
CSci 450: Organization of Programming
Languages

Using Data Abstraction in Lua

H. Conrad Cunningham

13 September 2016

Copyright (C) 2016, H. Conrad Cunningham

Acknowledgements: Adapted from my notes Introduction to Functional Pro-
gramming Using Haskell (under development, 2016) and example Lua modules
for Rational Arithmetic.

Advisory: The HTML version of this document requires use of a browser that
supports the display of MathML. A good choice as of September 2016 is a recent
version of Firefox from Mozilla.

Using Data Abstraction

How can we make a program robust with respect to change in the form of its
data? A good technique is data abstraction. Let’s begin with an example.

Rational number arithmetic

For this example, let’s implement a group of Lua functions to perform rational
number (fraction) arithmetic.

In mathematics we usually write rational numbers in the form x
y where x and y

are integers and y 6= 0.

For now, let’s assume we have a Lua constructor function

makeRat(x,y)

to create a rational number instance from its numerator x and denominator y.
That is, makeRat(x, y) constructs rational number x

y .

1



Further, let us assume we have selector functions numer(r) and denom(r) that
each take a rational number argument and return its numerator and denominator,
respectively. That is, they satisfy the equalities:

numer(makeRat(x,y)) == x
denom(makeRat(x,y)) == y

We consider how to implement rational numbers in Lua later, but for now let’s
look at rational arithmetic using the constructor and selector functions above.

Given the knowledge of rational arithmetic from mathematics, we can define
the operations for unary negation, addition, subtraction, multiplication, and
division.

local function negRat(r)
return makeRat(- numer(r), denom(r))

end

local function addRat(r,s)
return makeRat(numer(r) * denom(s) + numer(s) * denom(r),

denom(r) * denom(s) )
end

local function subRat(r,s)
return makeRat(numer(r) * denom(s) - numer(s) * denom(r),

denom(r) * denom(s) )
end

local function mulRat(r,s)
return makeRat(numer(r) * numer(s), denom(r) * denom(s))

end

local function divRat(r,s)
return makeRat(numer(r) * denom(s), denom(r) * numer(s))

end

We can also define a function showRat to convert a rational number to a conve-
nient string representation.

local function showRat(r)
return tostring(numer(r)) .. "/" .. tostring(denom(r))

end

Because the comparison operations are similar to each other, they are good
candidates for us to use a higher-order function. We can abstract out the
common pattern of comparisons into a function that takes the corresponding
integer comparison as an argument.

To compare two rational numbers, we can express their values in terms of
a common denominator (e.g., denom(x) * denom(y)) and then compare the

2



numerators using the integer comparisons. We can thus abstract the comparison
into a higher-order function compare that takes an appropriate integer relational
operator and returns a function that compares the two numerators accordingly.

local function compare(comp)
return

function(r,s)
local x, y = numer(r) * denom(s), denom(r) * numer(s)
return comp(x,y)

end
end

Then we can define functions for the six relational operators as follows:

local eqRat = compare(function(x,y) return x == y end)
local neqRat = compare(function(x,y) return x ~= y end)
local ltRat = compare(function(x,y) return x < y end)
local leqRat = compare(function(x,y) return x <= y end)
local gtRat = compare(function(x,y) return x > y end)
local geqRat = compare(function(x,y) return x >= y end)

All these rational arithmetic functions use the constructor function makeRat and
the selector functions numer and denom assumed above. They do not depend
upon any specific representation for rational numbers.

The above functions work on rational numbers as a data abstraction defined by
the constructor function makeRat and selector functions numer and denom.

Rational number data representation

Now, how can we represent rational numbers?

We can represent a rational number as a two-element array (table) with numerator
at index 1 and denominator at index 2. For example, {1,7}, {-1,-7}, {3,21},
and {168,1176} all represent 1

7 .

As with any value that can be expressed in many different ways, it is useful
to define a single canonical (or normal) form for representing rational number
values.

It is convenient for us to choose a rational number representation {x,y} that
satisfies the following implementation (representation) invariant:

y > 0, x and y are relatively prime, and zero is denoted by {0,1}.

