CSci 658-01: Software Language Engineering

Python 3 Reflexive Metaprogramming
Chapter 3

H. Conrad Cunningham

4 May 2018
Contents

3 Decorators and Metaclasses 2
3.1 Basic Function-Level Debugging 2
3.1.1 Motivating example 0oL 2
3.1.2 Abstraction Principle, staying DRY 3
3.1.3 Function decorators 3
3.1.4 Constructing a debug decorator 4
3.1.5 Using the debug decorator 6
3.1.6 Casestudy review L. 7
3.1.7 Variations 7
3.1.71 Logging 7
3.1.7.2 Optional disable 8
3.2 Extended Function-Level Debugging 8
3.2.1 Motivating example oL 8
3.2.2 Decorators with arguments 9
3.2.3 Prefix decorator oL 9
3.2.4 Reformulated prefix decorator 10
3.3 Class-Level Debugging 12
3.3.1 Motivating example 0oL 12
3.3.2 Class-level debugger 12
3.3.3 Variation: Attribute access debugging 14
3.4 Class Hierarchy Debugging 16
3.4.1 Motivating example oL 16
3.4.2 Review of objects and types 17
3.4.3 Class definition process 18
3.4.4 Changing the metaclass 20
3.4.5 Debugging using a metaclass 21
3.4.6 Why metaclasses?, 22
3.5 Chapter Summary 23

3.6 Exercises 23

3.7 Acknowledgements L. 23
3.8 References 24
3.9 Terms and Concepts 24

Copyright (C) 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi

211 Weir Hall

P.O. Box 1848

University, MS 38677

(662) 915-5358

Note: This chapter adapts David Beazley’s debugly example presentation from
his Python 3 Metaprogramming tutorial at PyCon’2013 [Beazley 2013a].

Advisory: The HTML version of this document requires use of a browser that
supports the display of MathML. A good choice as of May 2018 is a recent
version of Firefox from Mozilla.

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu
http://www.dabeaz.com/py3meta

3 Decorators and Metaclasses

In this chapter, we look at metaprogramming using Python decorators and
metaclasses. To do so, we consider a simple tracing debugger case study, adapted
from David Beazley’s debugly example from his metaprogramming tutorial
[Beazley 2013a).

3.1 Basic Function-Level Debugging
3.1.1 Motivating example

Suppose we have a Python function add:

def add(x, y):
'Add = and y'
return x +y

A simple way we can approach debugging is to insert a print statement into
the function to trace execution, as follows:

def add(x, y):
'Add = and y'
print('add')
return x +y

However, suppose we need to debug several similar functions simultaneously.
Following the above approach, we might have code similar to that in the example
below.

def add(x, y):
'Add = and y'
print('add')
return x +y

def sub(x, y):
'Subtract y from z'
print('sub')
return x - y

def mul(x, y):
'Multiply = and y'
print('mul')
return x * y

def div(x, y):
'Divide = by vy'

print('div')
return x / y

We insert basically the same code into every function.

This code is unpleasant because it violates the Abstraction Principle.

3.1.2 Abstraction Principle, staying DRY

The Abstraction Principle states, “Fach significant piece of functionality in a
program should be implemented in just one place in the source code.” [Pierce
2002, p. 339]. If similar functionality is needed in several places, then the common
parts of the functionality should be separated from the variable parts.

The common parts become a new programming abstraction (e.g. a function,
class, abstract data type, design pattern, etc.) and the variable parts become
different ways in which the abstraction can be customized (e.g. its parameters).

The approach encourages reuse of both design and code. Perhaps more impor-
tantly, it can make it easier to keep the similar parts consistent as the program
evolves.

Andy Hunt and Dave Thomas [Hunt 2000, pp. 26-33] articulate a more general
software development principle Don’t Repeat Yourself, known by the acronym
DRY.

In an interview [Venners 2003], Thomas states, “DRY says that every piece of
system knowledge should have one authoritative, unambiguous representation.
... A system’s knowledge is far broader than just its code. It refers to database
schemas, test plans, the build system, even documentation.”

