
CSci 658-01: Software Language Engineering
Expression Tree Calculator Case Study

H. Conrad Cunningham

17 February 2018

Contents
Expression Tree Calculator Case Study 1

Problem Description . 1
Exercises . 4
Acknowledgements . 4

Copyright (C) 2018, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Advisory: The HTML version of this document requires use of a browser that
supports the display of MathML. A good choice as of February 2018 is a recent
version of Firefox from Mozilla.

Expression Tree Calculator Case Study

Problem Description

In programming, we often use trees and other hierarchical data structures.

We can illustrate how to implement a tree in Haskell using a small calculator
program for simple arithmetic expressions composed of addition operations,
integer constants, and variables. Examples of such expressions in infix form area
1+2 and (x+x)+(7+y).

We can represent expressions naturally with a tree, where nodes are opera-
tions (e.g., addition) and leaves are values (e.g., constants or variables). This

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

representation is called the abstract syntax tree for the expression.

In Haskell, we can represent these expression trees using algebraic data types.
Such types often enable us to express programs concisely by using pattern
matching.

For the calculator program, we introduce the following types to describe the
expression tree.

type Name = String

data ExprTree = Add ExprTree ExprTree |
Var Name |
Val Int
deriving Show

Above Add represents addition of two subexpressions, Var represents a variable
with a name, and Val represents a constant value.

Consider a function to evaluate an expression in some environment. The purpose
of an environment is to associate values with variables.

For example, the expression x+1 might be evaluated in an environment that
associates the value 5 with the variable x, written { x -> 5 }. This evaluation
yields the value 6.

An environment associates a variable name with a value. The environment { x
-> 5 } given above can be expressed in Haskell in a number of ways. Here we
choose to represent it as an association list, that is, as a list of pairs where the
variable is the first component and its value is the second:

[("x",5)]

To simplify our evaluation program, we define the type synonym Env as follows:

type Env = [(Name,Int)]

We can use the Prelude function lookup to search association lists. It takes a
key and an association list and returns the value associated with the key, if any.
It wraps the result in a Maybe, returning a Just if the key is found or returns a
Nothing if it does not occur in the list.

lookup :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup _ [] = Nothing
lookup key ((x,y):xys)

| key == x = Just y
| otherwise = lookup key xys

We can now define the evaluation function in Haskell as follows:

eval :: ExprTree -> Env -> Int
eval (Add l r) env = eval l env + eval r env
eval (Var n) env =

2

case (lookup n env) of
Just i -> i
Nothing -> error ("Undefined variable " ++ show n)

eval (Val v) _ = v

To explore algebraic data types and pattern matching further, consider another
operation on arithmetic expressions: symbolic derivation. Looking back at our
calculus class, we see the following rules for differentiation:

• The derivative of a sum is the sum of the derivatives.

• The derivative of some variable v is 1 if v is the variable relative to which
the derivation takes place, and is 0 otherwise.

• The derivative of a constant is 0.

We can directly translate these rules into a Haskell function that uses the above
data types as follows:

derive :: ExprTree -> Name -> ExprTree
derive (Add l r) v = Add (derive l v) (derive r v)
derive (Var n) v

| v == n = Val 1
derive _ _ = Val 0

Consider an example with a simple main function that performs several operations
on the expression (x+x)+(7+y).

main = do
let exp = Add (Add (Var "x") (Var "x"))

(Add (Val 7) (Var "y"))
let env = [("x",5), ("y",7)]
putStrLn ("Expression: " ++ show exp)
putStrLn ("Evaluation with x=5, y=7: " ++

show (eval exp env))
putStrLn ("Derivative relative to x:\n " ++

show (derive exp "x"))
putStrLn ("Derivative relative to y:\n " ++

show (derive exp "y"))

It first computes its value in the environment { x -> 5, y -> 7 } and then
computes its derivative relative to x and then to y.

Executing this program, we get the expected output:

Expression: Add (Add (Var "x") (Var "x")) (Add (Val 7) (Var "y"))
Evaluation with x=5, y=7: 24
Derivative relative to x:

Add (Add (Val 1) (Val 1)) (Add (Val 0) (Val 0))
Derivative relative to y:

Add (Add (Val 0) (Val 0)) (Add (Val 0) (Val 1))

3

The result of the derivative is complex. It should be simplified before printing.
Defining a basic simplification function using pattern matching is an interesting
(but surprisingly tricky) problem.

Here is an skeleton function that simplifies the expression by evaluating constant
subexpressions and accounting for identity elements.

simplify :: ExprTree -> ExprTree
simplify t@(Val _) = t
simplify t@(Var _) = t
simplify (Add (Val 0) r) = simplify r
simplify (Add l (Val 0)) = simplify l
simplify (Add (Val x) (Val y)) = Val (x+y)

The source code for the above skeleton expression tree calculator program is
available.

Exercises

1. Extend the data type ExprTree definition and the eval function to add
the following new kinds of nodes: Sub,Mul, and Div for subtraction, multi-
plication, and division of values, respectively; Neg for negating a value, and
Sin and Cos for the sine and cosine trigonometric functions, respectively.

2. Extend function derive to support the operators in the previous exercise.

3. Extend the simplify function to support the new operators in the pre-
vious exercises. This function should simplify the tree by evaluating all
subexpressions involving only constants (not evaluating variables) and
handling special values like identity and zero elements.

4. Extend the simplifications in other ways. For example, you could take
advantage of mathematical properties such as associativity ((x + y) + z
= x + (y + z)and commutativity (x + 1 = 1 + x‘).

5. Write an object-oriented program to carry out the same functionality using
a class hierarchy and the message-passing style.

Acknowledgements

In Spring 2017 for the Haskell-based CSci 556 course, I converted the Expression
Tree Calculator case study from Scala to Haskell and adapted this document
from my Notes on Scala for Java Programmers, which is itself adapted from the
tutorial Scala for Java Programmers.

Later in 2017, I expanded this case study into an expanded assignment for CSci
556 and further into the “Expression Language” chapter of the evolving CSci
450 textbook. But, for now, I am keeping this as a separate document.

4

ExprTreeCalculator.hs
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

5

	Expression Tree Calculator Case Study
	Problem Description
	Exercises
	Acknowledgements

