
CSci 658: Software Language Engineering
Sandwich DSL Case Study (Lua)

H. Conrad Cunningham

3 March 2018

Contents
Sandwich DSL Case Study 1

Problem Description . 1
Tasks . 2
One Lua Solution . 3

Lua Data Representation . 3
Lua Internal DSL . 3
Testing . 4

Acknowledgements . 4
References . 4
Concepts . 4

Copyright (C) 2013, 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Advisory: The HTML version of this document requires use of a browser that
supports the display of MathML. A good choice as of March 2018 is a recent
version of Firefox from Mozilla.

Sandwich DSL Case Study

Problem Description

Suppose Emerald de Gassy, the owner of the Oxford-based catering business
Deli-Gate, hires us to design a domain-specific language (DSL) for describing

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

sandwich platters. The DSL scripts will direct Deli-Gate’s robotic kitchen
appliance SueChef (Sandwich and Utility Electronic Chef) to assemble platters
of sandwiches.

In discussing the problem with Emerald and the Deli-Gate staff, we discover the
following:

• A sandwich platter consists of zero or more sandwiches. (Zero? Why not!
Although a platter with no sandwiches may not be a useful, or profitable,
case, there does not seem to be any harm in allowing this degenerate case.
It may simplify some of the coding and representation.)

• Each sandwich consists of layers of ingredients.

• The categories of ingredients are breads, meats, cheeses, vegetables, and
condiments.

• Available breads are white, wheat, and rye.

• Available meats are turkey, chicken, ham, roast beef, and tofu. (Okay, tofu
is not a meat, but it is a good protein source for those who do not wish
to eat meat. This is a college town after all. Oh, there is also a special
meat served for football games Thanksgiving week called “bulldog”, but it
is really just chicken, so we can ignore that choice for our purposes here.)

• Available cheeses are American, Swiss, jack, and cheddar.

• Available vegetables are tomato, lettuce, onion, and bell pepper.

• Available condiments are mayo, mustard, relish, and Tabasco. (Of course,
this being the South, the mayo is Blue Plate Mayonnaise and the mustard
is a Creole mustard.) Creole mustard.)

• The sandwiches must be assembled in Oxford Standard Order (OS slice of
bread on the bottom, then zero or more meats layered above that, then
zero or more cheeses, then zero or more vegetables, then zero or more
condiments, and then a slice of bread on top. The top and bottom slices
of bread must be of the same type. (OSO was defined by the mysterious
and picky food critic known as CH.)

Tasks

1. Describe an appropriate semantic model for your Lua Sandwich DSL. That
is, what concrete data structures might you use? What functions/methods
to manipulate the semantic model?

2. Remember the sandwiches must be assembled in OSO. Choose to do either
an external DSL or an internal DSL. Tell me which. Describe the syntax
for your DSL.

2

3. Give a Lua script for configuring the following platter: one
turkey and Swiss on rye with tomatoes and mayo; one tofu and
mustard on wheat.

4. Describe a design for an implementation for your DSL. That is, how would
you translate a DSL script into an appropriate configuration of the semantic
model? What DSL implementation techniques or tools would you use? Be
specific.

One Lua Solution

Lua Data Representation

This semantic model design and implementation (in Lua module sandwich_model.lua)
uses Lua tables to represent platters and sandwiches. (This representation is
more general than needed for the Sandwich DSL problem from the exam.)

A list-style Lua table

{ PLATTER, n, sandwich1, sandwich2, ... sandwichM }

describes a set of n identical platters, for some n > 0. PLATTER is a tag constant.
Each platter has M descriptions of sandwiches, for some M >= 0.

A list-style table

{ SANDWICH, n, layer1, layer2, ... layerM }

describes a set of n identical sandwiches, for some n > 0. Each sandwich has M
layers of ingredients ordered from bottom to top, for some M >= 0.

Unlike the Lair semantic model, this semantic model is not technically object-
oriented. However, the tables described above are objects constructed and
manipulated by the functions in this module. A DSL builder module should not
create or access these directly. But more functions may be needed to enable
effective use of this model by other tools.

Lua Internal DSL

The Lua module sandwich_builder.lua implements an internal Sandwich DSL
in Lua. It uses Fowler’s Function Sequence and Context Variables DSL patterns.
The syntax has the structure:

platter()
sandwich()

ingredient commands
sandwich()

...
end_platter()

3

sandwich_model.lua
sandwich_builder.lua

The ingredient commands consist of the following in any order, but without
repetition within a sandwich:

bread(b)
meats(m1,m2,...)
cheeses(c1,c2,...)
vegetables(v1,v2,...)
condiments(c1,c2,...)

Note that only one bread may be specified, but one or more of the other
ingredients may be specified in a command.

A bread must be specified, but all the other commands are only given if ingredi-
ents of the associated type are to be added to the sandwich. Regardless of the
order of the commands, the sandwich is constructed in Oxford Standard Order –
bread, meats, cheeses, vegetables, condiments, bread from bottom to top.

The call get_platter() extracts the platter from the builder.

Testing

The Lua module test_sandwichDS.lua implements a simple test run of this
internal DSL.

Acknowledgements

The problem described in this document was an extended exercise on an ex-
amination in the Lua-based CSci 658 course in Fall 2013. The text above is
extracted from the comments at the beginning of my solution files.

In Spring 2018, I created this Pandoc Markdown document from the source code
comments for my solutions.

This problem motivated the related Haskell SandwichDSL case study defined in
Fall 2014 for CSci 450 (and then updated for Fall 2017). That case study, in
turn, was reinterpreted as Scala case study for the Spring 2016 CSci 555 class. I
updated the descriptions of these case studies in Spring 2018.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed. The HTML version of this document
may require use of a browser that supports the display of MathML.

References

TODO

4

test_sandwichDSL.lua

Concepts

TODO

Internal DSL; DSL patterns Semantic Model, Function Sequence, and Context
Variable; builder

5

	Sandwich DSL Case Study
	Problem Description
	Tasks
	One Lua Solution
	Lua Data Representation
	Lua Internal DSL
	Testing

	Acknowledgements
	References
	Concepts

