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What is Engineering?

Many definitions include a phrase similar to:

• creating cost-effective solutions

• to practical problems

• by applying scientific knowledge

• building things

• in the service of mankind

Key approach: codify scientific knowledge about a problem domain in a form
directly useful to practitioners (and hence extend the capability of the
ordinary design talent)

Question: Is software development an engineering discipline?

Engineering Design

routine <====> innovative
familiar problems unfamiliar problems
reuse prior solutions novel solutions
(handbooks, manuals)

Question: What is the situation with software design?

Software Reuse

Reuse of software

code <===> design

Problems in reuse:

• identifying reusable entities
• expressing them in useful form
• making them accessible
• adapting them to variants of the problem
• overcoming cultural tradition
• educating designers/programmers in reuse
• convincing management to invest in reuse
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Figures from Shaw-Garlan Textbook

Examine Figure 1.2, Evolution of an Engineering Discipline.

Examine Figure 1.3, Codification Cycle for Science and Engineering.

Examine Figure 1.4, Evolution of Software Engineering.

Codification through Abstraction

Abstraction: emphasizing the essentials, ignoring the details

Computer science has progressed by increasing the level of abstraction---moving
to larger conceptual building blocks.

(The following dates are approximate.)

1950’s machine language\
symbolic assemblers\
macro processors\
simple compilers (e.g., early Fortran)\

1960’s data typing (Algol)\
modularity\
user-defined types\

1970’s theory of abstract data types\
early OOP ideas\
module interconnection languages (MIL)\

1980’s . . .\
class libraries\

**1990\ CORBA\
** application framework\

patterns\
. . .\
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Aspects of the Emerging Science

• programming language abstraction (previous section)

• algorithm analysis

• automata/models

• language theory

• syntax

What is Software Architecture?

It involves description of:

• elements from which systems are constructed
• interactions among those elements
• patterns that guide their composition
• constraints on those patterns

Systems are defined in terms of:

• collection of components
• interactions among those components (connectors)

Example components:

• clients and servers
• databases
• filters
• layers in hierarchical system
• etc.

Example interactions:

• procedure calls
• shared variables
• piped streams
• client-server protocols
• database transactions
• event multicast
• etc.

System Design

There are many levels of design, each with own concerns.

Each level consists of:
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• components (vocabulary)
• rules of composition (syntax)
• rules of behavior (semantics)

Software Design

1. Architecture: high-level system capability

-- involves composing modules to form systems

2. Code: algorithms and data structures

-- involves composing primitive language features to form modules

3. Executable: allocation of code and data to machine

-- involves composing bit patterns to form language features

Research Areas in Software Architecture

• architectural description languages

• codification of architectural expertise

• architectural frameworks for specific domains

• formal foundations

• architecture design/analysis selection methods

• support tools

• architecture extraction, recovery, and reengineering (for legacy systems)

• etc.
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