
CSci 450: Org. of Programming Languages
Labeled Digraph ADT in Haskell

H. Conrad Cunningham

27 October 2017

Contents
Labeled Digraph ADT in Haskell 1

Introduction . 1
Specification . 2

Notation . 2
Abstract model . 3
Interface invariant . 4
Constructive semantics . 4
Haskell module abstract interface 7

List Implementation . 8
Type parameters . 8
Labeled digraph representation 9
Implementation invariant . 9
Haskell module . 10

Map Implementation . 10
Type parameters . 10
Labeled digraph representation 10
Implementation invariant . 11
Haskell module . 11

Acknowledgements . 11
References . 11
Terms and Concepts . 12

Copyright (C) 2017, H. Conrad Cunningham

Advisory: The HTML version of this document may require use of a browser
that supports the display of MathML. A good choice as of October 2017 is a
recent version of Firefox from Mozilla.

TODO:

• Better motivate the ADT
• Better integrate this case study into the evolving textbook

1

• Add student outcomes, exercises, better references, etc.

Labeled Digraph ADT in Haskell

Introduction

In this case study, we seek to develop a family of graph data structures that
can support the implementation of Adventure games similar to the Wizard’s
Adventure game given in Chapter 5 of the book Land of Lisp: Learn to Program
in Lisp, One Game at a Time [Barski 2011]. We develop this family as an
abstract data type and implement it as modules in Haskell.

This abstract data type represents doubly labeled directed graphs. A directed
graph (digraph) includes vertices (nodes) and edges directed from one node to
another. The graph allows arbitrary data (i.e., labels) to be attached to both
vertices and edges in the directed graph.

Note: In this case study we use the acronym ADT to refer to an abstract data
type. We also use an algebraic data type to denote the graph type provided by a
Haskell module and perhaps use other algebraic data types in implementing the
module.

The objectives of this case study are to:

a. specify a Labeled Digraph abstract data type using a constructive model
(sets and interface invariant for the, preconditions/postconditions for each
operation)

b. implement the abstract data type as a module in Haskell with at least two
distinct implementations, giving appropriate implementation invariants for
each

One source of information on digraphs and their specification we referenced is
Chapter 10 of the book Abstract Data Types: Specifications, Implementations,
and Applications [Dale-Walker 1996].

Specification

Notation

We use the following notation and terminology to describe the abstract data
type’s model and its semantics. (We choose notation that can readily be used in
comments in the Haskell program.)

• (ForAll x, y :: p(x,y)) is true if and only if predicate p(x,y) is true
for all values of x and y.

2

• (Exists x, y :: p(x,y)) is true if and only if there is at least one pair
of values x and y for which p(x,y) is true.

• (# x, y :: p(x,y)) yields a count of pairs (x,y) for which p(x,y) is
true.

• <=> denotes logical equivalence. p <=> q is true if and only if the logical
(Boolean) values p and q are equal (i.e., both true or both false).

• x IN C is true if and only if value x is member of a collection C (such as a
set, bag, or sequence). Similarly, x NOT_IN C denotes the negation of x
IN C.

• A type consists of a set of values and a set of operations. We sometimes
say a value is IN a type to mean the value is IN the set associated with
the type.

• For sets C and D, C UNION D denotes set union, that is, a set that includes
all the element of both C and D.

• For sets C and D, C INTERSECT D denotes set intersection, that is, a set
that includes all elements that are both in C and in D.

• For sets C and D, C - D denotes set difference, that is, the set C with all
elements of set D removed.

• For sets C and D, C SUBSET_OF D denotes that C is subset of D, that is, all
the elements of C also occur in D.

• A tuple such as (x,*) appearing in a collection such as { (x,*) } denotes
element x grouped with all possible values of the second component. Note:
We could also write { (x,*) } using q quantification as:

{ (x,c) :: c IN some_domain }

• A function is a special case of a relation and relation is a set of ordered
pairs (tuples). We sometimes manipulate functions or relations using set
notation for convenience.

