h, r : r == store(h) : isStorable(r)) && 
       (∀ h :: h ∈ alloc == defined(store(h))) 

The RecordStore ADT has operations with the following descriptions and de-
sign contracts: 

• RecordSlot newSlot() allocates a new record slot and returns the 
RecordSlot object.  
Pre:    true 
Post:  result.getContainer() == this && 
     result.getRecord() == NULLRECORD && 
     result.getHandle() ∉ #alloc &&  
     result.getHandle() ∈ alloc ∪ {NULLHANDLE} 

• RecordSlot getSlot(int handle) reconstructs a record slot us-
ing the given handle and returns the RecordSlot.  
Pre:    handle ∈ alloc 
Post:  result.getContainer() == this && 
    result.getRecord() == #store(handle) && 
          result.getHandle() == handle 

• void releaseSlot(RecordSlot slot) deallocates the allocated 
record slot.  
Pre:  slot.getHandle() ∈ alloc ∪ {NULLHANDLE} &&  
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    slot.getContainer() == this 
Post:  alloc == #alloc - {slot.getHandle()} &&  

 store == #store – 
          {(slot.getHandle(),slot.getRecord())} 

Note that, to support a wide domain of variability in implementation, the pa-
rameterless newSlot method allows lazy allocation of the handle and, hence, of 
the associated physical slot. That is, the handle may be allocated here or later upon 
its first use to store a record in the RecordStore. For this method, we set the 
value of a new slot to be NULLRECORD.  This constant denotes an inert, empty 
record implemented according to the Null Object design pattern (Woolf 1998; 
Grand 1998). That is, NULLRECORD has the same interface as the other records 
returned by getRecord (below) except that it has no data associated with it and 
the operations have no effect. According to Woolf, “the Null Object encapsulates 
the implementation decision to do nothing and hides those details from its collabo-
rators” (Woolf 1998). It sometimes avoids a situation where a caller must take a 
special action to capture error returns from operations. 

7.5 RecordSlot Interface  

The RecordSlot interface represents a proxy for the physical record “slots” 
within a RecordStore. The semantics of its operations are, hence, stated in 
terms of the effects upon the associated RecordStore instance. We model the 
RecordSlot ADT as having two abstract attributes, the container which is a 
reference to the associated RecordStore and the integer handle.  

We thus define the RecordSlot ADT as a Java interface that includes the 
following ADT invariant and public methods. In English, the invariant can be 
stated: 

The handle of a RecordSlot object denotes a slot of the store that has 
been allocated, unless it has the value NULLHANDLE. 

Stated more formally in logic, the invariant is:   
getHandle() ∈ alloc ∪ {NULLHANDLE} 

The RecordSlot ADT has operations with the following descriptions and de-
sign contracts: 

• void setRecord(Object rec) stores the argument object rec 
into this RecordSlot.  
Pre:    isStorable(rec)  
Post:  Let h == getHandle(): 
       (h ∈ #alloc ⇒ store == (#store – 
                  {(h,#store(h))}) ∪ (h,rec)} ) 

     && (h == NULLHANDLE  ⇒   
        (∃ g : g ∈ #unalloc :  
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             alloc == #alloc ∪ {g} && 
             store == #store ∪ {(g,rec)}) ) 

Note that this allows the allocation of the handle to be done here or al-
ready done by the newSlot method of RecordStore.  

• Object getRecord() returns the record stored in this Record-
Slot. 
Pre:    true 
Post:   Let h == getHandle(): 

(h ∈ #alloc ⇒ result == #store(h)) &&  
(h == NULLHANDLE ⇒  result == NULLRECORD) 

• int getHandle() returns the handle of this RecordSlot.  
Pre:    true 
Post:   result == this.handle 

 

• RecordStore getContainer() returns a reference to the Re-
cordStore with which this RecordSlot is associated.  
Pre:    true 
Post:   result == this.container 

• boolean isEmpty() determines whether the RecordSlot is 
empty (i.e., does not hold a record).  
Pre:    true 
Post: result == (getHandle() == NULLHANDLE ||  

            getRecord() == NULLRECORD) 

Note that getRecord returns the inert NULLRECORD object if no record has 
been stored in the slot.  Also note that isEmpty returns true for either an unallo-
cated handle or the NULLRECORD being stored in the slot. 