By relatively prime, we mean that the two integers have no common divisors
except 1.

By invariant, we mean a property that always holds except temporarily while
being operated upon. The constructor must make it true and it remains true

3



before and after all mutator and accessor operations. It is true before any explicit
destructor operation.

An implementation invariant is an invariant that is stated in terms of the concrete
data structures used.

This representation has the advantage that the magnitudes of the numerator x
and denominator y are kept small, thus reducing problems with overflow arising
during arithmetic operations.

We thus provide a function for constructing rational numbers in this canonical
form. We define constructor makeRat as follows. This function checks whether
arguments are integers for Lua before 5.3.

local function makeRat(x,y)
if type(x) == "number" and type(y) == "number" and

x == math.floor(x) and y == math.floor(y) and y ~= 0 then
return newRat(x,y)

else
error("Cannot construct rational number " ..

tostring(x) .. "/" .. tostring(y) )
end

end

The makeRat constructor delegates the actual construction of the rational num-
ber to function newRat. Function newRat assumes that it is called with two
appropriate integers.

local function newRat(x,y)
if x == 0 then

return {0,1}
else

local xx = signum(y) * x
local yy = math.abs(y)
local d = gcd(xx,yy)
return {xx/d, yy/d}

end
end

The function signum takes a number and returns the integer -1, 0, or 1 when
the number is negative, zero, or positive, respectively.

local function signum(n)
if n == 0 then

return 0
elseif n > 0 then

return 1
else

return -1
end

4



end

The function gcd takes two integers and returns their greatest common divisor.

local function gcd(x,y)
local function gcdaux(x,y)

if y == 0 then
return x

else
return gcdaux(y, x % y) -- tail recursive

end
end

return gcdaux(math.abs(x), math.abs(y))
end

Function gcd uses a tail recursive internal function gcdaux to compute the
gcd on the absolute values of its two integer arguments. It uses the Euclidean
Algorithm. (Operation % returns the remainder from dividing its first operand
by its second.)

Given makeRat defined as above, we can define numer and denom as follows:

local function numer(r)
return r[1]

end

local function denom(r)
return r[2]

end

These functions access the actual data structure used to represent the rational
numbers.

Data abstraction and modules

There are three groups of functions defined in this package:

1. the twelve public rational arithmetic functions negRat, addRat, subRat,
mulRat, divRat, showRat, eqRat, neqRat, ltRat, leqRat, gtRat, and
geqRat.

2. the public constructor function makeRat and public selector functions
numer and denom.

3. the private utility functions called only by the second group signum, gcd,
and newRat.

5



As we have seen, makeRat, numer, and denom in group 2 form the interface to
the data abstraction that hides the information about the representation of the
data. We can encapsulate the group 2 and 3 functions in a Lua module.

We put this source code in a script file named (say) rationalCore.lua. We
define the functions so that a function is defined before it is used, e.g., in the
order signum, gcd, newRat, makeRat, numer, and denom.

As the last executable statement in the module’s script, we return the module
table with the public functions defined with appropriate field names.

return { makeRat = makeRat, numer = numer, denom = denom }

Questions:

• Should we also include the function newRat in the public interface? What
are the advantages and disadvantages of doing so?

• Should we also include the functions signum and gcd in the public interface?
Or should we, instead, put them in a separate module?

The rational arithmetic functions in group 1 use the core data abstraction and,
in turn, extend the interface to include rational number arithmetic operations.

We can encapsulate these in another module rational. This Lua module
loads the data representation module an defines local variables for the module’s
operations.

local ratco = require("rationalCore")
local makeRat, numer, denom =

ratco.makeRat, ratco.numer, ratco.denom

The module returns both the group 1 and group 2 functions.

return { makeRat = makeRat, numer = numer, denom = denom,
negRat = negRat, addRat = addRat, subRat = subRat,
mulRat = mulRat, divRat = divRat, showRat = showRat,
eqRat = eqRat, neqRat = neqRat, ltRat = ltRat,
leqRat = leqRat, gtRat = gtRat, geqRat = geqRat

}

Other modules that use the rational number package can load Lua module
rational. This module can be reused wherever needed.

