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2 Basic Features Supporting Metaprogramming

In this chapter we examine the characteristics and basic features of Python 3
upon which the reflexive metaprogramming features build.

Python 3 is an object-oriented language built on top of an object-based, imperative
language. The language is typically compiled to a sequence of instructions for a
virtual machine, which is then interpreted.

TODO: Better introduce the range of content of this chapter

2.1 Objects

All Python 3 data are treated as objects.

A Python 3 object has the following essential characteristics of objects (as
described in the Programming Paradigms notes [Cunningham 2018a]):

a. a state (value) drawn from a set of possible values

The state may consist of several distinct data attributes. In this case, the
set of possible values is the Cartesian product of the sets of possible values
of each attribute.

b. a set of operations that access and/or mutate the state

c. a unique identity (e.g., address in memory)

A Python 3 object has one of the two important but nonessential characteristics
of objects (as described in the Programming Paradigms notes [Cunningham
2018a]). Python 3 does:

d. not enforce encapsulation of the state within the object, instead relying
mostly upon programming conventions to hide private information

e. exhibit an independent lifecycle (i.e., has a different lifetime than the code
that created it)

As we see in a later section, each object has a distinct dictionary, the directory,
that maps the local names to the data attributes and operations.

Python 3 typically uses dot notation to access an object’s data attributes and
operations.

obj.data # access data attribute of obj
obj.op # access operation of obj
obj.op() # invoke operation of obj

Some objects are immutable and others are mutable. The state (i.e., value)
of immutable objects (e.g., numbers, booleans, strings, and tuples) cannot be
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changed after creation. The state of mutable objects (e.g., lists, dictionaries, and
sets) can be changed in place after creation.

Caveat: We cannot modify a Python 3 tuple’s structure after its creation.
However, if the components of a tuple are themselves mutable objects, they can
be changed in-place.

All Python 3 objects have a type. What does type mean?

2.2 Type System Concepts

The term “type” tends to be used in many different ways in programming
languages.

2.2.1 Types and subtypes

Conceptually, a type is a set of values (i.e., possible states) and a set of operations
defined on the values in that set.

Similarly, a type S is (a behavioral) subtype of type T if the set of values of
type S is a “subset” of the values in set T and set of operations of type S is a
“superset” of the operations of type T. That is, we can safely substitute elements
of subtype S for elements of type T because S’s operations behave the “same” as
T’s operations . This is known as the Liskov Substitution Principle [Liskov 1987]
[Wikipedia 2018d].

Consider a type representing all furniture and a type representing all chairs. In
general, we consider the set of chairs to be a subset of the set of furniture. A
chair should have all the general characteristics of furniture, but it may have
additional characteristics specific to chairs.

If we can perform an operation on furniture in general, we should be able to
perform the same operation on a chair under the same circumstances and get
the same result. Of course, there may be additional operations we can perform
on chairs that are not applicable to furniture in general.

Thus the type of all chairs is a subtype of the type of all furniture according to
the Liskov Substitution Principle.

2.2.2 Constants, variables, and expressions

Now consider the types of the basic program elements.

A constant has whatever types it is defined to have in the context in which it
is used. For example, the constant symbol 1 might represent an integer, a real
number, a complex number, a single bit, etc., depending upon the context.
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A variable has whatever types its value has at a particular point in time.

An expression has whatever types its evaluation yields based on the types of the
variables, constants, and operations from which it is constructed.

2.2.3 Static and dynamic

In a statically typed language, the types of a variable or expression can be
determined from the program source code and checked at “compile time” (i.e.,
during the syntactic and semantic processing in the front-end of a language
processor). Such languages may require at least some of the types of variables
or expressions to be declared explicitly, while others may be inferred implicitly
from the context.

Java, Scala, and Haskell are examples of statically typed languages.

In a dynamically typed language, the specific types of a variable or expression
cannot be determined at “compile time” but can be checked at runtime.

Lisp, Python, and Lua are examples of dynamically typed languages.

Of course, most languages use a mixture of static and dynamic typing. For
example, Java objects defined within an inheritance hierarchy must be bound
dynamically to the appropriate operations at runtime. Also Java objects declared
of type Object (the root class of all user-defined classes) often require explicit
runtime checks or coercions.

2.2.4 Nominal and structural

In a language with nominal typing, the type of an object is based on the type
name assigned when the object is created. Two objects have the same type if
they have the same type name. A type S is a subtype of type T only if S is
explicitly declared to be a subtype of T.

For example, Java is primarily a nominally typed language. It assigns types to
an object based on the name of the class from which the object is instantiated
and the superclasses extended and interfaces implemented by that class.

However, Java does not guarantee that subtypes satisfy the Liskov Substitution
Principle. For example, a subclass might not implement an operation in a
manner that is compatible with the superclass. (The behavior of subclass objects
are this different from the behavior of superclass objects.) Ensuring that Java
subclasses preserve the Substitution Principle is considered good programming
practice in most circumstances.

In a language with structural typing, the type of an object based on the structure
of the object. Two objects have the same type if they have the “same” structure;
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that is, they have the same public data attributes and operations and these are
themselves of compatible types.

In structurally typed languages, a type S is a subtype of type T only if S has
all the public data values and operations of type T and the data values and
operations are themselves of compatible types. Subtype S may have additional
data values and operations not in T.

Haskell is primarily a structurally typed language.

2.3 Python Type System

What about Python 3’s type system?

In terms of the discussion in the previous sections, all Python 3 objects can be
considered as having one or more conceptual types at a particular point in time.
The types may change over time because the program can change the possible
set of data attributes and operations associated with the object.

A Python 3 variable is bound to an object by an assignment statement or
its equivalent. Python 3 variables are thus dynamically typed, as are Python
expressions.

Although a Python 3 program usually constructs an object within a particular
nominal type hierarchy (e.g., as an instance of a class), this may not fully describe
the type of the object, even initially. And the ability to dynamically add, remove,
and modify attributes (both data fields and operations) means the type can
change as the program executes.

