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Abstract

Over the years, our group, led by Bob Balzer, designed and implemented three domain-speci4c
languages for use in real applications. Each was invented to “showcase” DSL language design
and implementation technology that was the focus of our then-current research. Each of these
was actually a prototype for what would have taken more time to engineer and polish before
putting into practice. Although each e:ort was essentially successful, none of the languages was
ever followed up with the subsequent engineering e:orts that we expected or at least hoped
for. Herein I elaborate where these language e:orts succeeded and where they failed, gleaning
lessons for others who take the somewhat risky step of committing to develop a DSL for a
particular user community.
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1. Introduction

We have undertaken three DSL experiments over the last 10 years. The 4rst
language described the communication format of messages used by NATO to spec-
ify command-and-control messages between people and equipment; the processor we
generated checked these messages for consistency. The second language was in part
graphical, part textual, and was used to demonstrate how naval ship formations were
constituted and the constrained movements they could undergo. The last language was
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a mixture of graphics, text, and declarative information speci4ed using three di:erent
COTS products. It was used to describe census survey “instruments”, used to collect
census data in the 4eld. The code generated was to be installed in the survey takers’
laptops. The 4rst two were demonstrated and reviewed informally. The last e:ort was
more seriously reviewed, in that training sessions and a formal review process were
undertaken to evaluate the potential e:ectiveness of the product.

The nature of the languages we designed for each progressed from purely syntactic
designs, to mixed graphics and syntax designs, and 4nally to a mixture of graphics,
syntax, database schema, and web forms designs. Purists may not want to call the
second and third experiments “languages”, but the inclusion of these as languages has
to do with how our notions of what constitutes domain-speci4c language support for
problem domain experts have evolved from the early days. It is clear that graphical
representations are often superior for expressing relationships that are somewhat diJcult
to extract from a textual presentation. Hence, we have come to include both graphical
and textual modes of expression as language design activities. Moreover, there are
many other activities that are entirely analogous to language design, such as database
schema design, UML model design, even data structure design and abstract syntax
design, such as DTD=XML. Some of these can be used to construct a “poor man’s
DSL” [15]. The lessons we learned, presented below, can usually be applied to these
activities as well as to the purely syntactic or graphical DSLs.
In each case, we were developing a technology for DSL design and implementation,

and, in essence, we were proselytizing for the approach. This di:erentiated us quite
highly from someone who would have had the best interests of the organization at heart,
i.e. someone tasked with 4nding the optimal solution to the problem, or even, someone
tasked with the best DSL solution to the problem. Hence, the lessons might be most
appropriately understood by DSL technology researchers and developers; some will
already be well-understood by technology managers and decision makers. Nonetheless,
even that group may bene4t from seeing how DSL technology itself can impact their
decisions.

Before beginning with the experiments, it might help to characterize the general
problem of introducing technology into realistic applications, i.e. the technology trans-
fer problem. Of course, one should expect problems with the technology=application
match—and these are the main focus of the following discussions—but it can be es-
pecially surprising how organizational and sociological concerns impact the success of
transfer. So, for example, independent of whether one is introducing a DSL-based tech-
nology or some other proposed solution, one might expect to 4nd organizational reasons
to resist the introduction—such as the technology’s “4t” with a legacy development
paradigm or system. Or even more likely, a sociological resistance to “doing things
di:erently” will interfere. These three perspectives—technological, organizational, and
sociological—will be used to organize the development of the lessons below.

First the experiments will be sketched in enough detail to establish context for the
later presentation of the lessons learned. The lessons themselves will be introduced
within a synthesis that should help to organize the approach to DSL technology design,
development and adoption. Finally, some techniques for avoiding the various problems
will be proposed.
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2. The experiments

2.1. Military message experiment (MME)

Our group had been involved in speci4cation language design since the mid-1970s
[5], but in the mid-1980s we noticed that our speci4cation languages were still quite
cumbersome in any particular problem domain. Around then we described the idea
of “local formalisms” [12], little languages that covered exactly what you wanted to
say and no more. Fortunately, the syntax-driven tool support we had built for general
purpose program language design, analysis, and compilation was readily applicable to
such DSLs as well [13].

