CSci 556: Multiparadigm Programming
Carrie’s Candy Bowl Semantics

H. Conrad Cunningham

27 February 2017

Contents

Carrie’s Candy Bowl ADT
Introduction
Specifying Semanticso L oo
Operations
Contracts e
Concepts and notation,
Candy Bowl Specification
Abstract model
Interface invariant L
Constructive semantics
Data Representations oL 11
Lua hashed Version 11
Lua list Version 11

Copyright (C) 2014, 2017, H. Conrad Cunningham

DO DR WN N = =

Acknowledgements: I wrote the first version of these notes in Fall 2013 as
comments in Lua code for the Carrie’s Candy Bowl case study. This code was
for an extended solution to a problem given on a take-home examination. In Fall
2014, I revised the comments and used them as the basis for separate documents.

In Spring 2017, I revised the documents and reformatted them to use Markdown,
restated the semantics to use the “better semantics” documented in the code,
and partially updated the document for use in a multi-language context.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and translate them to HTML and
PDF.

Advisory: The HTML version of this document may require use of a browser
that supports the display of MathML. A good choice as of February 2017 is a
recent version of Firefox from Mozilla.

Carrie’s Candy Bowl ADT

Introduction

Carrie, the Department’s Administrative Assistant, has a candy bowl on her
desk. Often she fills this bowl with pieces of candy, which are quickly consumed
by students and professors.

This case study describes the candy bowl as an abstract data type (ADT) suitable
for implementation as Lua modules.

Notes:

1. This problem description differs slightly from the descriptions of the prob-
lem used in later Scala- and Haskell-based classes.

2. This problem description allows the implementations to use mutable state
or to use only immutable state. Thus the specification may be imprecise
about the possible effects of mutator operations.

Specifying Semantics
Operations

We identify four basic kinds of operations on abstract data types:

1. A constructor (also called a creator, factory, or producer) operation creates
a new instance of the ADT.

2. A mutator (also called a setter, modifier, or command) operation returns
the input instance with its state changed.

3. An accessor (also called a getter, observer, or query) operation accesses
input instance’s state and returns a value that characterizes the instance.

4. A destructor operator destroys an instance and “releases” its resources.

An ADT can be implemented in various ways. In most circumstances, it is best
to keep an accessor as a pure function. That is, an accessor should not modify
the state of the input instance in any observable manner. However, a mutator
may be a pure function—returning a modified copy of the input instance—or it
may be impure—directly modifying the value of the input instance.

In the imperative, object-oriented language Java, an abstract data type is
typically defined using an abstract class or interface and implemented using
a concrete class that extends the abstract class or implements the interface.
The various ADT operations are the public methods of the class. An instance of
the ADT is an instance of the concrete class whose instance variables hold the
instance’s state.

In the purely functional language Haskell, an abstract data type is typically
implemented using a module with definitions of its types and functions. The
module explicitly exports the public types and operations and hides other aspects
of the specific implementation. Constructor functions create and return new
instances of the ADT. These instances must be explicitly passed into the accessor,
mutator, and destructor operations. A mutator operation returns a modified
copy of the input instance. Currently, the module system does not support
multiple implementations of the same interface; thus the overall abstract data
type is represented by a set of modules all having the same set of exported
operations.

Lua is a minimalistic language, but it is one that has powerful, flexible features.
It is dynamically typed and mostly imperative. It offers a number of ways to
implement abstract data types. As a result, it is challenging to specify ADTs
formally.

This case study assumes we are implementing the ADT as a Lua module that
exports functions for the public operations. However, the case study seeks to
enable a number of different implementation techniques.

Contracts

The module defines the semantics of the Candy Bowl abstract data type (ADT)
using

o invariant assertions to characterize valid states of its instances (between
ADT operation calls)

e precondition and postcondition assertions to characterize the behavior of
ADT operations

These assertions (or predicates or Boolean functions) are logical statements that
must hold (i.e., be true) for an ADT instance to be valid.