The type of a Python 3 object is determined by what it can do – what data it
can hold and what operations it can perform on that data – rather than how it
was created. We sometimes call this dynamic, structural typing approach duck
typing. (If it walks like a duck and quacks like a duck, then it is a duck, even if
is declared as a snake.)

For example, we can say that any object is of an iterable type if it implements
an __iter__ operation that returns a valid iterator object. An iterator object
must implement a __next__ operation that retrieves the next element of the
“collection” and must raise a StopIteration exception if no more elements are
available.

In Python 3, we sometimes refer to a type like iterable as a protocol. That is, it
is a, perhaps informal, interface that objects are expected to satisfy in certain
circumstances.
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2.4 Builtin Types

Python 3 provides several built-in types and subtypes, which are named and
implemented in the core language. When displayed, these types are shown as
follows:

<class 'int'>

That is, the value is an instance of a class named int. Python 3 uses the term
class to describe its nominal types.

We can query the nominal type of an object obj with the function call type(obj).
In the following discussion, we show the results from calling this function
interactively in Python 3 REPL (Read-Evaluate-Print Loop) sessions.

For the purpose of our discussion, the primary built-in types include:‘

• Singleton types
• Number types
• Sequence types
• Mapping types
• Other types (e.g., set types and callable, class, module, user-defined object

types)

TODO: Probably should elaborate the “other types” more than currently.

2.4.1 Singleton types

Python 3 has single-element types used for special purposes.

2.4.1.1 None

The name None denotes a value of a singleton type. That is, the type has one
element written as None.

Python programs normally use None to mean there is no meaningful value of
another type.

2.4.1.2 NotImplemented

The name NotImplemented also denotes a value of a singleton type. Python
programs normally ruse his value to mean that an arithmetic or comparison
operation is not implemented.

2.4.2 Number types

Core Python 3 supports four types of numbers:
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• integers
• real numbers
• complex numbers
• Booleans

2.4.2.1 Integers (int)

Type int denotes the set of integers. They are encoded in a variant of two’s
complement binary numbers in the underlyng hardware. They are of unbounded
precision, but they are, of course, limited in size by the available virtual memory.

>>> type(1)
<class 'int'>
>>> type(-14)
<class 'int'>
>>> x = 2
>>> type(x)
<class 'int'>

2.4.2.2 Real numbers (float)

Type float denotes the subset of the real numbers that can be encoded as
double precision floating point numbers in the underlying hardware.

>>> type(1.01)
<class 'float'>
>>> type(-14.3)
<class 'float'>
>>> x = 2
>>> type(x)
<class 'int'>
>>> y = 2.0
>>> type(y)
<class 'float'>
>>> x == y # Note result of equality comparison
True

2.4.2.3 Complex numbers (complex)

Type complex denotes a subset of the complex numbers encoded as a pair of
floats, one for the real part and one for the imaginary part.

>>> type(complex('1+2j')) # real part 1, imaginary part 2
<class 'complex'>
>>> complex('1') == 1.0 # Note result of comparison
True
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>>> complex('1') == 1 # Note result of comparison
True

2.4.2.4 Booleans (bool)

Type bool denotes the set of Boolean values False and True; in Python, this is
a subtype of int with False and True having the values 0 and 1, respectively.

>>> type(False)
<class 'bool'>
>>> type(True)
<class 'bool'>
>>> True == 1
True

Making bool a subtype of int is an unfortunate legacy design choice from
the early days of Python. It is better not to rely on this feature in Python 3
programs.

2.4.2.5 Truthy and falsy values

Python 3 programs can test any object as if it was a Boolean (e.g. within the
condition of an if or while statement or as an operand of a Boolean operation).

An object is falsy (i.e. considered as False) if its class defines

• a special method __bool__() that, when called with the object, returns
False

• a special method __len__() that returns 0

Note: We discuss special methods in a later section.

Otherwise, the object is truthy (i.e. considered as True).

The singleton value NotImplemented is explicitly defined as truthy.

Falsy built-in values include:

• constants False and None

• numeric values of zero such as 0, 0.0, and 0j

• empty sequences and collections such as '', (), [], and {} (defined below)

Unless otherwise documented, any function expected to return a Boolean result
should return False or 0 for false and True or 1 for true. However, the Boolean
operations or and and should always return one of their operands.
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2.4.3 Sequence types

A sequence denotes a serially ordered collection of zero or more objects. An
object may occur more than once in a sequence.

Python 3 supports a number of core sequence types. Some sequences have
immutable structures and some have mutable.

2.4.3.1 Immutable sequences

An immutable sequence is a sequence in which the structure cannot be changed
after initialization.

2.4.3.1.1 str

Type str (string) denotes sequences of text characters – that is, of Unicode
code points in Python 3. We can express strings syntactically by putting the
characters between single, double, or triple quotes. The latter supports multi-line
strings.

Python does not have a separate character type; a characer is a single-element
str.

>>> type('Hello world')
<class 'str'>
>>> type("Hi Earth")
<class 'str'>
>>> type('''
... Can have embedded newlines
... ''')
<class 'str'>

2.4.3.1.2 tuple

Type tuple denotes fixed length, heterogeneous sequences of objects. We can
express tuples syntactically as sequences of comma-separated expressions in
parentheses.

The tuple itself is immutable, but the objects in the sequence might be mutable.

>>> type(()) # empty tuple
<class 'tuple'>
>>> type((1,)) # one-element tuple
<class 'tuple'>
>>> x = (1,'Ole Miss') # mixed elements
>>> type(x)
<class 'tuple'>
>>> x[0] # access element with index 0
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1
>>> x[1] # access element with index 1
'Ole Miss'

2.4.3.1.3 bytes

Type bytes denotes sequences of 8-bit bytes. We can express these syntactically
as ASCII character strings prefixed by a “b”.

>>> type(b'Hello\n World!')
<class 'bytes>

2.4.3.2 Mutable sequences

A mutable sequence is a sequence in which the structure can be changed after
initialization.