Our 4rst local formalism that was not designed for the computer professional was
a language for describing the format of messages that conformed to a NATO commu-
nication standard [3]. This standard describes legal messages transmitted between all
kinds of vehicles and processing stations, from tanks, to planes, to command centers.
This format had never been described in any way suitable for automatic validation
other than through the millions of lines of Ada code written to check conformance to
the format, admittedly for a large variety of types of messages. 1 Messages between
various military and civilian organizations and devices use this format—possibly even
now—, probably invented back when the only reliable electronic recording medium
was punched paper tape!

The message structure was very simple. A message comprised a sequence of so-
called data-sets made up of lines of ASCII. Each line began with an operator, was
followed by a sequence of 4elds separated by the “= ” character, and was terminated
with “== ”. Fig. 1 illustrates a simple snapshot from such a message.

The format of the various 4elds, whether they were required or optional, and whether
they could occur multiply, was described separately for each operator and re-used for all
of the various types of messages; we called this (portion of ) the language, the Data
Set Speci4cation Language, or DSSL. The allowed set of operators, the sequences
in which they could occur, and their multiplicity were described for each type of
message; this language was called the Message Type Sequence Language, or MTSL.
There were hundreds of data-set operators and scores of types of messages. Within
each sub-language there were further constraints on the various 4elds and non-syntactic
relationships between the lines that had to be maintained.

We designed a language to describe these validation constraints along with a program
generator of Ada code to run the validations. We also designed a language to describe
how to update a database with the information each message contained; our program
generated SQL code to perform the updates.

Part of the language was an adaptation of a formal document produced by NATO
that describes the allowed 4elds and line sequence for each data-set type. Fig. 2 shows
a snapshot of such a speci4cation. We adopted it despite the fact that this notation was

1 We later discovered that an OGI group, led by Kieburtz and Hook, was actually implementing an analyzer
for the same domain, using abstract interpretations in Haskell [7].
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GRAPH /PLAN/TRIANG/250833Z/AREA GREEN/15SUP398644/15SUP439640/15SUP403622//

Fig. 1. Message dataset example.

type OWN SITREP = 
       (0)  REFTIME    /*M/M/7            REFERENCE TIME 
(      (M)  ORGID      /0/M/H/O/M/M/M/O// ORGANIZATION DESIGNATOR
(      (0)  ORGSTAT    /O/0/O/O/O/O/O//   ORGANIZATION STATUS 
(      (0)  TIME       /*M/M//            TIME 
((     (0)  LOCATION   /M/M/0/0/0/0/+0/7  LOCATION 
(( *   (0)  GRAPH      /M/M/0/0/*0//      GRAPHIC DESCRIPTION 
((     (0)  DRCTN      /M/0/0//           DIRECTION 

Fig. 2. MTSL type speci4cation example.

Lines 
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Fig. 3. C2 Language structure.

horribly designed from a programming language design point of view. Notice that the
open parentheses at the beginning of a line—indicating the level of nesting of logical
groups of data sets—were never closed!

Fig. 3 represents the design of three separable languages, the DSSL, MTSL, and
Updates languages. The languages were designed to maximize reuse of constructs in
di:erent contexts. Operators on grammars [14] were used to form the three languages.
Here, “integration” of languages refers to their union. The “instantiate” arrows refer to
parameterizations of the context free grammars. For example, although the Validations
grammar is used in both the DSSL and the MTSL, their terminal symbols refer to 4elds
or whole datasets, respectively. We were actually rather impressed with the apparent
complexity of this set of languages, despite the simplicity of the component parts.
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More will be said about language design for speci4c problem domains in the Lessons
Learned section below.

It is important to mention that we did not cover the entire problem solution space
with language constructs. Here, there were constraints on some 4elds that simply would
not yield to expression in logic or via restrictions on alphabetic or numeric content,
e.g., valid dates. Hence, a facility was provided for the user to refer to externally
de4ned predicates, support for which was beyond the expressiveness of the language.

A distinct advantage of a domain-speci4c approach is that simpli4cations of the lan-
guage can arise from implicit assumptions one can place on the evaluation environment.
Here, for example, we were able to “type check” the SQL statements against separately-
speci4ed, pre-declared database schemas, thus guaranteeing a lack of run-time errors
due to schema mismatch. We needed no separate schema declaration language within
the DSL itself.

Moreover, our systematic approach allowed us to take advantage of run-time support
that designers of the original code that was being replaced, failed to see. In particular,
the languages were compiled into a data structure that was subsequently interpreted
at run-time. Here, a message parsing mechanism was used to simplify processing that
was normally included in each processing routine in an ad hoc fashion in the original
implementations. Also, for each data set type one could precompile validation routines
and invoke them for the speci4c message types and updates.