Our goal is to keep our Python 3 code DRY, not let it get WET (“Write Every-
thing Twice” or “Wasting Everyone’s Time” or “We Enjoy Typing” [Wikipedia
2018al.)

3.1.3 Function decorators

To introduce an appropriate abstraction into the previous set of functions, we
can use a Python 3 function decorator.

A function decorator is a higher-order function that takes a function as its
argument, wraps another function around the argument, and returns the wrapper
function.

The wrapper function has the same parameters and same return value as the
function it wraps, except it does extra processing when it is called. That is, it
“decorates” the original function.

Remember that Python 3 functions are objects. Python’s decorator function
concept is thus a special case of the Decorator design pattern, one of the classic
Gang of Four patterns for object-oriented programming [Gamma 1995]. The
idea of this pattern is to wrap one object with another object, the decorator,
that has the same interface but enhanced behavior. The decoration is usually
done at runtime even in a statically typed language like Java.

TODO: Perhaps expand on the Decorator design pattern and give a diagram.

3.1.4 Constructing a debug decorator

In the motivating example above, we want to decorate a function like add (x,y)
by wrapping it with another function that prints the function name add before
doing the addition operation. The wrapped function can then take the place of
the original add in the program.

Let’s construct an appropriate decorator in steps.

In general, suppose we want to decorate a function named func that takes some
number of positional and/or keyword arguments. That is, the function has the
general signature:

func(*args, **kwargs)

Note: For more information on the above function calling syntax, see the
discussion on Function Calling Conventions in Chapter 2.

In addition, suppose we want to print the content of the variable msg before we
execute func.

As our first step, we define function wrapper as follows:

def wrapper (*args, *+kwargs):
print (msg)
return func(*args, **kwargs)

As our second step, we define a decorator function debug that takes a function
func as its argument, sets local variable msg to func’s name, and then creates
and returns the function wrapper.

Function debug can retrieve the function name by accessing the __qualname__
attribute of the func object. Attribute __qualname__ holds the fully qualified
name.

def debug(func):
msg = func.__qualname__
def wrapper (*args, **kwargs):
print (msg)
return func(*args, **kwargs)
return wrapper

https://en.wikipedia.org/wiki/Decorator_pattern
Py3RefMeta02.html#function-calling-conventions

Function debug returns a closure that consists of the function wrapper plus
the the local environment in which wrapper is defined. The local environment
includes the argument func and the variable msg and their values.

Note: For more information about the concepts and techniques used above, see
the discussion of Nested Function Definitions, Lexical Scope, and Closures in
Chapter 2.

It seems sufficient to assign the closure returned by debug to the name of func
as shown below for add.

def add(x, y):
'Addd z© and y' # docstring (documentation)
return x +y

add = debug(add)

But this does not work as expected as shown in the following REPL session.

>>> add(2,5)

add

7

>>> add.__qualname__
debug.<locals>.wrapper
>>> add.__doc__

None

The closure returned by debug computes the correct result. However, it does
not have the correct metadata, as illustrated above by the display of the name
(__qualname__) and the docstring (__doc__) metadata.

To make the use of the decorator debug transparent to the user, we can apply
the function decorator @wraps defined in the standard module functools as
follows.

def debug(func):
msg = func.__qualname__
Qwraps (func)
def wrapper (*args, *+kwargs):
print (msg)
return func(*args, **kwargs)
return wrapper

def add(x, y):
'Add = and y' # docstring (documentation)
return x +y

add = debug(add)

The @uraps(func) decorator call above sets function wrapper’s metadata —
it’s attributes __module__, __name__, __qualname__, __annotations__, and

doc__ — to the same values as func’s metadata.

Py3RefMeta02.html#nested-function-definitions
Py3RefMeta02.html#lexical-scope
Py3RefMeta02.html#closures

With this new version of the debug decorator, the decoration of add now works
transparently.