2.4.3.2.1 list

Type list denotes variable-length, heterogeneous sequences of objects. We can
express lists syntactically as comma-separated sequence of expressions between
square brackets.

>>> type([])
<class 'list'>
>>> type([3])
<class 'list'>
>>> x = [1,2,3] + ['four','five'] # concatenation
>>> x
[1, 2, 3, 'four', 'five']
>>> type(x)
<class 'list'>
>>> y = x[1:3] # get slice of list
>>> y
[2, 3]
>>> y[0] = 3 # assign to list index 0
[3, 3]

2.4.3.2.2 bytearray

Type bytearray denotes mutable sequences of 8-bit bytes, that is otherwise like
type bytes. They are constructed by calling the function bytearray().

>>> type(bytearray(b'Hello\n World!'))
<class 'bytes>
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2.4.4 Mapping types

Type dict (dictionary) denotes mutable finite sets of key-value pairs, where the
key is an index into the set for the value with which it is paired.

The key must be an immutable object to enable use of hashing. However, the
associated value objects may be mutable and the membership in the set may
change.

We can express dictionaries syntactically in various ways such as comma-separated
lists of key-value pairs with braces.

>>> x = { 1 : "one" }
>>> x
{1: 'one'}
>>> type(x)
<class 'dict'>
>>> x[1]
'one'
>>> x.update({ 2 : "two" }) # add to dictionary
>>> x
{1: 'one', 2: 'two'}
>>> type(x)
<class 'dict'>
>>> del x[1] # delete element with key
>>> x
{2: 'two'}

2.4.5 Other object types

We discuss callable objects (e.g. functions), class objects, module objects, and
user-defined types (classes) below.

We do not discuss the set types here.

TODO: Probably should add some discussion of sets here

2.5 Statements

The basic building blocks of Python 3 programs include statements, functions,
classes, and modules. We discuss those in this and the following subsections.

Python 3 statements consist primarily of assignment statements and other
mutator operation and constructs to control the order in which those are executed.

Statements execute in the order defined in the program text (as shown below).
Each statement executes in an environment that assigns values to the names
(e.g., of variables and functions) that occur in the statement.
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statement1
statement2
statement3
...

TODO: Do I need to say more here about kinds of statements? Give a reference?
an example?

2.6 Functions

Python 3 functions are program units that take zero or more arguments and
return a corresponding value.

The code below shows the general structure of a function definition.

def my_func(x, y, z):
statement1
statement2
statement3
return my_loc_var

If a function does not explicitly return a value, it implicitly returns the singleton
object None.

When a program calls a function, it passes a reference (pointer) to each argument
object. These references are bound to the corresponding parameter names, which
are local variables of the function.

If we assign a new object to the parameter variable in the called function, then
the variable binds to the new object. This new binding is not visible to the
calling program.

However, if we apply a mutator or destructor to the parameter and the argument
object is mutable, we can modify the actual argument object. The modified
value is visible to the calling program.

Of course, if the argument object is not mutable, we cannot modify it’s value.

Functions in Python 3 are first-class objects. That is, they are (callable) objects of
type function and, hence, can be stored in data structures, passed as arguments
to functions, and returned as the value of a functions. Like other objects, they
can have associated data attributes.

To see this, consider the function add2 and the following series of commands in
the Python REPL.

>>> def add3(x, y, z):
... return x + y + z
...
>>> add3(1,2,3)
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6
>>> type(add3)
<class `function`>
>>> x = [add3,1,2,3,6] # store function object in list
>>> x
[<function add3 at 0x10bf65ea0>, 1, 2, 3, 6]
>>> add3.author = 'Cunningham' # set attribute author
>>> add3.author # get attribute author
'Cunningham'

We call a function a higher-order function if it takes another function as its
parameter and/or returns a function as its return value.

2.7 Classes

A Python 3 class is a program construct that defines a new nominal type
consisting of data attributes and the operations on them. When we call a class
as a function, it creates a new instance (i.e. an object) of the associated type.

We define an operation with a method bound to the class. A method is a function
that takes an instance (by convention named self) as its first argument. It can
access and modify the data attributes of the instance. The method is also an
attribute of the instance.

The code below shows the general structure of a class definition. The class calls
the special method __init__ (if present) to initialize a newly allocated instance
of the class.

Note: The special method __new__ allocates memory, constructs a new instance,
and then returns it. The interpretrer passes the new instance to __init__.
which initizlizes the new object’s instance variables.

class P:
def __init__(self):

self.my_loc_var = None
def method1(self, args):

statement11
statement12
return some_value

def method2(self, args):
statement21
statement22
return some_other_value

A class instance defines an environment with local variable and method names
and their values.

14



In addition to being factories for creating and initializing instances, Python 3
classes are themselves objects.

Consider the following simple example.

class P:
pass

>>> x = P()
>>> x
<__main__.P object at 0x1011a10b8>
>>> type(x)
<class '__main__.P'>
>>> isinstance(x,P)
True
>>> P
<class '__main__.P'>
>>> type(P)
<class 'type'>
>>> isinstance(P,type)
True
>>> int
<class 'int'>
>>> type(int)
<class 'type'>
>>> isinstance(int,type)
True

We observe the following:

• Variable x holds a value that is an object of type P; the object is an instance
of class P.

• Class P is an object of a built-in type named type; the object is an instance
of class type.

• Built-in type int is also an object of the type named type.

We call a class object like P a metaobject because it is a constructor of ordinary
objects [Kiczales 1991; Forman 1999].

We call a special class object like type a metaclass because it is a constructor
for metaobjects (i.e., class objects) [Kiczales 1991; Forman 1999].

We will look more deeply into these relationships later when we examine inheri-
tance.

15



2.8 Modules

A Python 3 module is a file that contains a sequence of global variable, function,
and class definitions and executable statements. If the name of the file is
mymod.py, then the module’s name is mymod.