If the precondition of an operation holds, then the operation must terminate
with its postcondition true. The precondition characterizes valid values of the
input arguments and other aspects of the program’s state at the time of the
call. The postcondition characterizes the value of the return value and any other
effects caused by the operation. The postcondition often states the output values
in terms of the input state.

The invariants must hold for an instance after execution of its constructor, before
and after execution of mutator and accessor operations, and before execution of
any destructor operation. Invariants are implicitly conjuncted (i.e., ANDed) to
the preconditions and postconditions of the ADT’s operations.

An ADT interface invariant specifies the valid value (i.e., state) of an ADT
instance in terms of an abstract model of the ADT (and perhaps of primitive

operation in the module’s interface). It must be the same for any implementation
of the ADT. It does not reference the state of any implementation variables.

An ADT idmplementation invariant complements the interface invariant by
defining the abstract model’s state in terms of the state of an implementation’s
concrete variables and data structures.

We consider the invariants and the preconditions and the postconditions of all
public operations of the ADT operations to form the contract between the users
and developers of the ADT.

Concepts and notation

We use the following mathematical and logical concepts and notation to express
the semantics of the ADT and its operations. Here, we use notation that can
be typed into comments for computer programs, not the notation that would
be typeset in a mathematics or logic textbook. The logic notation follows that
popularized by Edsger Dykstra, David Gries, and others. (We do not use all of
these concepts and notation in specification of the Candy Bowl abstract data

type.)
The following gives an informal explanation of the concepts and notation.

e (ForAll x : D(x) :: R(x)) denotes universal quantification. It is true
if and only if assertion R(x) is true for all values x that satisfy assertion
D(x). If D(x) is omitted, then it does not constrain x.

We can extend this notation to quantify over tuples of values such as in
(ForAll x,y,z : D(x,x,z) :: R(x,y,2)).

e (Exists x : D(x) :: R(x)) denotes existential quantification. It is true
if and only if assertion R(x) is true for at least one value x that satisfies
assertion D(x). If D(x) is omitted, then it does not constrain x.

o (# x : D(x) :: R(x)) denotes a count of all values x that satisfies asser-
tion D(x) and assertion R(x).

e <=> denotes logical equivalence. p <=> q is true if and only if the logical
(Boolean) values p and q are equal (i.e., both true or both false).

e A set is an unordered collection of elements without duplicates. We use
typical notation and operations on sets.

o A bag (also called a multiset) is an unordered collection of elements in
which each value may occur one or more times. Here we use the following
notation.

— {I 1} denotes the empty bag.

— {1l 2, 3, 2, 1 |} denotes a bag with four elements including two
2’s, one 3, and one 1. The order is not significant! There may be one
or more occurrences of an element.

— A set can be considered a bag with at most one occurrence of an
element.

— We can formalize a bag as a function from the set of elements to the
natural numbers (i.e., nonnegative integers).

e A sequence is an ordered collection of elements in which each value may
occur one or more times.

e A type consists of a set of values and a set of operations. In some circum-
stances, we consider the type as a set of values.

e Membership. For a collection (i.e., a set, bag, sequence, or type) C, x IN
C if only if element x occurs in collection C.

e OCCURENCES(x,C) denotes the number of times element x appears in col-
lection C. For a set, this will be integer 0 or 1. For a bag or sequence, there
many be any nonnegative number of occurrences.

e CARDINALITY(C) denotes the total number of occurrences of all elements
in a collection C.

e REPEAT(e,n) denotes a bag containing exactly n occurrences of e or an
empty bag if n < 1.

e Union.

— For sets C and D, an element occurs in the set C UNION D if and only
if it occurs in C or in D (or both).

— Similarly, for bags C and D, an element has exactly n occurrences in
bag C UNION D if and only if n is the mazimum of the number of its
occurrences in C and in D

{I 1, 1, 2, 1 }> UNION {| 2, 1, 1 |} yields {I] 1, 1, 1, 2
[3.

e Sum.