7.6 Interactions among the Layers 

The Storage Layer consists of the RecordStore and RecordSlot interfaces 
and the abstract predicate isStorable (all of which are part of the framework) 
and the concrete classes that implement the interfaces (which are part of an appli-
cation of the framework). A Table implementation in the Access Layer calls a 
RecordStore implementation in the Storage Layer to get RecordSlot ob-
ject.  The Access Layer code then calls RecordSlot to store and retrieve its re-
cords.  If needed, a RecordSlot object calls back to a Record implementation 
in Access Layer.  The Record interface is part of the Externalization Module, 
which we examine in the next section. 

The design of the RecordStore and RecordSlot abstractions and the 
use of slot handles give the Storage Layer the capability to be implemented using 
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a diverse group of physical media, including both main memory and on-disk struc-
tures.  These interfaces provide operations with sufficient functionality and make 
the functionality available in manner that is independent from the actual physical 
medium used.  The combination of these interfaces and the Record interface in 
the Externalization Module (defined in the next section) enable the Storage Layer 
to be decoupled from the layers above and for the Access Layer to store a wide 
range of information in the Storage Layer. 

8 EXTERNALIZATION MODULE 

How can the RecordSlot mechanism store the records on and retrieve them 
from the physical slots on the storage medium? This is an issue because the re-
cords themselves are defined in the layers above and their internal details are, 
hence, hidden from the RecordStore. For in-memory implementations of Re-
cordStore this is not a problem; the RecordStore can simply clone the re-
cord (or perhaps copy a reference to it). However, disk-based implementations 
must write the record to a (random-access) file and reconstruct the record when it 
is read.  So, once we allow diverse physical media, we have to handle the external 
byte presentation of record state (hot spot #3). 

The solution taken here is similar to what is done with the Keyed interface. 
We introduce a Record interface with three user-defined methods with the fol-
lowing design contracts: 

• void writeRecord(DataOutput out) writes this record to 
stream out.  

   Pre: true 
Post: suffix of stream out == this record's state encoded as  
                                                   byte sequence 

• void readRecord(DataInput in) reads this record from 
stream in. 

    Pre: true 
 Post: this record's state == prefix of stream in decoded from                                                                 
                                                  byte sequence 

• int getLength() returns the number of bytes in the external represen-
tation of this record (e.g., that will be written by writeRecord).  

   Pre: true 
Post: result ==  number of bytes in external representation of this 
             record 

The Record interface must also satisfy a State Restoration Property, defined 
as follows:  

If, for some Record object, a writeRecord call is followed by a  
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readRecord call with the same byte sequence, the observable state of the 
Record object will be unchanged. 

The concrete implementations of the Record interface appear in either the 
Client Layer for client-defined records or in the Access Layer for “records” used 
internally within a Table implementation. The Storage Layer calls the Record 
methods when it needs to read or write the physical record. The code in the Re-
cord-implementing class does the conversion of the internal record data to and 
from a stream of bytes. The RecordStore and RecordSlot implementations 
are responsible for routing the stream of bytes to and from the physical storage 
medium.   

The framework design using the Record interface takes a low-level ap-
proach to handling the conversion of user-defined records to the desired external 
form. It requires that the users provide facilities for translating their records 
to/from a sequence of bytes by having the records themselves implement the Re-
cord interface.  An alternative would be to encapsulate this functionality within 
an externalization object developed in accordance with the Strategy pattern 
(Gamma et al. 1994).  Methods of the externalization object could access the 
fields of the user’s record to create the needed external form and vice versa. This 
access might be direct using accessor methods the user record provides or it might 
be indirect using reflection. Taking this approach further, the Storage Layer might 
be parameterized with other Strategy objects that convert from a device-
independent form coming from the externalization object to the form actually 
stored on the physical device. Given that strict typing is not maintained when a re-
cord is externalized, this would be an acceptable, possibly more dynamic alterna-
tive to the approach using the Record interface.  It would also better support ex-
ternal forms such as an XML representation. However, we opt for the simpler, 
low-level approach for the framework design in this chapter. 