A Python 3 package is a directory of Python 3 modules.

A module collects the names and values of its global variables, functions, and
classes into its own private namespace (i.e. environment). This becomes the
global environment for all definitions and executable statements in the module.

When we execute a module as a script from the Python 3 REPL, the interpreter
executes all the top-level statements in the module’s namespace. If the module
contains function or class definitions, then the interpreter checks those for
syntactic correctness and stores the definitions in the namespace for use later
during execution.

2.8.1 Using import

Suppose we have the following Python 3 code in a file named test.py.

# This is module "testmod" in file "testmod.py"
testvar = -1

def test(x):
return x

We can execute this code in a Python 3 REPL session as follows.

>>> import testmod # import module in file "testmod.py"
>>> testmod.testvar # access module's variable "testvar"
-1
>>> testmod.testvar = -2 # set variable to new value
>>> testmod.testvar
-2
>>> testmod.test(23) # call module's function "test"
23
>>> test(2) # must use module prefix "test"
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'module' object is not callable
>>> testmod # below PATH = directory path
<module 'testmod' from 'PATH/testmod.py'>
>>> type(testmod)
<class 'module'>
>>> testmod.__name__
'testmod'
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>>> type(type(testmod))
<class 'type'>

The import statement causes the interpreter to execute all the top-level state-
ments from the module file and makes the namespace available for use in the
script or another module. In the above, the imported namespace includes the
variable testvar and the function definition test.

A name from one module (e.g., testmod) can be directly accessed from an
imported module by prefixing the name by the module name using the dot
notation. For example, testmod.testvar accesses variable testvar in module
testmod and testmod.test() calls function test in module testmod.

We also see that the imported module testmod is an object of type (class)
module.

2.8.2 Using from import

We can also import names selectively. In this case, the definitions of the selected
features are copied into the module.

Consider the module testimp below.

# This is module "testimp" in file "testimp.py"
from testmod import testvar, test

myvar = 10

def myfun(x, y, z):
mylocvar = myvar + testvar
return mylocvar

class P:
def __init__(self):

self.my_loc_var = None

def meth1(self, arg):
return test(arg)

def meth2(self, arg):
if arg == None:

return None
else:

my_loc_var= arg
return arg

The definitions of variable testvar and function test are copied from module
testmod into module testimp’s namespace. Module testimp can thus access
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these without prefix testmod.

Module testimp could import all of the definitions from module testmod by
using the wildcard * instead of the explicit list.

We can execute the above code in a Python 3 REPL session as follows.

>>> import testimp
>>> testimp.myvar
10
>>> testimp.myfun(1,2,3)
9
>>> pp = testimp.P()
>>> pp.meth1(23)
23
>>> pp.meth2(14)
14
>>> type(pp)
<class 'testimp.P'>
>>> type(testimp.testmod)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'testmod' is not defined

Note that the from testmod import statement does not create an object
testmod.

2.8.3 Programming conventions

Python 3 programs typically observe the following conventions:

• All module import and import from statements should appear at the
beginning of the importing module.

• All from import statements should specify the imported names explicitly
rather than using the wildcard * to import all names. This avoids polluting
the importing module’s namespace with unneeded names. It also makes
the dependencies explicit.

• Any definition whose name begins with an _ (underscore) should be kept
private to a module and thus should not be imported into or accessed
directly from other modules.

2.8.4 Using importlib directly

TODO: Perhaps move the discussion below of the importlib, a metaprogram-
ming feature, to a later chapter.
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The Python 3 core module importlib exposes the functionality underlying the
import statement to Python 3 programs. In particular, we can use the function
call

importlib.import_module('modname') # argument is string

to find and import a module from the file named modname.py. Below we see
that this works like an explicit import.

>>> from importlib import import_module
>>> tm = import_module('testmod')
>>> tm # below PATH = directory path
<module 'testmod' from 'PATH/testmod.py'>
>>> type(tm)
<class 'module'>
>>> type(type(tm))
<class 'type'>

2.9 Statement Execution and Variable Scope

Statements perform the work of the program – computing the values of expres-
sions and assigning the computed values to variables or parts of data structures.

Statements execute in two scopes: global and local.

1. As described above, the global scope is the enclosing module’s environment
(a dictionary), as extended by imports of other modules.

2. As described above, the local scope is the enclosing function’s dictionary
(if the statement is in a function).

If statement is a string holding a Python 3 statement, then we can execute
the statement dynamically using the exec library function. By default,
the statement is executed in the current global and local environment, but
these environments can be passed in explicitly.

exec(statement [, globals [, locals] )

Inside a function, variables that are:

• referenced but not assigned a value are assumed to be global

• assigned a value are assumed to be local

In the latter case, we can explicitly declare the variable global. if the desired
target variable is defined in the global scope.

2.10 Function Calling Conventions

Consider a module-level function. A function may include a combination of:
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• positional parameters

• keyword parameters

There are several different ways we can specify the arguments of function calls
described below.

1. Using positional arguments

def myfunc(x, y, z):
statement1
statement2
...

myfunc(10, 20, 30)

2. Using keyword arguments

def myfunc(x, y, z):
statement1
statement2
...

myfunc(z=30, x=10, y=20)
# note different order than in signature

3. Using default arguments set at definition time – using only immutable
values (e.g., False, None, string, tuple) for defaults

def myfunc(x, trace = False, vars = None):
if vars is None:

vars = []
...

myfunc(10)
# x=10, trace=False, vars=None

myfunc(10, vars=['x', 'y'])
# x=10, trace=False, vars=['x', 'y'])

4. Using required positional and variadic positional arguments

def myfunc(x, *args):
# x is a required argument in position 1
# args is tuple of variadic positional args
# name "args" is just convention
...

myfunc(10, 20, 30)
# x = 10
# args = (20, 30)

5. Using required positional, variadic positional, and keyword arguments

def myfunc(x, *args, y):
# x is a required argument in position 1
# args is tuple of variadic positional args
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# y is keyword argument (occurs after variadic positional)
...