>>> add(2,5)

add

”

>>> add.__qualname__ add
>>> add.__doc__

Add x and y

Finally, because the definition of a function like add and the application of
the debug decorator function usually occur together, we can use the decorator
syntactic sugar @debug to conveniently designate the definition of a decorated
function. The debug decorator function can be defined in a separate module.

Q@debug
def add(x, y):
'Add = and y'

return x + y

3.1.5 Using the debug decorator

Given the debug decorator as defined in the previous subsection, we can now
simplify the motivating example.

We decorate each function with @debug but give no other details of the imple-
mentation here. The debug facility is implemented in one place but used in
many places. The implementation supports the DRY principle.

Q@debug
def add(x, y):
'Add = and y'

return x +y

Q@debug

def sub(x, y):
'Subtract y from x'
return x -y

Q@debug

def mul(x, y):
'Multiply =z and y'
return x * y

Q@debug
def div(x, y):

'Divide = by y'
return x / y

Note: The Python 3.6+ source code for the above version of debug is available
at this link.

3.1.6 Case study review

So far in this case study, we have implemented a simple debugging facility that:
o is implemented once in a place separate from its use
e is thus easy to modify or disable totally

e can be used without knowing its implementation details

3.1.7 Variations

Now let’s consider a couple of variations of the debugging decorator implementa-
tion.

3.1.7.1 Logging

One variation would be to use the Python logging module to log the messages
instead of just printing them [Beazley 2013a].

The details of logging are not important here, but note that we only need to
make three changes to the debug implementation. We do not need to change
the user code.

from functools import wraps
import logging # (1) logging module

def debug(func):

(2) get the Logger for func's module

log = logging.getLogger (func.__module__)

msg = func.__qualname__

Quwraps (func)

def wrapper (*args, *xkwargs):
log.debug(msg) # (3) log msg
return func(xargs, **kwargs)

return wrapper

Note: The Python 3.6+ source code for the above version of debug is available
at this link.

code/debug4.py
code/debuglog1.py

3.1.7.2 Optional disable

Another variation of the debugging decorator would be to only enable debugging
when a particular environment variable is set [Beazley 2013a]. In this variation,
we only need to make two changes to the debug implementation.

from functools import wraps
import os # (1) import os interface

def debug(func):
(2) debug only tf environment wvariable set
if 'DEBUG' not in os.environ:
return func
msg = func.__qualname__
Quwraps (func)
def wrapper (*args, **kwargs):
print (msg)
return func(*args, *+kwargs)
return wrapper

Note: The Python 3.6+ source code for the above version of debug is available
at this link.

3.2 Extended Function-Level Debugging

Now we can extend the capability of our simple tracing debugger [Beazley 2013a].

3.2.1 Motivating example

Suppose, for whatever reason, we want to add a prefix string to the debugging
message that may differ from one use of @debug to another. Again consider the
set of arithmetic functions.

def add(x, y):
'Addd = and y'
print ('**xadd')
return x +y

def sub(x, y):
'Subtract y from z'
print('0Q0Gsub')
return x - y

def mul(x, y):
'Multiply = and y'
print ('**xsub')

code/debugopt1.py

return x * y

def div(x, y):
'Divide = by vy'
print('div')
return x / y

We implement the needed capability by using function decorators with arguments.

3.2.2 Decorators with arguments

We can construct decorators that take arguments other than the function to be
decorated.

Consider the following use of decorator deco:

@deco(args)
def func(:
some body code

The above translates into the following decorator call and assignment:
func = deco(args) (func)

The right-hand side denotes the chaining of two function calls. The system first
calls function deco passing it the first argument list (args). This call returns a
function, which is in turn called with the second argument list, variable (func).

The outer function call establishes a local environment in which the variables in
args are defined. In this environment, we define a normal decorator as we did
before.