 
Fig. 4. Abstraction Usage Replationships 



Designing a Flexible Framework for a Table Abstraction      21 

In summary, Fig. 4 shows the use relationships among the Client, Access, and 
Storage Layer and Externalization Module abstractions.  The user program in the 
upper-level Client layer calls the Table ADT directly and the lower layers have 
callbacks to implementations of the Keyed, Comparable, and Record ab-
stractions defined in the layers above. 

9 ITERATORS  

So far, we have specified the basic structure of the Table framework.  More design 
patterns could be applied to enhance the design of the framework.  This section il-
lustrates how to apply the Iterator design pattern (Gamma et al. 1995; Grand 1998) 
in the Table framework.  This design pattern enables the client code to access all 
the records in the table in some order without exposing the internal details of the 
table implementations. The interface Iterator, defined in the Java API, pro-
vides a standard means for Java programs to support iterators.  It includes method 
hasNext to check for the existence of another element and method next to re-
turn the next element. We can add several useful iterators and iterator-
manipulating methods to the framework design. 

9.1 Table Iterator Methods 

As a convenience for clients of the table implementations, we add two iterator ac-
cessor methods, getKeys() and getRecords(), to the Table interface (de-
fined in the Access Layer). Remember that the ADT invariant for Table must 
also hold as a precondition and postcondition for these operations. 

Here we introduce new notation for describing the semantics of iterators. The 
abstract attribute seq of an Iterator denotes the sequence of elements that the 
iterator yields on any subsequent calls of the next() method.  The suffix predi-
cate nodups operates on sequences and returns true if and only if the sequence 
contains no repeated elements. We also overload the ∈ and ∉ operators to work 
with sequences as well as sets.  The utility function occurs(e,s) returns the 
number of occurrences of element e in sequence s. 

• Iterator getKeys() returns an iterator that enables the client to 
access all the keys in the table one by one. 
Pre:    true 
Post: result.seq.nodups && 
     (∀ k ::  
        k ∈ result.seq == defined(#table(k)) 

• Iterator getRecords() returns an iterator that enables the client 
to access all the records in the table one by one.  
Pre:    true 
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Post: result.seq.nodups && 
     (∀ r ::  
        r ∈ result.seq == (∃ k :: r = #table(k))) 

Similarly, we can add overloaded versions of the insert and delete meth-
ods that take appropriate iterators as arguments.  

• void insert(Iterator iter) inserts the Keyed objects denoted 
by the iterator iter into the table.  
Pre:  iter.seq.nodups &&  
   (∀ r : r ∈ iter.seq : isValidRec(r) &&  
      isStorable(r) && !containsKey(r.getKey())) 
Post:   table == #table ∪  
              {(r.getKey(),r) :  r ∈ iter.seq } 

• void delete(Iterator iter) deletes the objects  from the table 
whose keys match those returned by iterator iter. 
Pre:  iter.seq.nodups  &&  
   (∀ k: k ∈ iter.seq :  
      isValidKey(k) && containsKey(k)) 
Post:   table == #table – 
              {(k,#table(k)) : k ∈ iter.seq } 

We note that the precondition of the insert(Iterator)method requires all 
elements yielded by the iterator to be absent from the table.  In practice, this may 
be difficult to ensure for all calls.  Alternative specifications might be to require 
that an insert of an existing key to either be ignored or result in an update opera-
tion, but these would make the iterator version behave differently than the non-
iterator version of insert. A similar situation arises for delete(Iterator) 
because its precondition requires the presence of every key.  

9.2 Input Iterators 

The method insert(Iterator) is a convenient mechanism for  loading a ta-
ble with a sequence of items that come from a different format. We add the ab-
stract base class InputIterator to enable users to conveniently create a class 
to read records from external files.  The design of this class takes advantage of the 
Template Method design pattern. 