myfunc(10, 20, 30, y = 40)
# x = 10
# args = (20, 30)
# y = 40

6. Using required positional, variadic positional, keyword, and variadic key-
word arguments

def myfunc(x, *args, y = 40, **kwargs):
# x is a required argument in position 1
# args is tuple of variadic positional args
# y is a regular keyword argument with default
# kwargs is a dictionary of variadic keyword args
# names 'args' and 'kwargs' are conventions
...

myfunc(10, 20, 30, y = 40, r = 50, s = 60, t = 70)
# x = 10
# args = (20, 30)
# y = 40
# kwargs = { 'r': 50, 's': 60, 't': 70 }

7. Using required positional and keyword arguments – where named arguments
appearing after * can only be passed by keyword

def myfunc(x, *, y, **kwargs):
# x is a required argument in position 1
# y is a regular keyword argument
# kwargs is a dictionary of keyword args

...
myfunc(10, y = 40, r = 50, s = 60, t = 70)

# x = 10
# y = 40
# kwargs = { 'r': 50, 's': 60, 't': 70 }

8. Using a fully variadic general signature

def myfunc(*args, **kwargs):
# args is tuple of all positional args
# kwargs is a dictionary of all keyword args
...

myfunc(10, 20, y = 40, 30, r = 50, s = 60, t = 70)
# args = (10, 20, 30)
# kwargs = { 'y': 40, 'r': 50, 's': 60, 't': 70 }
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2.11 Nested Function Definitions

Above we only considered module-level function definitions and instance method
definitions defined within classes.

Python 3 allows function definitions to be nested within other function definitions.
Nested functions have several characteristics:

• Encapsulation. The outer function hides the inner function definitions from
the global scope. The inner functions can only be called from within the
outer function.

In contrast, Python 3 classes and modules do not provide airtight encap-
sulation. Their hiding of information is mostly by convention, with some
support from the language.

• Abstraction. The inner function is a procedural abstraction that is named
and separated from the outer function’s code. This enables the inner
function to be used several times within the outer function. The abstraction
can enable the algorithm to be simplified and understood more easily.

Of course, modules and classes also support abstraction, but not in combi-
nation with encapsulation.

• Closure construction. The outer function can take one or more functions
as arguments, combine them in various ways (perhaps with inner function
definitions), and construct and return a specialized function as a closure.
The closure can bind in parameters and other local variables of the outer
function.

Closures enable functional programming techniques such as currying, par-
tial evaluation, function composition, construction of combinators, etc.

We discuss closures in more depth in a later section of this chapter.

Closure are powerful mechanisms that can be used to implement metapro-
gramming solutions (e.g., Python 3’s decorators). We discuss those in later
chapters.

As an example of use of nested function definitions to promote encapsulation
and abstraction, consider a recursive function sqrt(x) to compute the square
root of nonnegative number x using Newton’s Method. (This is adapted from
section 1.1.7 of [Abelson 1996].)

def sqrt(x):
def square(x):

return x * x
def good_enough(guess,x):

return abs(square(guess) - x) < 0.001
def average(x,y):

return (x + y) / 2
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def improve(guess,x):
return average(guess,x/guess)

def sqrt_iter(guess,x): # recursive version
if good_enough(guess,x):

return guess
else:

return sqrt_iter(improve(guess,x),x)
if x >= 0:

return sqrt_iter(1, x)
else:

print(
f'Cannot compute square root of negative number {x}')

A more “Pythonic” implementation of the sqrt_iter function would use a loop
as follows:

def sqrt_iter(guess,x): # looping version
while not good_enough(guess,x):

guess = improve(guess,x)
return guess

Note: The Python 3.6+ source code for the recursive version of sqrt is available
at this link and the looping version at another link.

2.12 Lexical Scope

Nested function definitions introduce a third category of variables – local variables
of outer functions – in addition to the (function-level) local and (module-level)
global scopes we have discussed so far.

Python 3 searches lexical scope (also called static scope) of a function for variable
accesses.

Inside a function, variables that are:

• referenced but not assigned a value are assumed to be either defined in an
outer function scope or in the global scope.

The Python 3 interpreter first searches for the nearest enclosing function
scope with a definition. If there is none, it then searches the global scope.

• assigned a value are assumed to be local

In the latter case, we can explicitly declare the variable as nonlocal if the
desired variable to be assigned is defined in an enclosing function scope or as
global if it is defined in the global scope.

Suppose we want to add an iteration counter c to the sqrt function above. We
can create and initialize variable c in the outer function sqrt, but we must
increment it in nested function sqrt_iter. For the nested function to change an
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outer function variable, we must declare the variable as nonlocal in the nested
function’s scope.

def sqrt(x):
c = 0 # create c in outer function
# same definitions of square, good_enough, average, improve
def sqrt_iter(guess,x): # new local x, hide outer x

nonlocal c # declare c nonlocal
while not good_enough(guess,x):

c += 1 # increment c
guess = improve(guess,x)

return (guess,c) # return c
if x >= 0:

return sqrt_iter(1, x)
else:

print(f'Cannot compute square root of negative number {x}')

Note: The Python 3.6+ source code for this version of sqrt is available at this
link.

2.13 Closures

As discussed in a previous section, Python 3 function definitions can be nested
inside other functions. Among other capabilities, this enables a Python 3 function
to create and return a closure.

A closure is a function object plus a reference to the enclosing environment.

For example, consider the following:

def make_multiplier(x, y):
def mul():

return x * y
return mul

If we call this function interactively from the Python 3 REPL, we see that the
values of the local variables x and y are captured by the function returned.

>>> amul = make_multiplier(2, 3)
>>> bmul = make_multiplier(10, 20)
>>> type(amul)
<class 'function'>
>>> amul()
6
>>> bmul()
200

Function make_multiplier is a higher order function because it returns a
function (or closure) as its return value. Higher order functions may also take
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functions (or closures) as parameters.