In the end, we were somewhat surprised to experience a 50 to 1 improvement in lines
of generated code vs. lines of speci4cation [1]! Admittedly, a more fair comparison
would be to the source code we replaced, but we did not have that available for
comparison. This issue also will be addressed more fully later.

Despite its success, the system never was critically reviewed for further development.
Rather, a demonstration was given, the experiment was declared a success, and we
participated in a brief follow-on project aimed at integrating the functionality with an
existing message editing mechanism.

2.2. Replenishment at sea

The second experiment we undertook was to specify naval ship formations and
the movements of ships within the formations when doing particular maneuvers. A
particular example maneuver was speci4ed, dubbed “replenishment at sea” (RAS). It
was somewhat complex, in that a single supply ship, 4lled with both fuel and supplies,
was used to refuel and resupply each ship in a convoy of ships accompanying an
aircraft carrier. Helicopters ferried goods from the supply ship to the surrounding ships
during the fueling maneuver. Fueling occurred one ship at a time, but alternate sides
of the supply ship were used to speed up matters. During the refueling, the convoy
surrounded the fuel ship in a protective shield. There were myriad details involving
what happens to the aircraft carrier after fueling, how the ships moved into formation
as each new ship pulled along-side the supply ship, and how the “guard ship”—so
named for its role in guarding for man-overboard situations—was to move.

Both we and the experts in the domain sketched graphical charts to describe
maneuvers by the ships. Hence, part of the language developed here was graphical.
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(In fact, we never produced the tools to automatically process the graphical input; in-
stead, we manually translated to an internal relational formalism to represent the graph-
ical content. A follow-on project would necessarily have had to process the graphics,
however, for the system to be used by the domain experts.)

Several graphical views were useful for di:erent purposes, such as specifying the
initial layout of ships, the movement patterns, speci4c movements in particular maneu-
vers, etc.

Fig. 4 illustrates the initial arrangement of the ships, presented here for its “gestalt”
nature rather than to be followed in detail. Similarly, Fig. 5 illustrates how the ships
moved as part of the replenishment maneuver speci4cation. Views such as these were
augmented with declarative information about how maneuver steps were executed as
expressed in Fig. 6.

Although we had the appropriate technology for translating this language [13], it
was actually translated manually to an internal representation based on relationships
in a language called AP5 [4]. The infrastructure into which the replenishment at sea
speci4cations were translated was known as MODSAF—Modular Simulated Automated
Forces, a networked system of simulation modules used by the military to simulate
military maneuvers among several participants. There were already display mechanisms
in place to show how the various participants were moving, so visualization problems
were solved for us by that infrastructure that we assumed to be present.

Similarly to our experience with the Military Message System, the RAS system never
was critically reviewed for further development. Rather, a demonstration was given, the
experiment was declared a success, and we participated in a brief follow-on project
aimed at applying the technology to tank formation speci4cations.

2.3. Survey instrument creator (SIC)

The third experiment was to develop a system for designing and creating so-called
“survey instruments” for census takers, the software that runs in the laptops they take
with them to interview people during census taking [17]. The instruments themselves
behave in a well-de4ned manner, where a series of questions is presented to the census
taker, who elicits answers from the interviewee and enters them. Subsequent questions
are chosen, in part, based on answers given. For example, if the residence is established
as a “farm dwelling,” there will likely ensue a variety of questions relevant to farming,
such as equipment owned, other buildings on the property, whether people live in
them, etc. These instruments are quite complex, comprising potentially thousands of
questions; only a relatively small subset will be visited in any particular interview.
There are also complicating factors such as unknown answers, interrupted interview
resumption, and inconsistent responses that cause the interview to revert to a previous
point, etc. Each of the answers is entered into a database in the interviewer’s laptop
to be taken back and integrated into the national census. (Actually, di:erent kinds of
censuses are taken for di:erent purposes, and the system we were designing was to be
useful in the design of any of these.)

We decided to make the instrument appear to simply give the interviewer a sequence
of relevant html pages in a browser on the laptop. The sequence chosen was to be
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Fig. 4. The station layout view.

driven by a Row-chart language used by the instrument designer. A local database was
used to accumulate the responses extracted from each browser page.