— For bags C and D, an element has exactly n occurrences in bag C + D
if and only if n is the sum of the number of occurrences in C and in D.

{1,1,2,13r+4{12,1, 11} yields {I 1, 1, 1, 1, 1,
2, 2 |}

« Intersection.

— For sets C and D, an element occurs in set C INTERSECT D if and only
if it occurs in both C and D.

— Similarly, for bags C and D, an element has exactly n occurrences in
bag C INTERSECT D if and only if n is the minimum of the number
of occurrences in C and in D.

{I 1, 1, 2, 1 }} INTERSECT {| 2, 1, 1 |} yields {I 1, 1, 2
|3

« Difference.

— For sets C and D, an element occurs in set C - D if and only if it
occurs in C but not in D.

— Similarly, for bags C and D, an element has exactly n occurrences in
bag C - D if and only if the elements occurs exactly n more times in
C than in D,

{11, 1,2, 13} -4 2,1,1 [}yields{| 1 |}
o Subset.

— For sets C and D, C SUBSET_OF D denotes that all the elements of C
also occur in D.

— For bags C and D, C SUBSET_OF D denotes that if any element has n
occurrences in C and m occurrences in D then n <= m.

e« TODO: Define Cartesian products, tuples, relations, functions?

e A tuple such as (x,*) appearing in a collection such as { (x,*) } denotes
element x grouped with all possible values of the second component. Note:
We could also write { (x,*) } using quantification as { (x,c) :: ¢ IN
some_domain }.

e A function is a special case of a relation and relation is a set of ordered
pairs (tuples). We sometimes manipulate functions or relations using set
notation for convenience.

e A total function is defined for all elements of its domain. A partial function
is defined for a subset of the elements of its domain.

Candy Bowl Specification
Abstract model
We represent a Candy Bowl instance as a mathematical bag of CandyType

elements. If bowl is some representation of the Candy Bowl in the program,
then the notation Bag(bowl) denotes the corresponding abstract model.

Interface invariant

Any valid instance of the Candy Bowl must satisfy the bag properties.

All Candy Bowl instances passed explicitly or implicitly to an ADT operation or
returned explicitly or implicitly must be valid.

Constructive semantics

The preconditions and postconditions of each ADT operation are given below.
These are part of the (implementation-independent) specification of the ADT.

We parameterize the specification with a domain set CandyType. We assume
that assertion validCandyType (c) holds if and only if ¢ represents a candy type
supported by the module.

For convenience, we assume assertion validCandyBowl(b) holds if and only if
b represents a bowl that satisfies the invariants. (Given our assumption that
invariants are implicitly conjuncted with both preconditions and postconditions,
use of this should not be necessary in most circumstances. However, we use it
below to make the intention clear.)

In a postcondition:

e Arg_ XXX denotes the value of explicit or implicit argument variable XXX at
the time of the call of the operation.

e Return denotes the value returned explicitly by a operation’s function.

e Unchanged(Arg_b) denotes that the value of variable b is not changed by
the operation’s execution.

Now, let’s examine the operations.

1. Constructor function CandyBowl (bowl) returns a new candy bowl. If
the argument bowl is (Lua value) nil or unspecified, then the new bowl
is empty; otherwise, the new bowl has the same elements as the bowl
argument.

Note: The optional argument bowl was not in the original Fall 2013
problem description; I added it to illustrate use of optional arguments. If
an argument is omitted, then the function sees it has having a nil value.
For other languages, the one-argument function might need to be separate
from the zero-argument function.

e Precondition:
bowl == nil OR validCandyBowl(bowl)
e Postcondition:

(if Arg_bowl == nil
then CARDINALITY(Bag(Return)) ==

else Bag(Return) == Bag(Arg_bowl))
&& Unchanged(Bag(Arg_bowl))

Discussion: The one-argument operation is intended to be a “copy” con-
structor. (a) The new bowl should be a copy of the input bowl, not just
another reference to the input (i.e., an alias). (b) The input bowl should
not be changed.