The Template Method design pattern (Gamma et al. 1995; Grand 1998) is a 
quite useful pattern for building frameworks.  Central to this pattern is an abstract 
class that provides a skeleton of the needed behaviors.  The class consists of two 
kinds of methods: 

Template methods are concrete methods that implement the shared functionality of 
the class hierarchy.  They are not intended to be overridden by subclasses. 
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Hook methods are (often abstract) methods that provide “hooks” for attaching the 
functionality that varies among applications.  Although hook methods may 
have a default definition in the abstract class, in general they are intended to be 
overridden by subclasses.  A template method calls a hook method to carry out 
application-dependent operations. 

The InputIterator class implements the Java Iterator interface, pro-
viding the required Iterator methods as template methods.  It also includes 
two abstract hook methods that are called by the template methods: 

• boolean atEnd() that returns true when the end of the input has 
been reached. 

• Object readNext() that returns the next object in the input stream. 

 
Fig. 5. Applying the Template Method pattern 

A client who wishes to use this class must extend the InputIterator class, 
providing appropriate concrete definitions for the abstract methods.  As shown in 
Fig. 5 the InputIterator is itself a small framework, with a hot spot concern-
ing that nature of the source from which data objects are being read. 

9.3 Filtering Iterators 

Sometimes users need to transform the elements of one sequence into another.  
Some elements may need to be deleted and others kept.  Sometimes a conversion 
operation needs to be applied to every element of a sequence.  We can support 
these operations on iterators by introducing the FilterIterator class. 
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The FilterIterator class is a concrete class that implements the It-
erator interface.  Its constructor takes three arguments: an iterator, a selector, 
and a converter.  Its implementation takes advantage of the Decorator and Strategy 
design patterns as shown in Fig. 6. 

The Decorator design pattern extends the functionality of an object in a way 
that is transparent to the users of that object (Gamma et al. 1995; Grand 1998). A 
Decorator object is of the same type as the original object. It serves as a wrapper 
around the original object that provides enhanced functionality but it delegates 
part of its work to the original object.  The FilterIterator is an iterator 
whose constructor takes another iterator as an argument; it uses the argument it-
erator as its source of data but selects and transforms the data that is returned by 
its next() method. The use of the Decorator design pattern thus allows a Fil-
terIterator to provide enhanced functionality at any place that an Itera-
tor is used.   

 
Fig. 6. Applying the Strategy and Decorator pattern 

The Strategy design pattern abstracts a family of related algorithms behind an 
interface (Gamma et al. 1995; Grand 1998).  The desired algorithm can be se-
lected at runtime and plugged into the object that uses the algorithm.  The selector 
and converter arguments of the FilterIterator are Strategy objects that en-
capsulate the selection and conversion algorithms, respectively.  For example, the 
selector is an object of a class that implements the Selector interface.  This in-
terface requires that the class implement the method:  

 
• boolean selects(Object obj) that returns true if and only if 

obj satisfies the chosen criteria. 
 
The FilterIterator delegates the choice of which objects from its input 

sequence to keep to the selects() method of the selector object. The use of the 
Strategy design pattern enables the same FilterIterator object to be config-
ured flexibly to have different behaviors as needed.   
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9.4 Query Iterator Methods 

The Table abstraction defined in a previous section only provides access based 
on the unique, primary key of the record. Sometimes a client may want to access 
records based on the values of other fields. Unlike the primary key, these secon-
dary key fields may not uniquely identify the record within the collection.  

The framework can be readily extended to accommodate access on secondary 
keys as well as the primary key. We can, for example, define a MultiKeyed in-
terface in the Client Layer that extends the Keyed interface with additional meth-
ods: 

• int getNumOfKeys() that returns the number of keys supported by 
the  associated record implementation 

• Comparable getKey(int k) that extracts the key k from the re-
cord, where key 0 is the primary key 

While it is sufficient for the basic Table mechanism to have a simple 
method retrieve(Comparable), a table that supports access on multiple 
keys needs to allow a variable number of items to be retrieved for each secondary 
key value.  Therefore, we define a new QueryTable interface that extends the 
Table interface and includes several new iterator-returning methods.  These in-
clude: 

• Iterator selectKeys(int k, Selector sel) that returns  
the sequence of primary keys for the records whose key k satisfies the se-
lector sel 

• Iterator selectRecords(int k, Selector sel) that re-
turns the sequence of records whose key k satisfies selector sel 

