
CSci 658-01: Software Language Engineering
Introduction to Sofware Architecture

H. Conrad Cunningham

12 January 2018

Contents
What is Engineering? . 1
Engineering Design . 2
Software Reuse . 2
Figures from Shaw-Garlan Textbook 2
Codification through Abstraction . 3
Aspects of the Emerging Science . 3
What is Software Architecture? . 4

System Design . 4
Software Design . 4

Research Areas in Software Architecture 5

Copyright (C) 2018, H. Conrad Cunningham

Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Acknowledgements: This material is based primarily on Chapter 1 of the
textbook Software Architecture: Perspectives on an Emerging Discipline by Mary
Shaw and David Garland (Prentice Hall, 1996).

I created these slides for the firstoffering of my Software Architecture special
topics course in Spring 1998. Thanks to WenWen Xu for entering my handwritten
slides as HTML so that I could prepare these notes more quickly.

I reformated the slides to use Pandoc Markdown in Spring 2018.

Advisory: The HTML version of this document may require use of a browser
that supports the display of MathML. A good choice as of November 2017 is a
recent version of Firefox from Mozilla

1

http://www.cs.olemiss.edu
https://www.cs.olemiss.edu/
http://olemiss.edu/audience/students.html

What is Engineering?

Many definitions include a phrase similar to:

• creating cost-effective solutions

• to practical problems

• by applying scientific knowledge

• building things

• in the service of mankind

Key approach: codify scientific knowledge about a problem domain in a form
directly useful to practitioners (and hence extend the capability of the
ordinary design talent)

Question: Is software development an engineering discipline?

Engineering Design

routine <====> innovative
familiar problems unfamiliar problems
reuse prior solutions novel solutions
(handbooks, manuals)

Question: What is the situation with software design?

Software Reuse

Reuse of software

code <===> design

Problems in reuse:

• identifying reusable entities
• expressing them in useful form
• making them accessible
• adapting them to variants of the problem
• overcoming cultural tradition
• educating designers/programmers in reuse
• convincing management to invest in reuse

2

Figures from Shaw-Garlan Textbook

Examine Figure 1.2, Evolution of an Engineering Discipline.

Examine Figure 1.3, Codification Cycle for Science and Engineering.

Examine Figure 1.4, Evolution of Software Engineering.

Codification through Abstraction

Abstraction: emphasizing the essentials, ignoring the details

Computer science has progressed by increasing the level of abstraction---moving
to larger conceptual building blocks.

(The following dates are approximate.)

1950’s machine language\
symbolic assemblers\
macro processors\
simple compilers (e.g., early Fortran)\

1960’s data typing (Algol)\
modularity\
user-defined types\

1970’s theory of abstract data types\
early OOP ideas\
module interconnection languages (MIL)\

1980’s . . .\
class libraries\

**1990\ CORBA\
** application framework\

patterns\
. . .\

3

Aspects of the Emerging Science

• programming language abstraction (previous section)

• algorithm analysis

• automata/models

• language theory

• syntax

What is Software Architecture?

It involves description of:

• elements from which systems are constructed
• interactions among those elements
• patterns that guide their composition
• constraints on those patterns

Systems are defined in terms of:

• collection of components
• interactions among those components (connectors)

Example components:

• clients and servers
• databases
• filters
• layers in hierarchical system
• etc.

Example interactions:

• procedure calls
• shared variables
• piped streams
• client-server protocols
• database transactions
• event multicast
• etc.

System Design

There are many levels of design, each with own concerns.

Each level consists of:

4

• components (vocabulary)
• rules of composition (syntax)
• rules of behavior (semantics)

Software Design

1. Architecture: high-level system capability

-- involves composing modules to form systems

2. Code: algorithms and data structures

-- involves composing primitive language features to form modules

3. Executable: allocation of code and data to machine

-- involves composing bit patterns to form language features

Research Areas in Software Architecture

• architectural description languages

• codification of architectural expertise

• architectural frameworks for specific domains

• formal foundations

• architecture design/analysis selection methods

• support tools

• architecture extraction, recovery, and reengineering (for legacy systems)

• etc.

5

	What is Engineering?
	Engineering Design
	Software Reuse
	Figures from Shaw-Garlan Textbook
	Codification through Abstraction
	Aspects of the Emerging Science
	What is Software Architecture?
	System Design
	Software Design

	Research Areas in Software Architecture