We can compose two conforming single argument functions using the following
compose2 function. Function comp captures the two arguments of compose2 in
a closure [Larose 2013].

def compose2(f, g):
def comp(x):

return f(g(x))
return comp

Given that f(g(x)) is a simple expression without side effects, we can replace
the comp function with an anonymous lambda function as follows:

def compose2(f, g):
return lambda x: f(g(x))

If we call this function from the Python 3 REPL, we see that the values of the
local variables x and y are captured by the function returned.

>>> def square(x):
... return x * x
...
>>> def inc(x):
... return x + 1
...
>>> inc_then_square = compose2(square, inc)
>>> inc_then_square(10)
121

Note: The Python 3.6+ source code for compose2 is available at this link.

2.14 Class and Instance Attributes

As we noted above, classes are objects. The class objects can have attributes.
Instances of the class are also objects with their own attributes.

Consider the following class Dummy which has a class-level variable r. This
attribute exists even if no instance has been created.

Instances of Dummy have instance variables s and t and an instance method
in_meth.

class Dummy:
r = 1
def __init__(self, s, t):

self.s = s
self.t = t

def in_meth(self):
print('In instance method in_meth')
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Now consider the following Python 3 REPL session with the above definition.

>>> Dummy.r
1
>>> d = Dummy(2,3)
>>> d.s
2
>>> d.in_meth()
>>> In instance method method

In the above, we see that:

• Dummy.r accesses the value of class variable r of the class object for the
class Dummy.

• d.s accesses the value of instance variable s of an instance object created
by the constructor call and assignment d = Dummy(2).

• d.in_meth() calls instance method in_meth of instance object d.

These usages are similar to those of other object-oriented languages such as Java.

A class can have three different kinds of methods in Python 3 [StackOverflow
2012]:

1. An instance method is a function associated with an instance of the class.
It requires a reference to an instance object to be passed as the first non-
optional argument, which is by convention named self. If that reference
is missing, the call results in a TypeError.

It can access the values of any of the instance’s attributes (via the self
argument) as well as the class’s attributes.

Note in_meth in the Dummy code below.

2. A class method is a function associated with a class object. It requires a
reference to the class object to be passed as the first non-optional argument,
which is by convention named cls. If that reference is missing, the call
results in a TypeError.

It can access the values of any of the class’s attributes (via the cls
argument). For example, cls() can create a new instance of the class.
However, it cannot access the attributes of any of the class’s instances.

Note cl_meth in the Dummy code below.

Class methods can be overriden in subclasses.

Because Python 3 does not support method overloading, class methods
are useful in circumstances where overloading might be used in a language
like Java. For example, we can use class methods to implement factory
methods as alternative constructors for instances of the class.
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3. A static method is a function associated with the class object, but it does
not require any non-optional argument to be passed

A static method is just a function attached to the class’s namespace. It
cannot access any of the attributes of the class or instances except in a
way that any function in the program can (e.g., by using the name of the
class explicitly, by being passed an object as an argument, etc.)

Note s_meth in the Dummy code below.

Static methods cannot be overrides in subclasses.

class Dummy: # extended definition
r = 1

def __init__(self, s, t):
self.s = s
self.t = t

def in_meth(self):
print('In instance method in_meth')

@classmethod
def cl_meth(cls):

print(f'In class method cl_meth for {cls}')

@staticmethod
def st_meth():

print('In static method st_meth')

In the example, the decorators @classmethod and @staticmethod transform the
attached functions into class and static methods, respectively. We will discuss
decorators in a later section.

Now consider a Python 3 REPL session with the extended definition.

>>> d = Dummy(2,3)
>>> d.in_meth()
In instance method in_meth
>>> d.r
1
>>> Dummy.cl_meth()
In class method cl_meth for Dummy
>>> Dummy.st_meth()
In static method st_meth
>>> Dummy.in_meth()
Traceback (most recent call last):
...
TypeError: in_meth() missing 1 required positional argument: 'self'
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>>> type(d.in_meth)
<class 'method'>
>>> type(Dummy.cl_meth)
<class 'method'>
>>> type(Dummy.st_meth)
<class 'function'>
>>> din = d.in_meth # get method object, store in variable din
>>> din() # call method object in din
In instance method in_meth
None
>>> type(din)
<class 'method'>

Note that the types of the references d.in_meth and Dummy.cl_meth are both
method. A method object is essentially a function that binds in a reference to
the required first positional argument. A method object is, of course, a first-class
object that can be stored and invoked later as illustrated by variable din above.

However, note that Dummy.st_meth has type function.

Note: The Python 3.6+ source code for the class Dummy is available at this link.

2.15 Object Dictionaries

As we noted earlier, each Python 3 object has a distinct dictionary that maps
the local names to the data attributes and operations (i.e., its environment).
Each object’s attribute __dict__ holds its dictionary. Python 3 programs can
access this dictionary directly.

Again consider the Dummy class we examined the previous section. Let’s look at
dictionary for this class and an instance in the Python 3 REPL.

>>> d = Dummy(2,3)
>>> d.__dict__
{'s': 2, 't': 3}
>>> Dummy.__dict__["r"]
1
>>> Dummy.__dict__["in_meth"]
<function Dummy.in_meth at 0x10191abf8>
>>> Dummy.__dict__["cl_meth"]
<classmethod object at 0x101928c50>
>>> Dummy.__dict__["st_meth"]
<staticmethod object at 0x101928c88>

TODO: Investigate and explain last two types returned above?
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2.16 Special Methods and Operator Overloading

Almost everything about the behavior of Python 3 classes and instances can be
customized. A key way to do this is by defining or redefining special methods
(sometimes called magic methods).

Python 3 uses special methods to provide an operator overloading capability.
There are special methods associated with certain operations that are invoked
by builtin operators (such as arithmetic and comparison operators, subscripting)
and with other functionality (such as initializing newly class instance).