3.2.3 Prefix decorator
We can thus define the outer layer of a prefix decorator with a function with
parameter prefix that defaults to the empty string.

def debug(prefix='"'):
def deco(func):
mnormal debug decorator body
return deco

The full definition of the prefix decorator is shown below. If no argument is given
to debug, the behavior is (almost) the same as the previous debug decorator
function.

from functools import wraps

def debug(prefix='"'):

10

def deco(func):
msg = prefix + func.__qualname__
Quraps (func)
def wrapper (*args, **kwargs):
print (msg)
return func(*args, *+kwargs)
return wrapper
return deco

In this formulation, prefix can be given as either a positional or keyword
argument.

We can apply the new prefix debug decorator to our motivating example functions
as follows. Note that the prefix strings vary among the different occurrences.

@debug(prefix="**x"')
def add(x,y):
'ddd = and y'
return x+y

@debug(prefix="'000")

def sub(x, y):
'Subtract y from x
return x - y

!

@debug (' **x"')

def mul(x, y):
'"Multiply = and y'
return x * y

@debug() # parentheses meeded!
def div(x, y):

'Divide = by y'

return x / y

Note: The Python 3.6+ source code for the above version of debugprefix is
available at this link.

3.2.4 Reformulated prefix decorator
By a clever use of default arguments and partial application of a function to its

arguments, we can transform the definition of the prefix decorator above to one
that does not involve a nested definition.

from functools import wraps, partial

def debug(func = None, *, prefix = ''):

11

code/debugprefix1.py

if func is None:
return partial(debug, prefix=prefix)
msg = prefix + func.__qualname__
Ouraps (func)
def wrapper (*args, **kwargs):
print (msg)
return func(*args, **kwargs)
return wrapper

If we call the debug decorator function with the single keyword argument prefix,
then the func argument defaults to None. In this case, the if statement causes
debug to call itself with that prefix argument and the decorated function
(that follows the @debug annotation in the user-level code or occurs in a second
argument list) as the func argument.

Note: The functools.partial function takes a function (object) and a group
of positional and/or keyword arguments, partially applies the function to those
arguments, then returns the resulting function (object). The returned function
behaves like the original function except that it has the argument values supplied
to partial as its default parameter values.

If we call the debug decorator function with no keyword arguments, then pa-
rameter prefix defaults to the empty string and func is the decorated function
(e.g. that follows the @debug annotation).

If we call debug with both func and prefix arguments, then it works as we
expect. This case is not used with the @debug annotation.

@debug(prefix="**x"')
def add(x,y):
'Add = and y'
return x+y

@debug(prefix="'000")

def sub(x, y):
'Subtract y from z'
return x - y

@debug(prefix="**x"')

def mul(x, y):
'Multiply = and y'
return x * y

@debug # no parentheses required, but okay tf given
def div(x, y):

'Divide = by y'

return x / y

Unlike the previous formulation of the prefix decorator, the prefix string must

12

be supplied as a prefix argument.

Note: The Python 3.6+ source code for the above version of debugprefix is
available at this link.

3.3 Class-Level Debugging
3.3.1 Motivating example

Consider the class Account below for a simple bank account.

Suppose we want to debug all the methods using the simple debugging package
we developed above.

class Account:
def __init__(self):
self. bal = 0

Q@debug
def deposit(self,amt):
self._bal += amt

Q@debug
def withdraw(self,amt):
if amt <= self._bal:
self. _bal -= amt
else:
print (f'Insufficient funds for withdrawal of {amt}')

Q@debug
def get_balance(self):
return self._bal

def __str__(self):
return f'Account with balance {self._ball}'

Note: The Python 3.6+ source code for the above version of Account is available
at this link.

3.3.2 Class-level debugger

The Account example above is repetitive (not DRY). Can we do the decoration
all at once?

Yes, we can define a class decorator debugmethods as shown below (where debug
is the function-level prefix decorator defined above). A class decorator is a

13

code/debugprefix2.py
code/account2.py

higher-order function that takes a class as its argument, modifies the class in
some way, and then returns the modified class.

def debugmethods(cls): # Notes
for name, val in vars(cls).items(): # (1) (2) (3)
if callable(val): # (4)
setattr(cls, name, debug(val)) # (5) (6)
return cls # (7)

The idea here is that the program walks through the class dictionary, identifies
callable objects (e.g. methods), and wraps each with a function decorator.

