
CSci 658-01: Software Language Engineering
Python 3 Reflexive Metaprogramming

Chapter 1

H. Conrad Cunningham

29 April 2018

Contents
1 Introduction 2

1.1 Metaprogramming . 2
1.2 Reflexive Metaprogramming . 3
1.3 Why Study Reflexive Metaprogramming? 3
1.4 Reflexive Metaprogramming in Python 3 4
1.5 Exercises . 5
1.6 Acknowledgements . 5
1.7 References . 5
1.8 Terms and Concepts . 6

Copyright (C) 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Advisory: The HTML version of this document requires use of a browser that
supports the display of MathML. A good choice as of April 2018 is a recent
version of Firefox from Mozilla.

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

1 Introduction

1.1 Metaprogramming

Basically, metaprogramming is writing code that writes code.

Metaprogramming: the writing of computer programs that can treat com-
puter programs as their data. A program can read, generate, analyze,
and/or transform other programs, or even modify itself while running
(Adapted from [Wikipedia 2018b, 2018c] and other sources)

We often do metaprogramming in our routine programming tasks but do not
call it that.

• Our web applications may generate HTML, JavaScript, and CSS code to
enable development of a browser-based user interface.

• Our Java programs may use instanceof to check the type of objects or
otherwise manipulate itself with the Java reflection package.

• Our C programs may use macros to define new features in terms of existing
features.

Under the above definition, much of our study of domain-specific languages uses
metaprogramming.

• The pic little language processor takes a program expressed in an external
textual language that describes a picture and generates output expressed in
another language that gives instructions to a display program [Kernighan
1984].

• Several of the State Machine DSL processors read and parse a program writ-
ten in a special-purpose textual language, represent the program internally
in a semantic model, and then “execute” the model on inputs.

• Other of the State Machine DSL processors use the semantic model to
generate a “program” in another language such as C or the Graphviz dot
language for graphs.

• The Computer Configuration and Email Message internal DSLs use the
host language itself to encode special-purpose languages. The processors
can then read and parse descriptions written in these special-purpose
languages and manipulate the resulting data structures similarly to the
external DSLs.

• The Lua- and Python-hosted Lair Configuration and the Ruby-hosted
Survey internal DSLs manipulate the structure of the processing programs
themselves to implement the special-purpose language.

2

../658lectureNotes.html#StateMachineDSL
../658lectureNotes.html#StateMachineDSL
../658lectureNotes.html#CompConfigDSL
../658lectureNotes.html#EmailMessageDSL
../658lectureNotes.html#LairDSL
../658lectureNotes.html#SurveyDSL

1.2 Reflexive Metaprogramming

The internal Survey DSL and Lair Configuration DSL are examples of reflexive
(or reflective) metaprogramming.

Reflexive metaprogramming: the writing of computer programs that ma-
nipulate themselves as data. (Adapted from [Wikipedia 2018b, 2018c] and
other sources)

This manipulation may be at compile time, involving a phase of transformations
in the code before the final program is generated. Or it may be at runtime,
involving manipulation of the program’s metamodel or generation of new code
that is dynamically executed within the program.

The Survey DSL is a Ruby internal DSL. It takes advantage of Ruby’s metapro-
gramming facilities such as the abilities to trap calls to undefined methods, add
methods or variables dynamically to existing objects at runtime, and execute
dynamically generated strings as Ruby code. It also uses Ruby’s first-class
functions (closures) and flexible syntax – although these are not technically
metaprogramming features of Ruby.

The Lair Configuration DSL programs use the metaprogramming features of
Lua and Python in similar ways.

Consider relatively common languages and their metaprogramming features.

• Java is a statically typed, compiled language. What are metaprogramming
features available in Java?

It has dynamic class loaders, a reflection API, annotation processing,
dynamic method invocation (a JVM feature), JVM bytecode manipulation
(mostly with external tools), etc. Java 8+ also has first-class functions and
other features useful in metaprogramming.

• Lua is a dynamically typed, interpreted language. What are the metapro-
gramming features available in Lua?

It has metatables, metamethods, manipulation of environments, a de-
bug library (introspection/reflection features), loadfile and loadstring
functions to dynamically execute code, extensions in C, etc.

What about Python 3?

The reflexive metaprogramming features of Python 3.6 and beyond is the primary
topic of this set of lecture notes.

1.3 Why Study Reflexive Metaprogramming?

In everyday application programming, we often use the products developed by
metaprogrammers, but we seldom use the techniques directly.

3

../658lectureNotes.html#SurveyDSL
../658lectureNotes.html#LairDSL

In everyday programming, use of reflexive metaprogramming techniques should
not be one of our first approaches to a problem. We first should explore techniques
supported by core language, its standard libraries, and stable extension packages.