Having had the experience of designing the other domain-speci4c languages, we
intended to: use the jargon of the domain experts, provide design tools that were
not overly general, use graphical representations where appropriate, and to provide as
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Fig. 5. The movement view.
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action definitions: 
  definition hookup[ship] = wait 20 minutes 
   i.e., simulate hookup of a ship by waiting 20 minutes. 
  definition fuel[ship] =  wait fuel-rate(ship) * fuel-room(ship); 
                                     assert fueled?(ship) 
  definition breakdown[ship] =  wait 15 minutes; assert brokendown?(ship) 
  definition emergency-breakdown[ship] = wait 5 minutes; assert brokendown?(ship) 

predicate definitions: 
  definition left-side-has-room? =  not (every left-side-stations, s, is asg?s) 
  i.e., true if not every left side station has a ship assigned to it. Similarly, 
  definition right-side-has-room? = not (every right-side-stations, s, is asg?s)

Fig. 6. Action and predicate de4nitions.

many views of the information required as were relevant. We had also become adept
at adapting COTS tools for purposes unintended by their designers [2]. In particular,
our PowerPoint Design Editor was developed as an extension to PowerPoint that aided
with the de4nition and use of graphical styles as direct analogues to domain-speci4c
language designs [6,15].

Within our extension to PowerPoint, called the Design Editor [6], the application
designer designs a graphical interface, comprising icons and di:erent kinds of arrows.
The designer also declares what attributes may be used to decorate the various classes
and superclasses of component and connector (icon and arrow) types. Domain types
can also be enumerated. The resulting “domain design” takes the place of a syntax
for the structural aspects of the domain. Speci4cations can then mix graphics with
textual and graphical attributes in this hybrid DSL technology. Form-based attribute
speci4cations allow one to express that an attribute can be optional, required and=or
multiple valued. Its type can be prescribed and ranges given for numeric types.

To specify and analyze the census surveys, we integrated three COTS tools—our
PowerPoint-based Design Editor, the Microsoft Access database toolset, and a lesser-
known web page development product, known as Tarantula. The Design Editor was
used to describe the interview Row, in a Row-chart-like language specialized to the
particular domain. The Access database described the structure of the data to be col-
lected. The Tarantula form-designer was used to provide the detailed questions that
were asked and the appropriate layout for optimal data collection. Moreover, we used
conventional syntax-directed language processing techniques for some of the textual
attributes associated with the graphical entities.

Fig. 7 shows an example portion of a Row-chart speci4cation. It is simply a
PowerPoint slide, constructed using symbols from a pallet generated from a graphi-
cal grammar delineating what will be understood by analyzers of this domain-speci4c
language [6]. This slide de4nes the Names Roster process. The start and end symbols—
circles of green and red in the original presentation—de4ne the entry and exit to a
subprocess. A subprocess is invoked using the icons with the rounded ends, Revisit-
Survey and NewRP, for examples. Overlapped image icons represent the fact that a set
of answers will be collected, for example, in InArmedForces. The various connection
types have distinct meanings as well. The dotted ones are labeled with conditions under
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Names Roster 

IdentifyRespondent

RevisitSurvey 

InArmedForces 

UsualResidence

Cycle
OK NewRP 

LivingElsewhere DeleteRP 

Fig. 7. A census survey Row-chart speci4cation.

which a transfer is to be made, the solids being otherwise branches. The return con-
nection from DeleteRP to LivingElsewhere is actually a di:erent kind of connector and
is the only kind allowed to loop back in the question-asking process. This represents
discovery of an inconsistency and the database must be rolled back.

The Design Editor allows the user to attach to the icons, properties that further
describe the information to be collected, how to put it into the database, and what
forms to use to obtain the answers from the interviewees.

An SQL extension was used to express the database activity, while the conditions
on connectors were described with simple predicates or elements of enumerated types.
Analyzers were developed that checked for inconsistencies in the Row-chart Row, for
use of questions that involved unde4ned Access database 4elds, for database 4elds
which there were no questions asked to 4ll, and for branch conditions left uncovered
by the instrument. We intended to develop a generator of the program to be run on
the laptops to actually take the surveys, but this was put o: to the second phase of
product development.
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The web form attribute to use during the interview was automatically 4lled in when
the Tarantula tool was visited with the corresponding Row-graph box “selected” in
PowerPoint. The form designer used a simple set of icons to construct the questionnaire.
A specialized language was designed to allow the form designer to cause context-
sensitive text to appear in the questions. For example, one would not want to refer to
“his or her” age when you already know the gender of the person you are discussing!
Hence, one could condition the questions to be asked by access to the database to
the gender of the person. The forms were also set up to allow entry of tabular data,
4lling in attributes of several so-called “roster entries” in one session. Providing these
abilities was expected of us by the domain experts and not something we imposed on
them as new.