Consider the numbered comments in the above code.

1. The built-in function call vars(cls) returns the dictionary (i.e. __dict__)
associated with the (class) object cls.

2. The dictionary method call items () returns the list of key-value pairs in
the dictionary.

3. The “for name, val in” statement loops through the pairs in the list,
successively binding each key to name and value to val.

4. The built-in function call callable(val) returns True if val appears
callable, False if not. (These are likely instance methods.)

5. The call debug(val) applies the function-level prefix debugger we defined
above to the method val. That is, it wraps the method with function
decorator debug.

6. The built-in function call setattr(cls, name, debug(val)) sets the
name attribute of object cls to the value debug(val).

7. The decorator function debugmethods returns the modified class object
cls in place of the original class.

The code below shows the application of this new decorator to the Account
class.

O@debugmethods
class Account:
def __init__(self):
self. bal = 0

def deposit(self,amt):
self._bal += amt

def withdraw(self,amt):
if amt <= self._bal:
self. _bal -= amt
else:
print (f'Insufficient funds for withdrawal of {amt}')

14

def get_balance(self):
return self._bal

def __str__(self):
return f'Account with balance {self._bal}'

Note: The Python 3.6+ source code for the above version of Account is available
at this link.

A single decorator application handles all the method definitions within the
class.

WEell, not quite!

It does not decorate class or static methods, such as the following which can be
added to class Account.

class Account:
@classmethod

def classname(cls):
return cls.__name__

O@staticmethod
def warn(msg):
print(f'Warning: {msg}')

Note: The Python 3.6+ source code for the extended version of Account is
available at this link.

TODO: Explain why this does not work.

3.3.3 Variation: Attribute access debugging

Suppose instead of printing a message on every call of a method, we do so for
each access to an attribute.

We can do this by rewriting part of the class as shown below. In particular, we
give a new implementation for the special method __getattribute__.

def debugattr(cls):
orig_getattribute = cls.__getattribute__

def __getattribute__(self, name):
print(f'Get: {namel}')
return orig_getattribute(self, name)

15

code/account3.py
code/account4.py

cls.__getattribute__ = __getattribute__
return cls

The special method __getattribute__ is called to implement accesses to “regu-
lar” attributes of the class. It is not called on accesses to other special methods
such as __init__ and __str__

In the above, we save the original implementation of the method and then call it
to complete the access once we have printed an appropriate debugging message.

In the example below, we decorate the Account class with @debugattr.

Q@debugattr
class Account:
def __init__(self):
self. bal = 0

def deposit(self,amt):
self._bal += amt

def withdraw(self,amt):
if amt <= self._bal:
self. _bal -= amt
else:
print(f'Insufficient funds for withdrawal of {amt}')

def get_balance(self):
return self. _bal

def __str__(self):
return f'Account with balance {self._ball}'

Note: The Python 3.6+ source code for the above version of Account is available
at this link.

We can see the effects of the decorator in the following REPL session.

>>> acct = Account()

>>> str(acct)

Get: _bal

'Account with balance 0'
>>> acct.deposit(100)

Get: deposit

Get: _bal
>>> str(acct)
Get: _bal

"Account with balance 100'
>>> acct.withdraw(60)
Get: withdraw

16

code/account5.py

Get: _bal

Get: _bal
>>> str(acct)
Get: _bal

'Account with balance 40'
>>> acct.get_balance()
Get: get_balance

Get: _bal

40

>>> str(acct)

'dccount with balance 40’

Note that both calls to the methods and the accesses to the “private” data
attribute _bal are shown. (If we want to exclude accesses to the private instance
variables, we can modify debugattr to exclude attributes whose names begin
with a single underscore.)