The names of special methods both begin and end with double underscores __
(and thus are sometimes called “dunder” methods). For example, in an earlier
subsection, we defined the special method __init__ to specify how a newly
created instance is initialized. In other class-based examples, we have defined
the __str__ special method to implement a custom string conversion for an
instance’s state.

Consider the class Dum that overrides the definition of the addition operator to
do the same operation as multiplication.

class Dum:
def __init__(self,x):

self.x = x
def __add__(a,b):

return a.x * b.x

Now let’s see how Dum works.

>>> y = Dum(2)
>>> z = Dum(4)
>>> y + z
8

Consider the rudimentary SparseArray collection below. It uses the special
methods __init__, __str__, __getitem__, __setitem__, __delitem__, and
__contains__ to tie this new collection into the standard access mechanisms.
(This example stores the sparse array in a dictionary internally, but “hides” that
from the user.)

The Boolean __contains__ functionality searches the SparseArray instance for
an item. The class also provides a separate Boolean method has_index to check
wether an index has a corresponding value. Alternatively, we could have tied
the __contains__ functionality to the latter and provided a has_item method
for the former.

In addition, the method from_assoc loads an “association list” into a sparse
array instance. Here, the term association list refers to any iterable object
yielding a finite sequence of index-value pairs.
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Similarly, the method to_assoc unloads the entire sparse array into a sorted
list of index-value pairs (which is an iterable object).

For simplicity, the implementation below just prints error messages. It probably
should raise exception instead.

class SparseArray:

def __init__(self, assoc=None):
self._arr = {}
if assoc is not None:

self.from_assoc(assoc)

def from_assoc(self,assoc):
for p in assoc:

if len(p) == 2:
(i,v) = p
if type(i) is int:

self._arr[i] = v
else:

print(
f'Index not int in assoc list: {str(i)}')

else:
print(f'Invalid pair in assoc list: {str(p)}')

def has_index(self, index):
if type(index) is int:

return index in self._arr
else:

print(f'Warning: Index not int: {index}')
return False

def __getitem__(self, index): # arr[index]
if type(index) is int:

return self._arr[index]
else:

print(f'Index not int: {index}')

def __setitem__(self, index, value): # arr[index] = value
if type(index) is int:

self._arr[index] = value
else:

print(f'Index not int: {index}')

def __delitem__(self, index): # del arr[index]
if type(index) is int:

del self._arr[index]
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else:
print(f'Index not int: {index}')

def __contains__(self, item): # item (is value) in arr
return item in self._arr.values()

def to_assoc(self):
return sorted(self._arr.items())

def __str__(self):
return str(self.to_assoc())

Now consider a Python 3 REPL session with the above class definition.

>>> arr = SparseArray()
>>> type(arr)
<class '__main__.SparseArray'>
>>> arr
[]
>>> arr[1] = "one"
>>> arr
[(1, `one`)]
>>> arr.has_index(1)
True
>>> arr.has_index(2)
False
>>> arr.from_assoc([(2,"two"),(3,"three")])
{1: 'one', 2: 'two', 3: 'three'}
>>>
>>> arr[10] = "ten"
>>> arr
[(1,'one'), (2, 'two'), (3, 'three'), (10, 'ten')]
>>> del arr[3]
>>> arr
[(1,'one'), (2, 'two'), (10, 'ten')]
>>> 'ten' in arr
True

Note: The Python 3.6+ source code for the class SparseArray is available at
this line.

2.17 Object Orientation

The Programming Paradigms notes [Cunningham 2018a] discuss object orienta-
tion in terms of a general object model. The general object model includes four
basic components:
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1. objects
2. classes
3. inheritance
4. subtype polymorphism

We discuss Python 3’s objects and classes above. Now let’s consider the other
two components of the general object model in relation to Python 3.

2.17.1 Inheritance

In programming languages in general, inheritance involves defining hierarchical
relationships among classes. From a pure perspective, a class C inherits from
class P if C’s objects form a subset of P’s objects in the following sense:

• Class C’s objects must support all of class P’s operations (but perhaps are
carried out in a special way).

We can say that a C object is a P object or that a class C object can be
substituted for a class P object whenever the latter is required.

• Class C may support additional operations and an extended state (i.e.,
more data attributes fields).

We use the following terminology.

• Class C is called a subclass or a child or derived class.

• Class P is called a superclass or a parent or base class.

• Class P is sometimes called a generalization of class C; class C is a special-
ization of class P.

In terms of the discussion in the Type System Concepts section, the parent class
P defines a conceptual type and child class C defines a behavioral subtype of P’s
type. The subtype satisfies the Liskov Substitution Principle.

Even in a statically typed language like Java, the language does not enforce this
subtype relationship. It is possible to create subclasses that are not subtypes.
However, using inheritance to define subtype relationships is considered good
object-oriented programming practice in most circumstances.

In a dynamically typed like Python 3, there are fewer supports than in statically
typed languages. But using classes to define subtype relationships is still a good
practice.

The importance of inheritance is that it encourages sharing and reuse of both
design information and program code. The shared state and operations can be
described and implemented in parent classes and shared among the child classes.

The following code fragment shows how to define a single inheritance relationship
among classes in Python 3. Instance method process is defined in the parent
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class P and overridden (i.e., redefined) in child class C but not overriden in child
class D. In turn, C’s instance method process is overridden in its child class G.

class P:
def __init__(self,name=None):

self.name = name
def process(self):

return f'Process at parent P level'

class C(P): # class C inherits from class P
def process(self):

result = f'Process at child C level'
# Call method in parent class
return f'{result} \n {super().process()}'

class D(P): # class D inherits from class P
pass

class G(C): # class G inherits from class C
def process(self):

return f'Process at grandchild G level'

Now consider a (lengthy) Python 3 REPL session with the above class definition.