A sample form is presented in Fig. 8. Although all of the parts of the form are
created using Tarantula, our tools imbued the di:erent 4elds with extra semantics. The
Instructions, Probe and Help frames are available for every form, allowing the designer

Fig. 8. A sample tarantula form.
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Fig. 9. Access de4nition of household rosters.

to give the interviewer general instructions, a hint for how to probe more information
from the interviewee and the potential for additional help if the interviewee is having
trouble. Some of the 4elds were implicitly repeated 4elds in the 4nal forms that would
be generated from this skeleton. In addition, our tools parsed the text in the normal
text boxes to add variable interpretations. In this form, the prompt for the question
is computed based on how many members of the household are present. Hence, the
question would read “Are either of you now on full time active duty with the Armed
Forces of the United States” if there were two household members. The form will
actually display a table of persons—their numbers and their names—along with a
check box to indicate that they are armed forces members. Notice the ability to check
a single box that all are so employed.

While one tended to alternate between describing forms and describing the interview
Row, describing the Access relations used to hold the data collected was done as a
parallel activity, as is shown in Fig. 9.

There, attributes of each roster element were described in a separate relation, such as
person, dwelling, family relationship, etc. The example shows (parts of ) the
Household relation, which established the context for the particular interview being de-
scribed. Along with actual attributes of the house itself, such as number of bedrooms,
kitchens, etc., were attributes speci4c to the interview, such as the case identi4er, the
REFPER (reference person, generally the owner of the house) and the RESP, (respon-
dent being questioned). The designer of the database could design enumerated types
and limit the responses to those types. These were in turn checked for coverage in the
Row diagram when a question discriminated based on an element described as one of
the enumerated type.
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As with the other experiments, the SIC was never developed further, although it
underwent a serious evaluation process that will be described presently. It is safe to
say that it had a greater impact on the funding organizations than the previous two
had achieved.

3. Evaluation

The 4rst two experiments were done in the early- and mid-1990s, respectively; they
were never formally reviewed. The NATO message experiment was followed up by a
serious attempt to adapt the system to an existing Ada-based system for message error
diagnosis and repair, but the funding ultimately ran out before a 4nal product was
produced. Similarly, the RAS experiment was followed up by an experiment describing
tank movements and formations, modeled again in MODSAF, but it ultimately faded
out as funding diminished.

The Survey Instrument Creator project was structured rather formally. It was funded
in part by the United States Census Bureau and by the National Science
Foundation. It evolved into a two-part project. A demonstration system (described
above) was developed, documented, and 12 people were trained in its use. This work-
group comprised evaluators from: the United States Census Bureau (5), the National
Center for Health Statistics (NCHS) (3), the Bureau of Labor Statistics (BLS) (1),
the Bureau of Justice Statistics (BJS) (1), and the Energy Information Administra-
tion (EIA) (2). Their average experience was around 15 years each! They subse-
quently evaluated the results [11], with the intent to decide whether to provide more
funding to develop a production system to be used in the 4eld by census
takers.

The evaluation was organized about 4ve key objectives that the project purported to
achieve:

1. Flowcharts help the user design the instrument.
2. The tool is intuitive because it relies on COTS (Commercial, O:-the-Shelf ) products

where users already have familiarity.
3. The integration of the three components of survey design—Metadata Design, Ad-

ministration Design, and Form Design—in one software system helps streamline the
process of instrument development.

4. The survey instrument can be automatically generated, thus eliminating, or greatly
reducing, the role of the computer programmer or instrument “author” in creating
the survey instrument from detailed speci4cations.