These are tricky to specify formally because of Lua’s dynamic typing, its
passing of its table data structure by reference, and the relative openness
of its table data structure to modification.

The Unchanged (Bag (Arg_bowl)) conjunct on the postcondition addresses
second intention.

For now, this specification does not address the copying/aliasing issue.
Even if we require Arg_bowl and Return to denote different addresses,
there is no good way to state that they do not share components.

. Accessor function has(bowl,candyType) returns true if and only if bowl
contains one or more pieces of type candyType candy. The argument bowl
is not modified.

e Precondition:
validCandyBowl (bowl) && validCandyType (candyType)
o Postcondition:

Return == OCCURENCES(candyType,Arg_bowl) > 0
&& Unchanged (Arg_bowl)

. Mutator function put(bowl,candyType,n) adds integer n pieces of
candyType candy to the argument bowl. n defaults to 1 if nil or
unspecified.

Note: The optional argument n was not in the original Fall 2013 problem
description. For other languages, the three-argument version might need
to be a separate function from the two-argument function.

e Precondition:
validCandyType (candyType) && (n == nil or n > 0)
o Postcondition:

if n == nil
then Bag(Return) == Bag(Arg_bowl) + {| candyType |}
else Bag(Return) == Bag(Arg_bowl) + REPEAT(c,n)

Discussion: The original problem specification allows this function to
modify its bowl argument. We can add conjunct

Unchanged (Arg_bowl)

to the postcondition to require a function without side effects. (Function
put in the implementation modifies its argument; alternative function
putcp returns a modified “shallow” copy.)

4. Mutator function take (bowl,candyType) removes one piece of candyType
candy from the argument bowl.

e Precondition:

validCandyBowl (bowl_ && validCandyType(candyType) &&
OCCURRENCES (candyType ,Bag(Arg_bowl)) > 0

o Postcondition:
Bag(Return) == Bag(Arg_bowl) - {| candyType |3}

Discussion: The original problem specification allows this function to
modify its bowl argument. We can add conjunct

Unchanged (Arg_bowl)

to the postcondition to require a function without side effects. (Function
take in the implementation modifies its argument; alternative function
takecp returns a modified “shallow” copy.)

5. Accessor function howMany (bowl, candyType) returns the number of pieces
of candy that are in the bowl overall if candyType is nil; otherwise, the
function returns the count of the pieces of candyType candy that are in
the bowl.

Note: Argument candyType was not optional in the original Fall 2013
problem description. For other languages, the one- and two-argument
functions would need to be separate.

¢ Precondition:

validCandyBowl (bowl) &&
(candyType == nil OR validCandyType (candyType))

e Postcondition:

(if candyType == nil

then Return == CARDINALITY(Bag(Arg_bowl))

else Return == OCCURRENCES (candyType,Bag(Arg_bowl))
&& Unchanged (Arg_bowl)

6. Accessor function isEmpty(bowl) returns true if and only if the bowl is
empty.

e Precondition:
validCandyBowl (bowl)

e Postcondition:

Return == CARDINALITY(Bag(Arg_bowl)) ==
&& Unchanged (Arg_bowl)

7. Accessor function inventory(bowl) returns a list-style table of pairs
{candyType, count}.

Note: This function describes a specific Lua data structure to be returned,
so the specification uses Lua notation.

e Precondition:
validCandyBowl (bowl)
e Postcondition:

validInventory(Return) &&

(ForAll c,n: OCCURRENCES(c,Bag(Arg bowl)) ==n && n > 0 ::
(Exists i: i > 0 :: Return[i] == {c,n}))) &&

(ForAll i,c,n: 1 <= i <= #Return && Return[i] == {c,n} ::
OCCURRENCES (c,Bag (Arg_bowl))== n)) &&