As a convenience, it is also useful to allow a query to be done using a combina-
tion of various primary and secondary key values. We can thus define two addi-
tional iterator methods: 

• Iterator selectKeys(Query q) that evaluates the query q and 
returns the sequence of primary keys of all records that satisfy the query 

• Iterator selectRecords(Query q)that evaluates the query q 
and returns the sequence of all records that satisfy the query 

In this design, Query is the abstract base of a class hierarchy constructed ac-
cording to the Composite design pattern (Gamma et al. 1995; Grand 1998).  This 
hierarchy, shown in Fig.7, represents the abstract syntax tree of the query com-
mands.  The primary operation of the Query classes is the method: 

• Iterator eval(QueryTable t) that evaluates the query in the 
context of the QueryTable argument t and returns the primary keys 
from the table for records that satisfy the query 
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The concrete class FieldSelector is a leaf subclass of the Query Com-
posite hierarchy.  The class has two attributes, an integer to identify which key 
field of the multikeyed table is to be considered and  a Selector Strategy object 
to determine what values of that (secondary or primary) key field are to be se-
lected for inclusion in the result.   When a simple query of this nature is evaluated 
(e.g., by the selectKeys method), the set associated with the resulting iterator 
consists of all the primary keys from the table for the records that satisfy the 
FieldSelector. 
 

 
Fig.7. Applying the Composition Pattern  

Query also has several composite subclasses denoting operations to be per-
formed.  For example, the subclass And has two attributes, a left and a right child 
query. When an And query is evaluated by the selectKeys method, first the 
two sub-queries are evaluated recursively to get two sets of primary keys and then 
the intersection of the two sets is returned. Similarly, Or performs a union of the 
sets, Diff subtracts the set represented by the second argment from the first, and 
Xor constructs the symmetric difference of the two sets (i.e., elements in only one 
of the two sets). 

The prototype implementation of the Table framework (Wang 2000) imple-
ments a flat query syntax with the same general semantics as described above. The 
QueryTable it implements has an index for each primary and secondary key. 

10 EVOLVING FRAMEWORKS 

The framework design described informally in this chapter is presented from the 
perspective of an a priori design approach for frameworks.  Such an approach 
seeks to derive the framework using systematic analysis (Coplien et al. 1998; 
Weiss and Lai 1999) and generalization (Schmid 1999; Cunningham and Tade-
palli 2006) techniques. In a more traditional approach, framework designs tend to 
evolve as their usage grows and the developers learn more about the application 



Designing a Flexible Framework for a Table Abstraction      27 

domain.  This evolution often follows the steps documented in the Evolving 
Frameworks system of patterns (Roberts and Johnson 1998).  The evolution of the 
different versions of the Table Framework also exhibits several of these process 
patterns. 

10.1 Three Examples 

In most nontrivial frameworks, it is not easy to come up with the right abstractions 
just by thinking about the problem. Domain experts typically do not know how to 
express the abstractions in their heads in ways that can be turned into designs for 
abstract classes; programmers typically do not have a sufficient understanding of 
the domain to derive the proper abstractions immediately (Roberts and Johnson 
1998). 

Often, three implementation cycles are needed to develop a sufficient under-
standing of the application to construct good abstractions (Roberts and Johnson 
1998). The original design of the Table framework was no different despite the 
simplicity of the problem (Cunningham and Wang 2001). In the exploration of the 
design, Wang constructed three prototype implementations of RecordStore 
and two implementations of Table (Wang 2000). Earlier work designing similar 
Table libraries also yielded insight. Each implementation effort gave new insights 
into what an appropriate set of abstractions were and uncovered potential prob-
lems.  

10.2 Whitebox Frameworks 

As this framework is defined so far, the Table framework is a pure whitebox 
framework (Johnson and Foote 1988; Fayad et al. 1998).  In general, a whitebox 
framework consists of a set of interrelated abstract base classes.  Developers im-
plement new applications by extending these base classes and overriding methods 
to achieve the desired new functionality. The implementers must understand the 
intended functionality and interactions of the various classes and methods. Such 
frameworks are flexible, extensible and easy to build, but they are difficult to learn 
and use. 