5. The use of COTS software to develop SIC is a good approach.

The results of the evaluation were mixed. Below we consider the positive aspects. The
good news is that the evaluators liked the overall idea of describing the Row of the
interviews in a higher level notation than using programming notions or even paper-
based methods with explicit instructions on where to look next in the document. To
quote the evaluators:

The general concept of using Rowcharts to help design survey questionnaires and
instruments was liked by a majority of the evaluators. Speci4cally, the evaluators
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liked the
• graphical objects chosen for the Rowcharts,
• ease with which it was possible to create Rowcharts,
• ability to have embedded models (Rowchart within a Rowchart),
• preview function used to view the Rowcharts,
• use of Rowcharting software to develop detailed speci4cations,
• use of Rowcharts as a diagnostic tool to examine the structure of survey instru-

ments and test the completeness of paths between survey items,
• use of Rowcharts to provide a modular view of the questionnaire, and
• use of Rowcharts to document the questionnaire.

The second positive response was to the third objective, of mixing the development
of database (metadata) schema, interview Row and questionnaire development. Again,
to quote the evaluators:

The Evaluation Workgroup liked the concept of tying together the various as-
pects of survey design-speci4cations, forms design, graphical Row, metadata, data
storage, and administration of a survey instrument, into one software system. In
particular, de4ning metadata at an early stage would allow reusability of data
de4nitions throughout the survey lifecycle. : : :
The other three objectives were less successful according to the committee members.

The negative aspects will be taken up in the lessons section, following immediately.
To summarize, though, in the end the evaluators made recommendations for future

development that were really quite good. They proposed an orthogonal set of tools that
could be adopted incrementally by the people with the appropriate expertise.

1. A questionnaire development tool using Rowcharts. Develop a “front end” to
CAI software to allow the use of Rowcharts for developing survey instruments
(an additional tool, not the only tool).

2. A utility to produce Rowcharts from existing survey instrument code.
3. A survey development tool which would lead the user through the steps necessary

to create a question, section, and=or entire instrument. This is envisioned as a
“wizard” tool that would prompt the user for question text and conditions, 4ll
text and conditions, universe for the question, etc: : :

4. Integrate metadata into the survey development process. The data descriptions
entered in the survey development tool described in #3 could be stored as metadata
and used throughout the survey lifecycle (e.g. to generate paper questionnaires,
in post processing=edits, to create 4le documentation, etc.)

Although further funding for a soundly engineered version of the system was denied,
it is obvious that we had a very strong inRuence on the direction the SIC systems of
the future will take.

4. Lessons learned

It will help to organize the lessons we learned in the above experiments by con-
sidering how introducing a domain-speci4c language technology impacts technological,
organizational, and social decisions.
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4.1. Technological issues

Consider 4rst the technological issues. For researchers, these tend to be the most
easily understood of the three and they will almost certainly constitute the entrUee into
discussions with domain experts. The 4rst of these lessons arose as a surprise reaction
to our domain expert’s behavior.

In the MME, we had an advocate for our (proposed) DSL technology in close contact
with sympathetic experts in the domain. One day, after trying one design for specifying
the MTSL our advocate explained that yes, he could easily express everything he saw
using it. He showed us a rather formal document describing the allowed 4elds and line
sequence for each data set type that he got from NATO. He was correlating our new
language speci4cations with those in the document (Fig. 2), rather than simply using
the document as the speci4cation!
Lesson T1: Adopt whatever formal notations the domain experts already have,

rather than invent new ones.
The importance of this lesson was driven home very forcefully in the evaluation of

the SIC, in the more corollary form:
Lesson T1 Corollary 1: Use their jargon terms whenever possible.
We insisted on using the term “metadata data item” for what they referred to as a

“variable.” (Their usage violated our jargon usage for variable.)
To quote the evaluation report again:
First, it is important to use common terms familiar to the users, rather than terms
familiar to the software developers. : : : The software developer should adapt to the
user, rather than the other way around, for items that are not signi4cant. It helps
the user understand new software if they can relate concepts to things they already
know. Also, it helps the user maintain a positive attitude toward the software and
the developer’s ability to design software for the user’s environment.
Fortunately, we were able to adapt to the problem domain experts in the RAS

experiment, where we introduced graphical notations from the very start. Their use of
sketches was quite obviously going to be expressed extremely clumsily if done in a
syntactic fashion. Hence,
Lesson T1 Corollary 2: One should look to informal notations of the domain as

the foundation for the DSL.
And when no precedent notation or formalism can be discovered in the domain itself,
Lesson T1 Corollary 3: Adopt conventional notations (lacking an in-place DS

notation), rather than invent an idiosyncratic one.
In the MME, for example, SQL was used to express the updates, rather than in-

venting a more streamlined language that was not already recognized by others in the
database 4eld.