• A total function is defined for all elements of its domain. A partial function
is defined for a subset of the elements of its domain.

Abstract model

We parameterize the abstract model for the Labeled Digraph ADT with the
following types.

• VertexType is the set of possible vertices (i.e., vertex identifiers).

• VertexLabelType is the set of possible labels on vertices. (Values of this
type may have several components.)

3

• EdgeLabelType is the set of possible labels on edges. (Values of this type
may have several components.)

We model the state of the instance of the Labeled Digraph ADT with an abstract
value G such that G = (V,E,VL,EL) with G’s components satisfying the following
Labeled Digraph Properties.

• V is a finite subset of values from the set VertexType. V denotes the
vertices (or nodes) of the digraph.

• E is a binary relation on the set V. A pair (v1,v2) IN E denotes that there
is a directed edge from v1 to v2 in the digraph.

Note that this model allows at most one (directed) edge from a vertex v1
to vertex v2.

• VL is a total function from set V to the set VertexLabelType.

• EL is a total function from set E to the set EdgeLabelType.

Interface invariant

We define the following interface invariant for the Labeled Digraph ADT:

Any valid labeled digraph instance G, appearing in either the arguments
or return value of a public ADT operation, must satisfy the Labeled
Digraph Properties.

Constructive semantics

We specify the various ADT operations below using their type signatures, precon-
ditions, and postconditions. Along with the interface invariant, these comprise
the (implementation-independent) specification of the ADT.

In these assertions, for a digraph g that satisfies the invariants, G(g) denotes its
abstract model(V,E,VL,EL) as described above. The value Result denotes the
return value of function.

• Constructor new_graph creates and returns a new instance of the graph
ADT.

– Precondition:

True

– Postcondition:

G(Result) == ({},{},{},{})

• Accessor is_empty g returns true if and only if graph g is empty.

– Precondition:

4

G(g) = (V,E,VL,EL)

– Postcondition:

Result == (V == {} && E == {})

• Mutator add_vertex g nv nl inserts vertex nv with label nl into graph
g and returns the resulting graph.

– Precondition:

G(g) = (V,E,VL,EL) && nv NOT_IN V

– Postcondition:

G(Result) == (V UNION {nv}, E, VL UNION {(nv,nl)}, EL)

• Mutator remove_vertex g ov deletes vertex ov from graph g and returns
the resulting graph.

– Precondition:

G(g) = (V,E,VL,EL) && ov IN V

– Postcondition:

G(Result) == (V', E', VL', EL')
where V' = V - {ov}

E' = E - {(ov,*),(*,ov)}
VL' = VL - {(ov,*)}
EL' = EL - {((ov,*),*),((*,ov),*)}

• Mutator update_vertex g ov nl changes the label on vertex ov in graph
g to be nl and returns the resulting graph.

– Precondition:

G(g) = (V,E,VL,EL) && ov IN V

– Postcondition:

G(Result) == (V - {ov}, E, VL', EL)
where VL' = (VL - {(ov,VL(ov))}) UNION {(ov,nl)}

• Accessor get_vertex g ov returns the label from vertex ov in graph g

– Precondition:

G(g) = (V,E,VL,EL) && ov IN V

– Postcondition:

Result == VL(ov)

• Accessor has_vertex g ov returns true if and only if ov is a vertex of
graph g.

– Precondition:

5

G(g) = (V,E,VL,EL) && ov IN VertexLabelType

– Postcondition:

G(Result) == ov IN V

• Mutator add_edge g v1 v2 nl inserts an edge from vertex v1 to vertex
v2 in graph g and returns the resulting graph.

– Precondition:

G(g) = (V,E,VL,EL) && v1 IN V && v2 IN V &&
(v1,v2) NOT_IN E

– Postcondition:

G(Result) == (V, E', VL, EL')
where E' = E UNION {(v1,v2)}

EL' = EL UNION {((v1,v2),nl)}

• Mutator remove_edge g v1 v2 deletes the edge from vertex v1 to vertex
v2 from graph g and returns the resulting graph.