Unchanged (Arg_bowl)

where

validInventory(inv) ==
inv ~= nil && type(inv) = "table" &&

(ForAll i: i < 1 or i > #inv :: inv[i] == nil) &&
(ForAll i: 1 <= i <= #inv ::
(Exists c,n: inv[i] == {c,n}::

validCandyType(c) && n > 0))
&&
(ForAll i: 2 <= i <= #inv :: inv[i-1][1] < inv[i][1]))

For example, if candyType is denoted by a string and there are two Snickers
and one Hershey Kiss in the bowl, then the list returned would be something
like { {'Hershey Kiss', 1}, {'Snickers', 2} }.

8. Constructor function toBowl(inv) takes an inventory inv (as returned by
the inventory operation and returns the corresponding bowl.

Note: This operation was not in the original problem description. It
taskes a specific Lua data structure as input, so the specification uses Lua
notation.

e Precondition:
validInventory(inv)
e Postcondition:

(ForAll c,n: OCCURRENCES(c,Bag(Return)) == n && n > 0 ::
(Exists i: 1 <=1 && i <= #inv :: inv[i] == {c,n}))) &&
(ForAll i,c,n: 1 <= i <= #inv && inv[i] == {c,n} ::

10

OCCURRENCES(c,Bag(Return)) == n)) &&
Unchanged (inv)

o Property:

(ForAll bowl :: validCandyBowl (bowl)
Bag(toBowl (inventory(bowl))) == Bag(bowl))

9. Mutator function combine (bowll,bowl2) returns the bowl resulting from
pouring bowll and bowl2 together to form a new bowl.

o Precondition:

validCandyBowl (bowll) && validCandyBowl (bowl2)
o Postcondition:

Bag(Return) == Bag(Arg_bowll) + Bag(Arg_bowl2)

Discussion: The original problem specification allows this function to
modify the bowll and bowl2 arguments. We can add conjuncts

Unchanged (Arg_bowll) && Unchanged (Arg_bowl2)

to the postcondition to require a function without side effects. (Function
combine in the implementation modifies its first arguments; alternative
function combine2 returns a modified “shallow” copy.)

For other languages, the aspects of the contracts related to the abstract bag
model should be the same. Of course, references to specific Lua features such
its table data structure, value nil, and optional arguments would need to be
changed appropriately.

Data Representations
Lua hashed Version

The first version of the module represents the Candy Bowl ADT with a Lua
hash table that maps candyType key values to the count of the pieces of that
type. In addition, the special key SIZE maps to the count of the total number
of pieces in the table.

An ADT implementation invariant for Candy Bowl bowl can be stated as

(ForAll c: validCandyType(c)
if bowl[c] ~= nil
then bowl[c] == OCCURRENCES(c,Bag(bowl))
else OCCURRENCES(c,Bag(bowl)) == 0)
&& bowl[SIZE] == CARDINALITY(Bag(bOWl))

where validCandyType(c) == (c ~= nil &% c ~= SIZE).

11

Lua list Version

The second version of the Candy Bowl ADT module has the same interface as
the hashed version, but it uses a different internal data representation. This
version uses with an unsorted, list-style table of candyTypes.

An ADT implementation invariant for Candy Bowl bowl can be stated as

(ForAll i : 1 <= i <= #bowl :: validCandyType(bowl[i])) &&
(ForAll ¢ : validCandyType(c)
howMany(bowl,c) == (Sum i : 1 <= i < #bowl && bowl[i] == c :: 1))

where validCandyType(c) == (c ~= nil).

12

	Carrie's Candy Bowl ADT
	Introduction
	Specifying Semantics
	Operations
	Contracts
	Concepts and notation

	Candy Bowl Specification
	Abstract model
	Interface invariant
	Constructive semantics

	Data Representations
	Lua hashed Version
	Lua list Version