3.4 Class Hierarchy Debugging
3.4.1 Motivating example

Now let’s set up class-level debugging on the inheritance hierarchy P example
from Chapter 2.

@debugmethods
class P:
def __init__(self,name=None):
self.name = name
def process(self):
return f'Process at parent P level'

@debugmethods
class C(P): # class C inherits from class P
def process(self):
result = f'Process at child C level'
Call method in parent class
return f'{result} \n {super().process(Q}'

@debugmethods
class D(P): # class D tinherits from class P
pass

@debugmethods
class G(C): # class G inherits from class C
def process(self):
return f'Process at grandchild G level'

17

Note: The Python 3.6+ source code for the above version of the P class hierarchy
is available at this link.

So, we have another occurrence of code redundancy that we saw at the class
level in the previous section. Let’s see if we can DRY out the code more.

To do this, the program needs to process the whole class hierarchy rooted at
class P. Let’s review the nature of the Python 3 object model to see how to do

this.

3.4.2 Review of objects and types

In Chapter 2 of these notes, we learned:

All Python 3 values are objects.
All objects have types.
A class defines a new type.

A class is a callable (i.e. function) that creates instances; the class is the
type of the instances it creates. Hence, in some sense, a class is a type
consisting of its potential instances and the operations it defines.

A class itself is an object. It is an instance of other classes. Thus it has a
type.

The built-in class type is the root class (i.e. top-level metaclass) for all
other classes (i.e. types). When a program invokes type as a constructor,
it creates a new type (i.e. class) object.

Classes may inherit (i.e. be a subclass of) other classes.

The built-in class object is the root class for all other top-level user-defined
and built-in classes.

Note: See the diagram in Figure 1 from Chapter 2.

The following Python 3 REPL session illustrates these concepts.

>>> class PP:
pass

>>> class CC(PP):
pass
>>> PP
<class '__main__.PP'>
>>> type (PP)
<class 'type'>
>>> issubclass(P,object)

18

code/inherit2.py
Py3RefMeta02.html
Py3RefMeta02.html#understanding-relationships-among-classes

True

>>> CC

<class '__main__.CC'>
>>> type(CC)

<class 'type'>

>>> issubclass(CC,PP)
True

>>> x = PP()

>>> x

<__main__.PP object at 0x10cd3d048>
>>> isinstance(x,PP)

True

>>> type(x)

<class '__main__.PP'>
>>> type

<class 'type'>

>>> type(type)

<class 'type'>

>>> issubclass(type,object)
True

>>> object

<class 'object'>

>>> type(object)

<class 'type'>

3.4.3 Class definition process
Now let’s examine how the Python 3 interpreter elaborates class definitions at
runtime. Consider the class MyClass defined as follows:

class MyClass(Parent):
def __init__(self, id):
self.id = id
def hello(self):
print(f'Hello from MyClass.hello, id = {self.id}')"

This class definition has three components.
e Name: "MyClass"
o Base classes: (Parent,)
e Functions: (___init___, hello)
The interpreter takes the following steps during class definition.

1. It isolates the body of the class.

19

body = '’
def __init__(self, myid):
self.myid = myid
def hello(self):
print (f'Hello from MyClass.hello, myid = {self.myid}')

L |

2. It creates the class dictionary.
clsdict = type.__prepare__('MyClass', (Parent,))

Method type.__prepare__ is a class method on the root metaclass type.
In the process of creating the new class object for a class, the interpreter
calls the __prepare__ method before it calls the __new__ method on type
[Ramalho 2015, pp. 701-3].

In addition to metaclass argument (i.e. type), the __prepare__ class
method takes two additional arguments:

o the name of the class being created (e.g.'MyClass' above)
« a tuple of the one or more base classes (e.g. (Parent,) above)

Method __prepare__ returns a dictionary that can be subsequently passed
to the __new__ and __init__ methods. This dictionary serves as the local
namespace for the statements in the class body.

3. It executes the body using in the local namespace defined by the class
dictionary.

exec(body, globals(), clsdict)
This step populates clsdict.