While whitebox frameworks rely upon inheritance to achieve extensibility, 
blackbox frameworks use object composition to support extensible systems (John-
son and Foote 1988; Fayad et al. 1998).  Such frameworks define interfaces for 
components and allow existing components to be plugged into these interfaces.  
Appropriate components that conform to these interfaces are collected in a com-
ponent library for ready reuse. Such frameworks can be easy to use and extend.  
However, they tend to be difficult to develop because they require the developers 
to provide appropriate interfaces for a wide range of potential uses.  
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10.3 Component Library  

Once a basic whitebox framework is in place, the design usually evolves to-
ward a blackbox framework by the addition of useful concrete classes to a compo-
nent library (Roberts and Johnson 1998). The addition of concrete implementa-
tions of the Table and RecordStore abstractions thus is a natural next step in 
the evolution of the Table framework.  

A prototype component library has been developed for an earlier version of 
Table framework design (Wang 2000). This component library provides three dif-
ferent implementations of the Storage Layer, in particular of the RecordStore 
interface:  

• VectorStore, an implementation that stores the records in a Java 
Vector 

• LinkedMemoryStore, an implementation that stores the records in a 
linked list 

• SlottedFileStore, an implementation that stores the records in a 
relative file of fixed length blocks on disk and uses a bit-map to manage 
the blocks. 

The component library also provides two implementations of the Access Layer, 
in particular of the Table interface: 

• SimpleIndexedFile, an implementation that uses a simple sorted in-
dex in memory to support the location of records using keys (Folk et al. 
1998) 

• HashedFileClass, an implementation that uses a hash table to support 
the key-based access 

In the prototype component library (Wang 2000), the SimpleIndexedFile 
component actually implements the QueryTable interface, the extended version 
supporting more complex queries. 

10.4 Hot Spots 

Even if one does attempt to identify some of the frozen and hot spots beforehand, 
experience in developing applications with a framework helps to identify more 
points of shared functionality and more points of variability. Once identified, the 
shared functionality (new frozen spots) can be incorporated into the framework as 
concrete classes or as concrete methods of abstract classes. The points of variabil-
ity (new hot spots) can be incorporated into the framework as abstract hook meth-
ods that are refined via inheritance (e.g., using the Template Method pattern).  Al-
ternatively, hot spots can be implemented by delegation to classes that encapsulate 
the required functionality (e.g., using the Strategy and Decorator patterns).  
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In the Table framework, the input iterator extension is an example of new 
functionality that might be added to the framework as a result of user experience.  
Users of the framework discover that they are frequently writing new iterator 
classes to wrap different data sources.  This suggests that a new frozen spot, the 
InputIterator Template Method class, be added to the framework. The hook 
methods of this class represent a hot spot that can be defined by subclassing the 
InputIterator class. 

10.5 Pluggable Objects 

In early versions of an evolving framework, there is the tendency to have large-
grained hot spots implemented in a whitebox fashion using inheritance. As the 
framework is used, it is sometimes discovered that almost the same subclass is be-
ing repeatedly implemented.  The solution is to implement the common parts of 
these subclasses as a concrete class and parameterize it so that the variable aspects 
can be “plugged in” as an argument to the constructor or some setter method. 

In the Table framework, the filtering iterator extension is another example of 
new functionality that might be added to the framework as a result of user experi-
ence.  Users of the framework discover that they are frequently selecting a subset 
of the items in the table using a standard iterator and then performing some trans-
formation on each selected item.  This suggests a new frozen spot, the Fil-
terIterator concrete decorator class, be added to the framework, with two 
new hot spots for the selection and conversion functions.  The hot spots are im-
plemented as Strategy objects passed as arguments to the constructor. 

The Evolving Frameworks patterns include several other steps that the devel-
opment of long-lived frameworks may take: the gradual inclusion of many useful, 
fine-grained objects to eventually enable a fully blackbox framework to be con-
structed and the development of visual builders and language-oriented tools to as-
sist clients to use the framework to develop and test new applications.  The Table 
framework has not yet evolved to the point where these patterns have been used. 