– Precondition:

G(g) = (V,E,VL,EL) V - {ov} && (v1,v2) IN E

– Postcondition:

G(Result) == (V, E - {(v1,v2)}, VL, EL - { ((v1,v2),*) }

• Mutator update_edge g v1 v2 nl changes the label on the edge from
vertex v1 to vertex v2 in graph g to have label nl and returns the resulting
graph.

– Precondition:

G(g) = (V,E,VL,EL) && (v1,v2) IN E

– Postcondition:

G(Result) == (V, E, VL, EL')
where EL' == (EL - {((v1,v2),*)}) UNION {((v2,v2),nl)

• Accessor get_edge g v1 v2 returns the label on the edge from vertex v1
to vertex v2 in graph g.

– Precondition:

G(g) = (V,E,VL,EL) && (v1,v2) IN E

– Postcondition:

Result == EL((v1,v2))

• Accessor has_edge g v1 v2 returns true if and only if there is an edge
from a vertex v1 to a vertex v2 in graph g.

6

– Precondition:

G(g) = (V,E,VL,EL)

– Postcondition:

Result == (v1,v2) IN E

• Accessor all_vertices g returns a sequence of all the vertices in graph
g. The returned sequence is represented by a builtin Haskell list.

– Precondition:

G(g) = (V,E,VL,EL)

– Postcondition:

(ForAll ov: ov IN Result <=> ov IN V) &&
length(Result) == size(V)

• Accessor from_edges g v1 returns a sequence of all vertices v2 such that
there is an edge from vertex v1 to vertex v2 in graph g. The returned
sequence is represented by a builtin Haskell list.

– Precondition:

G(g) = (V,E,VL,EL) && v1 IN V

– Postcondition:

(ForAll v2: v2 IN Result <=> (v1,v2) IN E) &&
length(Result) == (# v2 :: (v1,v2) IN E)

Function from_edges g v1 should return [] when v1 does not appear in
g, so that it can work well with the Wizard’s Adventure game.

• Accessor all_vertices_labels g returns a sequence of all pairs (v,l)
such that v is a vertex and l is it’s label in graph g. The returned sequence
is represented by a builtin Haskell list.

– Precondition:

G(g) = (V,E,VL,EL)

– Postcondition:

(ForAll v, l: (v,l) IN Result <=> (v,l) IN VL) &&
length(Result) == size(VL)

• Accessor from_edges_labels g v1 returns a sequence of all pairs (v2,l)
such that there is an edge (v1,v2) labeled with l in graph g.

– Precondition:

G(g) = (V,E,VL,EL) && v1 IN V

– Postcondition:

7

(ForAll v2, l :: (v2,l) IN Result <=> ((v1,v2),l) IN EL) &&
length(Result) == (# v2 :: (v1,v2) IN E)

Function from_edges_labels g v1 should return [] when v1 does not
appear in g, so that it can work well with the Wizard’s Adventure game.

Haskell module abstract interface

Below we state the header for a Haskell module Digraph_XXX that implements
the Labeled Digraph ADT. The module name suffix XXX denotes the particular
implementation for a data representation, but the signatures and semantics of
the operations are the same regardless of representation.

The module exports data type Digraph, but its constructors are not exported.
This allows modules that import Digraph_XXX to use the data type without
revealing how the data type is implemented. (If we had Digraph(..) in the
export list, then the data type and all its constructors would be exported.)