>>> p1 = P()
>>> c1 = C()
>>> d1 = D()
>>> g1 = G()
>>> p1.process()
'Process at parent P level'
>>> c1.process()
'Process at child C level'
'Process at parent P level'
>>> d1.process()
'Process at parent P level'
>>> g1.process()
'Process at grandchild G level'
#
>>> type(P)
<class 'type'>
>>> type(C)
<class 'type'>
>>> type(G)
<class 'type'>
>>> issubclass(P,object)
True
>>> issubclass(C,P)
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True
>>> issubclass(G,C)
True
>>> issubclass(G,P)
True
>>> issubclass(G,object)
True
>>> issubclass(C,G)
False
>>> issubclass(G,D)
False
>>> issubclass(P,type)
False
>>> isinstance(P,type)
True
>>> isinstance(C,type)
True
>>> isinstance(G,type)
True
>>> type(type)
<class 'type'>
>>> issubclass(type,object)
True
>>> isinstance(type,type)
True
>>> type(object)
<class 'type'>
>>> isinstance(object,type)
True
>>> issubclass(object,type)
False

Note: The Python 3.6+ source code for the above version of theP‘
class hierarchy is available at this link.

2.17.1.1 Understanding relationships among classes

By examining the REPL session above, we can observe the following:

• Top-level user-defined classes like P implicitly inherit from the object root
class. They have the issubclass relationship with object.

• A user-defined subclass like C inherits explicitly from its superclass P, which
inherits implicitly from root class object. Class C thus has issubclass
relationships with both P and object.

• By default, all Python 3 classes (including subclasses) are instances of the
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root metaclass type (or one of its subtypes as we see later). But non-class
objects are not instances of type.

As we noted in a previous section, we call class objects metaobjects; they are
constructors for ordinary objects [Kiczales 1991; Forman 1999].

Also as we noted in a previous section, we call special class objects like type
metaclasses; they are constructors for metaobjects (i.e., class objects) [Kiczales
1991; Forman 1999].

Note that classes object and type have special – almost “magical” – relationships
with one another [Ramalho 2015, pp. 593-5].

• Class object is an instance of class type (i.e. it is a Python class object).

• Class type is an instance of itself (i.e. it is a Python class object) and a
subclass of class object.

The diagram in Figure 1 shows the relationships among user-definfed class P and
built-in classes int, object, and type. Solid lines denote subclass relationships;
dashed lines denote “instance of” relationships.

Figure 1: Python 3 Class Model

2.17.1.2 Replacement and refinement
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There are two general approaches for overriding methods in subclasses.

• Replacement, in which the child class method totally replaces the parent
class method

This is the usual approach in most “American school” object-oriented
languages in use today – Smalltalk (where it originated), Java, C++, C#,
and Python 3.

• Refinement, in which the language merges the behaviors of the parent and
child classes to form a new behavior

This is the approach taken in Simula 67 (the first object-oriented language)
and its successors in the “Scandinavian school” of object-oriented languages.
In these languages, the child class method typically wraps around a call to
the parent class method.

The refinement approach supports the implementation of pure subtyping re-
lationships better than replacement does. The replacement approach is more
flexible than refinement.

A language that takes the replacement approach usually provides a mechanism
for using refinement. For example in the Python 3 class hierarchy example above,
the expression super().process() in subclass C calls the process method of
its superclass P.

2.17.2 Subtype polymorphism

The concept of polymorphism (literally “many forms”) means the ability to hide
different implementations behind a common interface. Polymorphism appears in
several forms in programming languages. Here we examine one form.

In the Python 3 class hierarchy example above, the method process forms
part of the common interface for this hierarchy. Parent class P defines the
method, child class C overrides P’s definition by refinement, and grandchild class
G overrides C’s definition by replacement. However, child class D does not override
P’s definition.

Subtype polymorphism (sometimes called polymorphism by inheritance, inclusion
polymorphism, or subtyping) means the association of an operation invocation
(e.g., method call) with the appropriate operation implementation in an inheri-
tance (i.e., subtype) hierarchy.

This form of polymorphism is usually carried out at run time. Such an imple-
mentation is called dynamic binding.

In general, given an object (i.e., class instance) to which an operation is applied,
the runtime system first searches for an implementation of the operation associ-
ated with the object’s class. If no implementation is found, the system checks
the parent class, and so forth up the hierarchy until it finds an implementation
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and then invokes it. Implementations of the operation may appear at several
levels of the hierarchy.

The combination of dynamic binding with a well-chosen inheritance hierarchy
allows the possibility of an instance of one subclass being substituted for an
instance of a different subclass during execution. Of course, this can only be
done when none of the extended operations of the subclass are being used.

In a statically typed language like Java, we declare a variable of some ancestor
class type. We can then store any descendant class instance in that variable.
Polymorphism allows the program to apply any of the ancestor class operations
to the instance.

Because of dynamically typed variables, polymorphism is even more flexible in
Python 3 than in Java.

In Python 3, an instance object may also have its own implementation of a
method, so the runtime system searches the instance before searching upward in
the class hierarchy.

Also (as we noted in an earlier section) Python 3 uses duck typing. Objects can
have a common interface even if they do not have common ancestors in a class
hierarchy. If the runtime system can find an compatible operation associated
with an instance, it can execute it.

Thus Python 3’s approach to subtype polymorphism gives considerable flexibility
in structuring programs. However, unlike statically typed languages, the compiler
provides little help in ensuring the compatibility of method implementations.

Again consider the simple inheritance hierarchy above in the following Python 3
REPL session.

>>> d1 = D()
>>> g1 = G()
>>> obj = d1 # variables support polymorphism
>>> obj.process()
'Process at parent P level'
>>> obj = g1 # variables support polymorphism
>>> obj.process()
'Process at grandchild G level'

2.17.3 Multiple Inheritance

TODO: Decide whether discussion of multiple inheritance is needed here? or
later? Issues include the diamond problem, Python syntax and semantics, and
method resolution order.
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2.18 Chapter Summary

TODO: Write this

In the next chapter, we explore a case study to motivate the concept and use of
decorators and metaclasses in Python 3.

2.19 Exercises

TODO: Decide whether any are needed.
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