>>> clsdict
{'__init__': <function __init__ at 0x10cc2leal>,
'hello': <function hello at 0x10d2b9bf8>}

4. Tt constructs the class from its name, its base classes, and the dictionary
populated in the previous step.

>>> MyClass = type('MyClass', (Parent,), clsdict)
>>> MyClass

<class '__main__.MyClass'>

>>> mc = MyClass('Conrad')

<__main__.MyClass object at 0x100f96c50>

>>> mc.myid

Conrad

>>> mc.hello()

Hello from MyClass.hello, myid = Conrad

20

The call type('MyClass', (Parent,), clsdict) constructs an instance
of metaclass type with name MyClass, superclass Parent, and object
dictionary clsdict. This is the class object for MyClass.

Note: The Python 3.6+ source code for the above creation of class MyClass is
available at this link.

3.4.4 Changing the metaclass

A Python 3 class definition has a keyword parameter named metaclass whose
default value is type. So the parent class P from the motivating example for this
section is equivalent to the following.

class P(metaclass=type):
def __init__(self,name=None):
self.name = name
def process(self):
return f'Process at parent P level'

This keyword parameter sets the class for creating the new type for the class.
Although the default is type, we can change it to some other metaclass.

To define a new metaclass, we typically define a type that inherits from type
and gives a new definition for one or both of the special methods __new__ and
__init__.

class mytype(type):
def _ _new__(cls, name, bases, clsdict):
possible preprocessing of arguments
clsobj = super().__new__(cls, name, bases, clsdict)
possible postprocessing of object
return clsobj

The special method __new__ allocates memory, constructs a new instance (i.e. ob-
ject), and then returns it. The interpreter passes this new instance to special
method __init__, which initializes the new instance variables.

We do not normally override __new__, but in a metaclass we may want to do
some additional work either before or after the basic construction processing.

A metaclass can access information about a class definition at the time the class
is defined. It can inspect the data and, if needed, modify the data.

Given the above definition, we can use the new metaclass as follows:

class P(metaclass=mytype) :

21

code/MyClass1.py

3.4.5 Debugging using a metaclass

Now we have the tools we need to remove the code redundancy from the
motivating example. We can introduce the metaclass shown in the example
below.

class debugmeta(type):
def __new__(cls, clsname, bases, clsdict):
clsobj = super().__new__(cls,clsname,bases,clsdict) #I
clsobj = debugmethods(clsobj) #2
return clsobj #3

The approach above:
1. creates the class normally (using __new__)

2. immediately wraps it with the class-level debug decorator debugmethods
we developed previously

3. then returns the wrapped class object

Given the above metaclass definition, we can apply it to the inheritance example
as sketched below.

class P(metaclass = debugmeta):
class C(P):
class D(P):

class G(C):

Note: The Python 3.6+ source code for the above version of the P class hierarchy
is available at this link.

Now consider a Python 3 REPL session using the above code with the custom
metaclass.

>>> from inherit3 import =*
>>> type(P)

<class 'inherit3.debugmeta'>
>>> issubclass(P,object)
True

>>> type(C)

<class 'inherit3.debugmeta'>
>>> issubclass(C,P)

True

>> type(G)

<class 'inherit3.debugmeta'>

22

code/inherit3.py

>>> issubclass(G,C)

True

>>> issubclass(G,P)

True

>>> pl = PQ)

P.__init__

>>> type(pl)

<class 'inherit3.P'>

>>> ¢l = CO

P._ _init__

>>> type(cl)

<class 'inherit3.C'>

>>> g1 = GO

P.__init__

>>> type(gl)

<class 'inherit3.C'>

>>> pl.process()

P.process

'Process at parent P level'
>>> cl.process()

C.process

P.process

'Process at child C level \n Process at parent P level'
>>> gl.process()

G.process

'Process at grandchild G level'

3.4.6 Why metaclasses?

As we have seen, we can transform a class in similar ways using either a class
decorator or a metaclass.