module DigraphADT_XXX
(Digraph -- constrain ops (Eq a, Show a, Show b, Show c)
, new_graph -- Digraph a b c
, is_empty -- Digraph a b c -> Bool
, add_vertex -- Digraph a b c -> a -> b -> Digraph a b c
, remove_vertex -- Digraph a b c -> a -> Digraph a b c
, update_vertex -- Digraph a b c -> a -> b -> Digraph a b c
, get_vertex -- Digraph a b c -> a -> b
, has_vertex -- Digraph a b c -> a -> Bool
, add_edge -- Digraph a b c -> a -> a -> c -> Digraph a b c
, remove_edge -- Digraph a b c -> a -> a -> Digraph a b c
, update_edge -- Digraph a b c -> a -> a -> c -> Digraph a b c
, get_edge -- Digraph a b c -> a -> a -> c
, has_edge -- Digraph a b c -> a -> a -> Bool
, all_vertices -- Digraph a b c -> [a]
, from_edges -- Digraph a b c -> a -> [a]
, all_vertices_labels -- Digraph a b c -> [(a,b)]
, from_edges_labels -- Digraph a b c -> a -> [(a,c)]
)

where -- definitions for the types and functions

Note: The Glasgow Haskell Compiler (GHC) release 8.2 (July 2017) and the
Cabal-Install package manager release 2.0 (August 2017) support a new mixin
package system called Backpack. This extension would enable us to define an
abstract module “DigraphADT” as a signature file with the above interface.
Other modules can then implement this abstract interface thus giving a more
explicit and flexible definition of this abstract data type.

8

List Implementation

Type parameters

The Haskell List representation uses the following values for the type parameters:

• VertexType is an instance of Haskell classes Eq and Show (i.e., can be
compared for equality and converted to strings),

• VertexLabelType is an instance of Haskell class Show,

• EdgeLabelType is an instance of Haskell class Show.

That is, vertices can be compared for equality. Vertices and both the vertex and
edge labels can be displayed as strings.

Note: It may be desirable to require VertexType to be from class Ord (totally
ordered) and VertexLabelType and EdgeLabelType to be from class Eq. These
were not necessary for the List implementation, but were necessary for the Map
implementation.

Labeled digraph representation

The List implementation represents a labeled digraph as an instance of the
Haskell algebraic data type Digraph, in particular data constructor (Graph vs
es).

In an instance (Graph vs es):

• vs is a list of tuples (v,vl) where

– v has VertexType and represents a vertex of the digraph
– vl has VertexLabelType and is the unique label associated with

vertex v
– a vertex v occurs at most once in vs (i.e., vs encodes a function from

vertices to vertex labels)

• es is a list of tuples ((v1,v2),el) where

– v1 and v2 are vertices occurring in vs, representing a directed edge
from v1 to v2

– el has EdgeLabelType and is the unique label associated with edge
(v1,v2)

– an edge (v1,v2) occurs at most once in vs (i.e., es encodes a function
from edges to edge labels)

In terms of the abstract model, vs encodes VL directly and, because VL is a total
function on V, it encodes V indirectly. Similarly, es encodes EL directly and E
indirectly.

9

Implementation invariant

Given the above description, we then define the following implementation (rep-
resentation) invariant for the list-based version of the Labeled Digraph ADT:

Any Haskell Digraph value (Graph vs es) with abstract model G =
(V,E,VL,EL), appearing in either the arguments or return value of
an operation, must also satisfy the following:

(ForAll v, l :: (v,l) IN vs <=> (v,l) IN VL) &&
(ForAll v1, v2, m :: (v1,v2,m) IN es <=> ((v1,v2),m) IN EL)

Haskell module

The Haskell module for the list representation of the labeled digraph
graph ADT is in file DigraphADT_List.hs. Its test driver module is in file
DigraphADT_TestList.hs.

Map Implementation

Type parameters

The Haskell Map representation uses the following values for the type parameters:

• VertexType is an instance of Haskell classes Ord and Show (i.e., can be
compared and also converted to strings)

• VertexLabelType is an instance of Haskell classes Eq and Show.

• EdgeLabelType is an instance of Haskell classes Eq and Show.

Note: In the List version of this ADT, VertexType is required to be in classes
Show and Eq (instead of Ord). The two label types did not require Eq. However,
the use of the Map module for implementation in this version requires the new
type constraints.