11 DISCUSSION 

A key requirement in the framework design presented in this chapter is the separa-
tion of the key-based access mechanisms, represented by the Table interface, 
from the physical storage mechanisms for the records, represented by the Re-
cordStore interface. This idea is inspired, in part, by Sridhar's YACL C++ li-
brary's approach to B-trees (Sridhar 1996), which separates the B-tree implemen-
tation from the NodeSpace that supports storage for the B-tree nodes. The design 
extends Sridhar's concept with the RecordSlot abstraction, which is inspired, 
in part, by Goodrich and Tamassia's Position ADT (Goodrich and Tomassia 
1998). The Position ADT abstracts the concept of “place” within a sequence so 
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that the element at that place can be accessed uniformly regardless of the actual 
implementation of the sequence.  

This chapter’s approach generalizes the NodeSpace and Position concepts and 
systematizes their design by using standard design patterns. The Layered Archi-
tecture and Bridge patterns motivate the design of the RecordStore abstraction 
and the Proxy pattern motivates the design of the RecordSlot mechanism. The 
result is a clean structure that can be described and understood in terms of stan-
dard design patterns concepts and terminology. Careful attention to the semantics 
of the abstract methods in the various interfaces helps us allocate responsibility 
among the various abstractions in the framework and helps us decide what func-
tionality can be supported across many possible implementations.  

Framework design involves incrementally evolving a design rather than dis-
covering it in one single step.  Historically, this evolution is a process of examin-
ing existing designs for family members, identifying the frozen spots and hot spots 
of the family, and generalizing the program structure to enable reuse of the code 
for frozen spots and use of different implementations for each hot spot. This gen-
eralization may be done in an informal, organic manner as the Patterns for Evolv-
ing Frameworks (Roberts and Johnson 1998) or it may be done using systematic 
techniques such as systematic generalization (Schmid 1997, 1999) and function 
generalization (Cunningham and Tadepalli 2006; Cunningham et al. 2006b).  

Schmid's methodology seeks a way to identify the hot spots a priori and con-
struct a framework systematically. It identifies four steps for construction of a 
framework: (1) creation of a fixed application model, (2) hot spot analysis and 
specification, (3) hot spot high-level design, and (4) generalization transformation. 
In Schmid's approach, the fixed application model is an object-oriented design for 
a specific application within the family. Once a complete model exists, the frame-
work designer analyzes the model and the domain to discover and specify the hot 
spots. The hot spot's features are accessed through the common interface of the 
abstract class. However, the design of the hot spot subsystem enables different 
concrete subclasses of the base class to be used to provide the variant behaviors.  

Function generalization (Cunningham and Tadepalli 2006; Cunningham et al. 
2006b) is another systematic approach. Instead of generalizing the class structure 
for an application design as Schmid's methodology does, the function generaliza-
tion approach generalizes the functional structure of an executable specification to 
produce a generic application. It introduces the hot spot abstractions into the de-
sign by replacing concrete operations by more general abstract operations. These 
abstract operations become parameters of the generalized functions. That is, the 
generalized functions are higher-order, having parameters that are themselves 
functions.  Such functions can be expressed in functional programming languages, 
such as Haskell (Peyton Jones 2003), and also in newer, multiparadigm languages 
such as Scala (Odersky et al. 2006) and application languages such as Ruby 
(Thomas et al. 2005).  After generalizing the various hot spots of the family, the 
designers can use the resulting generalized functions to define a framework in an 
object-oriented language such as Java. 

The Table framework presented here was originally developed in a somewhat 
organic fashion but did utilize software design patterns systematically (Cunning-
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ham and Wang 2001).  This chapter revisits that work from the standpoint of more 
careful commonality/variability analysis.  Future work should examine the frame-
work design using a more formally systematic technique such as function gener-
alization and seek to evolve the framework design more toward a blackbox design.  