Given that a class decorator is easier to set up and apply, when and why should
we use a metaclass?

One advantage to metaclasses is that they can propagate down class hierarchies.
Consider our motivating example again.

class P(metaclass = debugmeta):
class C(P): # metaclass = debugmeta
class D(P): # metaclass = debugmeta

class G(C): # metaclass = debugmeta

23

As we can see in the REPL session output in the previous subsection, use of the
metaclass in parent class P is passed down automatically to all its descendants.
No changes are needed to the descendant classes.

In some sense, the metaclass mutates the DNA of the parent class and that
mutation is passed on to the children. In this example, debugging is applied
across the entire hierarchy. The code is kept DRY.

3.5 Chapter Summary

In this case study, we used Python metaprogramming facilities to debug suc-
cessively larger program units. But regardless of the level, the method mostly
involved wrapping and rewriting the program units.

e We used function decorators to wrap and rewrite functions.
e We used class decorators to wrap and rewrite classes.
o We used metaclasses to wrap and rewrite class hierarchies.

So far, we have mostly used “classic” metaprogramming techniques that were
available in Python 2 with only a few Python 3 features.

In the coming chapters, we use more advanced features of Python 3. (These
chapters are planned but not yet drafted.)

3.6 Exercises

TODO

3.7 Acknowledgements

I developed these notes in Spring 2018 for use in CSci 658 Software Language
Engineering. The Spring 2018 version used Python 3.6.

The overall set of notes on Python 3 Reflexive Metaprogramming is inspired by
David Beazley’s Python 3 Metaprogramming tutorial from PyCon’2013 [Beazley
2013a]. In particular, some chapters adapt Beazley’s examples. Beazley’s tutorial
draws on material from his and Brian K. Jones’ book Python Cookbook [Beazley
2013b).

In particular, this chapter adapts David Beazley’s debugly example presentation
from his Python 3 Metaprogramming tutorial at PyCon’2013 [Beazley 2013a).

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

24

http://www.dabeaz.com/py3meta
http://www.dabeaz.com/py3meta

3.8 References

[Beazley 2013a]: David Beazley. Python 3 Metaprogramming (Tutorial), Py-
Con’2013, 14 March 2013.

[Beazley 2013b]: David Beazley and Brian K. Jones. Python Cookbook, 3rd
Edition, O'Reilly Media, May 2013.

[Gamma 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Software,
Addison Wesley, 1995.

[Hunt 2000]: Andrew Hunt and David Thomas. The Pragmatic Programmer,
Addison Wesley, 2000.

[Pierce 2002]: Benjamin C. Pierce, Types and Programming Languages, MIT
Press, 2002.

[Ramalho 2015]: Luciano Ramalho. Fluent Python: Clear, Concise, and
Effective Programming, O’Reilly Media, May 2015.

[Venners 2003]: Bill Venners, Orthogonality and the DRY Principle, Interview
of Dave Thomas, Artima, Inc., March 2003, Retrieved 27 April 2018.

[Wikipedia 2018a]: Wikipedia, Don’t Repeat Yourself, accessed 27 April 2018.

3.9 Terms and Concepts

TODO

25

http://www.dabeaz.com/py3meta/
https://www.artima.com/intv/dry.html
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

	Decorators and Metaclasses
	Basic Function-Level Debugging
	Motivating example
	Abstraction Principle, staying DRY
	Function decorators
	Constructing a debug decorator
	Using the debug decorator
	Case study review
	Variations
	Logging
	Optional disable

	Extended Function-Level Debugging
	Motivating example
	Decorators with arguments
	Prefix decorator
	Reformulated prefix decorator

	Class-Level Debugging
	Motivating example
	Class-level debugger
	Variation: Attribute access debugging

	Class Hierarchy Debugging
	Motivating example
	Review of objects and types
	Class definition process
	Changing the metaclass
	Debugging using a metaclass
	Why metaclasses?

	Chapter Summary
	Exercises
	Acknowledgements
	References
	Terms and Concepts