Labeled digraph representation

This implementation represents a labeled digraph as an instance of the Haskell
algebraic data type Digraph, in particular data constructor (Graph m), where
m is from the Data.Map.Strict collection. (This collection is implemented as a
balanced tree.)

An instance of (Graph m) corresponds to the abstract model as follows:

• The keys for Map m are from VertexLabelType.

10

DigraphADT_List.hs
DigraphADT_TestList.hs%3E
DigraphADT_TestList.hs%3E

• Map m is defined for all keys v1 in vertex set V and undefined for all other
keys.

• For some vertex v1, the value of m at key v1 is a pair (l,es) where

• l is an element of VertexLabelType and is the unique label associated
with v1, that is, l = VL(v1).

– es is the list of all tuples (v2,el) such that (v1,v2) IN E, el IN
EdgeLabelType, and el = EL((v1,v2)). That is, (v1,v2) is an
edge and el is its unique label.

Implementation invariant

Given the above description, we then define the following implementation (rep-
resentation) invariant for the list-based version of the Labeled Digraph ADT:

Any Haskell Digraph value (Graph m) with abstract model G =
(V,E,VL,EL), appearing in either the arguments or return value
of an operation, must also satisfy the following:

(ForAll v1, l, es ::
(m(v1) defined && m(v1) == (l,es)) <=>
(VL(v1) == l &&

(ForAll v2, el :: (v2,el) IN es <=>
EL((v1,v2)) == el)))

Haskell module

The Haskell module for the Map representation of the labeled digraph
graph ADT is in file DigraphADT_Map.hs. Its test driver module is in file
DigraphADT_TestMap.hs.

Acknowledgements

In Spring 2017, I adapted and revised this document from comments in my
Spring 2015 Haskell implementations of the Labeled Digraph abstract data
type. (In addition to the list- and map-based Haskell implementations, I also
developed a list-based implementation in Elixir in Spring 2015 and two Scala-
based implementations in Spring 2016.)

In Summer and Fall 2017, I continue to revise this document. I plan eventually
to integrate it into evolving textbook “Introduction to Functional Programming
Using Haskell.”

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to

11

DigraphADT_Map.hs
DigraphADT_TestMap.hs%3E
DigraphADT_TestMap.hs%3E

HTML, PDF, and other forms as needed. The HTML version of this document
requires use of a browser that supports the display of MathML.

References

[Barski 2011] Conrad Barski. “Building a Text Game Engine,” Land of Lisp:
Learn to Program in Lisp, One Game at a Time, pp. 69-84, No Starch
Press, 2011. (The Common Lisp example in this chapter is similar to
the classic Adventure game; the underlying data structure is a labeled
digraph.)

[Bird-Wadler 1998] Richard Bird and Philip Wadler. Introduction to Func-
tional Programming, Second Edition, Addison Wesley, 1998. [First Edition,
1988]

[Cunningham 2017] H. Conrad Cunningham. Notes on Data Abstraction,
1996-2017.

[Dale-Walker 1996] Nell Dale and Henry M. Walker. “Directed Graphs or
Digraphs,” Chapter 10, In Abstract Data Types: Specifications, Implemen-
tations, and Applications, pp. 439-469, D. C. Heath & Co, 1996.

Terms and Concepts

Use of Haskell module hiding features to implement the abstract data type’s
interface, applying specification concepts, using mathematical concepts to model
the data abstraction (graphs, sets, sequences, bags, functions, relations), graph
data structure.

The specification model for the abstract data type uses a constructive semantics
– an abstract model, invariants, preconditions, and postconditions.

12

https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf
https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf
../../DataAbstraction.html

	Labeled Digraph ADT in Haskell
	Introduction
	Specification
	Notation
	Abstract model
	Interface invariant
	Constructive semantics
	Haskell module abstract interface

	List Implementation
	Type parameters
	Labeled digraph representation
	Implementation invariant
	Haskell module

	Map Implementation
	Type parameters
	Labeled digraph representation
	Implementation invariant
	Haskell module

	Acknowledgements
	References
	Terms and Concepts