12 CONCLUSION 

This chapter describes how commonality/variability analysis, software design pat-
terns, and formal design contracts are applied advantageously in the design of a 
small application framework for building implementations of the Table ADT.  The 
framework consists of a group of Java interfaces that collaborate to define the 
structure and high-level interactions among components of the Table implementa-
tions. The key feature of the design is the separation of the Table’s key-based re-
cord access mechanisms from the physical storage mechanisms. The systematic 
application of commonality/variability analysis and the Layered Architecture, In-
terface, Bridge, and Proxy design patterns lead to a design that is sufficiently 
flexible to support a wide range of client-defined records and keys, indexing struc-
tures, and storage media.  The use of the Template Method, Strategy, Decorator, 
and Composite design patterns also enables variant components to be easily 
plugged into the framework.  The Evolving Frameworks patterns give guidance on 
how to modify the framework as more is learned about the family of applications. 
The conscious use of these software design patterns increases the understandabil-
ity and consistency of the framework’s design. 

13 EXERCISES 

1. Suppose you wish to modify the Client Layer design to use comparison and 
extraction Strategy objects as described in Section 12.4.3.  Discuss the im-
pacts of these changes upon the Client and Access Layer designs. 

2. Suppose you wish to modify the Table ADT to allow a (conceptually) infi-
nite number of key-value pairs to be held in the table.  How would you mod-
ify the specification?  What new operations, if any, would you add?  Suggest 
an implementation of such a table. 

3. Suppose you wish to develop a new map operation (similar to what might be 
found in a functional programming language like Haskell or Lisp) in the Ta-
ble ADT.  A map operation takes a function and applies the function to 
every element of some data structure, leaving the modified element in the 
place of the previous element.  Define the method map and give its design 
contract.  What restrictions, if any, on the function must be made to ensure the 
integrity of the Table?  
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4. Suppose you wish to use a more general approach to externalization of the re-
cord’s internal state than the low-level, byte-stream approach used in this 
chapter. (See the discussion in Section 12.8.) Give an alternative design and 
identify the impacts of this change upon the Externalization Module and other 
aspects of the framework.  

5. Characterize the new hot spot(s) introduced into the FilterIterator ab-
straction.  What are the variabilities? What design pattern is used to realize 
each variability? 

6. The InputIterator uses the Template Method design pattern and the 
FilterIterator uses the Strategy design pattern.  Investigate the litera-
ture on these patterns (Gamma et al 1995; Grand 1998).  What are the relative 
advantages and disadvantages of these two patterns as means for implement-
ing variability for a hot spot?  

7. Using the logical notation of this chapter, state the needed preconditions for 
the methods int getNumOfKeys() and Comparable getKey(int) 
of the MultiKeyed abstraction defined in Section 12.9.4.  

8. Using the logical notation of this chapter, state appropriate design contracts 
for the Iterator-returning methods selectKeys(int,Selector) 
and selectRecords(int,Selector) of the QueryTable abstraction 
defined in Section 12.9.4.  

9. Using the logical notation of this chapter, state appropriate design contracts 
for the Iterator-returning query methods selectKeys(Query) and 
selectRecords(Query) defined in Section 12.9.4.  These can use the 
eval(QueryTable) method of the Query class hierarchy. 

10. Using the logical notation of this chapter, state an appropriate design contract 
for the method eval(QueryTable) of the Query class hierarchy defined 
in Section 12.9.4.   

11. Implement the framework and design an application.    

a. Develop a version of the Access Layer (i.e., Table) that uses an ar-
ray in memory (or Vector or ArrayList) to create a sorted index 
of the keys. 

b. Develop a version of the Storage Layer that uses a Java Vector (or 
ArrayList) as the storage medium for the records. 

c. Pair the two programs developed in the previous two problems. 

d. Test the application with various kinds of keys and records. 

12. Continue the programming exercise above and develop new components. De-
velop a version of the Access Layer that uses a hash table and pair it with the 
Storage Layer developed above.   



Designing a Flexible Framework for a Table Abstraction      33 

13. Complete the design and implement an Access Layer based on a multikeyed 
table as defined by the QueryTable abstraction in Section 12.9.4.   

14. The framework presented in this chapter mostly consists of large-grained 
components. Examine one of the detailed designs and implementations of the 
Access Layer from the previous three exercises.  Suggest additional frozen 
spots and hot spots in your design that will allow a useful finer-grained 
framework to be constructed by using more “pluggable objects”. 

15. Examine the Java API for stream and file input/output. Identify the hot spots 
in this framework.  How are the hot spots implemented?  What design pat-
terns are used to structure the designs? 
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