If no acceptable solution can be found, then we can consider solutions that use
reflexive metaprogramming techniques. We should approach metaprogramming
with great care because these techniques can make programs difficult to under-
stand and can introduce vulnerabilities into our programs. We should design,
implement, test, and document the programs rigorously.

However, reflexive metaprogramming can be an important tool in a master
programmer’s toolbox. If our jobs are to develop software frameworks, libraries,
APIs, or domain-specific languages, we can use these techniques and features
to develop powerful products that hide the complexity from the application
programmer.

Even when our jobs are primarily application programming, understanding
reflexive metaprogramming techniques can improve our abilities to use software
frameworks, libraries, and APIs effectively.

1.4 Reflexive Metaprogramming in Python 3

TODO: Update this to better reflect what the final notes cover and include
forward references as appropriate.

The reflexive metaprogramming features of Python 3 include:

1. Decorators
2. Metaclasses
3. Descriptors
4. Import hooks
5. Context managers
6. Annotations (e.g. type hints)
7. Abstract Syntax Tree (AST) manipulation
8. Frame hacks
9. Execution of strings as Python 3 code (exec, eval)
10. Monkeypatching (i.e. direct dynamic manipulation of attributes and meth-

ods at runtime)

We have already used the final two in our implementation of domain-specific
languages. We will look at some of the others in these notes. In particular,
Chapter 3 looks at use of decorators and metaclasses.

But, in the next chapter, let’s first examine the basic features of Python 3 upon
which the reflexive metaprogramming features build.

4

1.5 Exercises

TODO: Decide if any are appropriate.

1.6 Acknowledgements

I developed these notes in Spring 2018 for use in CSci 658 Software Language
Engineering. The Spring 2018 version used Python 3.6.

Teaching a special topics course on “Ruby and Software Development” in Fall
2006 kindled my interests in domain-specific languages and metaprogramming.
Building on these interests, I taught another special topics course on “Software
Language Engineering” in which I focused on Martin Fowler’s work on domain-
specific languages [Fowler 2011]; I subsequently formalized this as CSci 658. (I
have collected some overall ideas on Domain-Specific Languages in a separate
set of notes [Cunningham 2018c].)

The overall set of notes on Python 3 Reflexive Metaprogramming is inspired by
David Beazley’s Python 3 Metaprogramming tutorial from PyCon’2013 [Beazley
2013a]. In particular, some chapters adapt Beazley’s examples. Beazley’s tutorial
draws on material from his and Brian K. Jones’ book Python Cookbook [Beazley
2013b].

Chapter 1 of the notes subsumes my previous notes on Metaprogramming
[Cunningham 2018b].

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

1.7 References

[Beazley 2013a]: David Beazley. Python 3 Metaprogramming (Tutorial), Py-
Con’2013, 14 March 2013.

[Beazley 2013b]: David Beazley and Brian K. Jones. Python Cookbook, 3rd
Edition, O’Reilly Media, May 2013.

[Cunningham 2018b]: H. Conrad Cunningham. Metaprogramming notes,
revised 22 February 2018.

[Cunningham 2018c]: H. Conrad Cunningham. Domain-Specific Languages
notes, revised 2 April 2018.

[Fowler 2011]: Martin Fowler. Domain-Specific Languages, Addison Wesley,
2011.

[Kernighan 1984]: Brian W. Kernighan. PIC -- A Graphics Language for
Typesetting, Revised User Manual, Computing Science Technical Report
No. 116, Bell Laboratories, December 1984. [local]

[Wikipedia 2018b]: Wikipedia, Metaprogramming, accessed 25 April 2018.

5

../DomainSpecificLanguages.html
http://www.dabeaz.com/py3meta
http://www.dabeaz.com/py3meta/
../Metaprogramming.html
../DomainSpecificLanguages.html
http://doc.cat-v.org/unix/v8/picmemo.pdf
http://doc.cat-v.org/unix/v8/picmemo.pdf
https://en.wikipedia.org/wiki/Metaprogramming

[Wikipedia 2018c]: Wikipedia, Reflection, accessed 25 April 2018.

1.8 Terms and Concepts

TODO: Update

Metaprogramming, reflexive metaprogramming.

6

https://en.wikipedia.org/wiki/Reflection_(computer_programming)

	Introduction
	Metaprogramming
	Reflexive Metaprogramming
	Why Study Reflexive Metaprogramming?
	Reflexive Metaprogramming in Python 3
	Exercises
	Acknowledgements
	References
	Terms and Concepts