This modular approach to program design and implementation offers the potential
of scalability and robustness with respect to change.

One key to this information hiding approach to design is to identify the aspects
of a software system that are most likely to change from one version to another
and make each a design secret of some module.

The secret of the rationalCore module is the rational number data represen-
tation used. The secret of the rational module itself is the methods used for

6



rational number arithmetic.

Another key is the use of an abstract interface. The interface to each module
focuses on providing operations that are general, not specific to a particular
implementation.

Let’s now consider changes to the data representation.

Alternative rational number data representation

In the rational number data representation above (i.e., module rationalCore),
constructor makeRat creates pairs in which the two integers are relatively prime
and the sign is on the numerator. Selector functions numer and denom just return
these stored values.

An alternative representation is to reverse this approach in functions newRat,
numer, and denom, as shown in the module rationalDeferGCD.

local function newRat(x,y)
if x == 0 then

return {0,1}
else

return {x,y}
end

end

local function numer(r)
local x,y = r[1], r[2]
local xx = signum(y) * x
local yy = math.abs(y)
local d = gcd(xx,yy)
return xx / d

end

local function denom(r)
local x,y = r[1], r[2]
local xx = signum(y) * x
local yy = math.abs(y)
local d = gcd(xx,yy)
return yy / d

end

This approach defers the calculation of the greatest common divisor until a
selector is called.

The implementation invariant for this rational number representation requires
that, for {x,y},

7



y 6= 0 and zero is represented by {0,1}.

Furthermore, function numer and denom satisfy the equalities

numer (makeRat(x,y)) == x'
denom (makeRat(x,y)) == y'

where y' > 0, x' and y' are relatively prime, and x
y = x’

y’ .

Question:

• What are the advantages and disadvantages of the two data representations?

Like module rationalCore, the design secret for module rationalDeferGCD is
the rational number data representation.

Another rational number data representation

Another alternative to rationalCore and rationalDeferGCD is a module that
uses a closure instead of an array to represent a rational number. (We use a
parameterless closure, which is also called a thunk.)

We call build module rationalClo around the following altered definitions.

local function newRat(x,y)
if x == 0 then

return -- return thunk (closure)
function() return 0, 1 end -- two returns

else
return -- return thunk (closure)

function()
local xx = signum(y) * x
local yy = math.abs(y)
local d = gcd(xx,yy)
return xx/d, yy/d -- two returns

end
end

end

local function numer(r)
local x, _ = r() -- force thunk (closure)
return x

end

local function denom(r)
local _, y = r() -- force thunk (closure)
return y

end

8



The implementation invariant for this rational number representation requires
that, for some r,

For x, y = r(): y 6= 0, x and y are relatively prime, and if x == 0
then y == 1.

Like modules rationalCore and rationalDeferGCD, the design secret for mod-
ule rationalDeferGCD is the rational number data representation.

Regardless of which approach we use, the definitions of the arithmetic and
comparison functions do not change. Thus the rational module can load data
representation module rationalCore, rationalDeferGCD, or rationalClo and
get the same result.

Files

1. Rational arithmetic module – outer layer implementation of Rational
Arithmetic abstraction

2. Rational number data representation using two-element arrays – module
rationalCore implementing primitive layer

partial test script

3. Rational number data representation using array but deferring GCD –
module rationalDeferGCD implementing primitive layer

partial test script

4. Rational number data representation using closures – module rationalClo
implementing primitive layer

partial test script

9

rational.lua
rationalCore.lua
rationalCoreTest.lua
rationalDeferGCD.lua
rationalDeferGCDTest.lua
rationalClo.lua
rationalCloTest.lua

	Using Data Abstraction
	Rational number arithmetic
	Rational number data representation
	Data abstraction and modules
	Alternative rational number data representation
	Another rational number data representation
	Files