A related lesson learned early on, was actually rather surprising:
Lesson T2: You are almost never designing a programming language. 2

Most DSL designers come from language design backgrounds. There the admirable
principles of orthogonality and economy of form are not necessarily well-applied

2 Neil Goldman, a member of our group, was the 4rst to enunciate this important precept.
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to DSL design. Especially in catering to the pre-existing jargon and notations of
the domain, one must be careful not to embellish or over-generalize the language.
It is worth pointing out that in the MME’s DSSL, MTSL and Updates languages,
there is no notion of sequentiality; moreover, all conditionality is bound up in the
logic operators of the predicates. Because there is a notion of repeated dataset us-
age in some message types, the notion of iteration was introduced in all three lan-
guages. However, it was specialized to only allow iteration over the 4elds in the
message or datasets in the message type. No extraneous computational power was
added.
Lesson T2 Corollary: Design only what is necessary. Learn to recognize your

tendency to over-design.
One must realize that spreadsheets are a success not because they allow program-

ming, but rather in spite of the fact that they allow it!
Sometimes a DSL designer will feel exasperated and insist that programming lan-

guage constructs be introduced. For example, in the MME MSTL there were constraints
on some 4elds that simply would not yield to expression in logic or via restrictions
on alphabetic or numeric content, e.g., valid dates. Instead, a facility was provided for
the user to refer to externally de4ned predicates—to be provided by a programming
expert, the operations engineer. Support for these predicates was simply beyond the
expressiveness of the language.

The solution may lie in the following general guideline, presented here as a “lesson”.
Lesson T3: Strive for an 80% solution.
If a large percentage (e.g. 80%) of the activities can be compressed using the DSL

paradigm, the experts have plenty of time left over to deal with the hard or interesting
parts [8]. Another place this lesson has an impact is on the architectural framework that
speci4cations in the DSL compile into or otherwise interact with. A distinct advantage
of a domain-speci4c approach is that simpli4cations of the language can arise from
implicit assumptions one can place on the evaluation environment. Again in the MME,
for example, we were able to “type check” the SQL statements against separately
speci4ed, pre-declared database schemas, thus guaranteeing a lack of run-time errors
due to schema mismatch. We needed no separate schema declaration language within
the DSL itself.

The overview required of someone designing a DSL sometimes a:ords surprises in
insights that simplify the overall problem solving tasks with the introduction of a little
extra infrastructure.
Lesson T4: Leverage the infrastructure you are providing to reduce the language

complexity.
Again in the MME, our systematic approach allowed us to take advantage of run-

time support that designers of the original code that was being replaced, failed to see.
As was mentioned before compilation of the languages into a data structure that was
subsequently interpreted at run-time seems to be a very good way to leverage DSL
technology. Additional structuring was provided in the message parsing mechanism,
used to simplify processing normally included in an ad hoc fashion in the original
implementations. The introduction of other specialized domain-speci4c components,
precompiled for the speci4c message types and updates, provided leverage.
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And, of course, in our later RAS and SIC experiments, we discovered the importance
of not being bound into a one-size-4ts-all approach to DSL design.
Lesson T5: A mixture of speci:cation techniques may be necessary to facilitate

expression of the appropriate domain expertise.
If we had insisted on a syntactic approach to these two domains we could not have

begun to convince non-programmer domain experts to specify their solutions. The
distance between things expressed well graphically and those best expressed syntacti-
cally is quite wide. In fact, the RAS made much more e:ective use of the graphical
representations than the Row-chart representation of the SIC. Nonetheless, Row-chart,
state-chart, dependency graph, etc., representations tend to attract advocates despite
their near-equivalence to more compact syntactic representations.

4.2. Organizational issues

A second source of major problems with DSL technology introduction comes from
organizational issues. A lesson learned early came again from the design of the MME
language suite. We discovered that all three of the languages designed (Fig. 3) are used
by di:erent people in di:erent organizations de4ning the speci4cations of messages,
datasets, and DB updates. Hence, this normally good language design principle, of
reusing like constructs for similar activities, was largely wasted in this situation!
Lesson O1: Understand the organizational roles of the people who will be using

your language.
The DSSL is really only used by a very few people designing NATO-wide stan-

dards. The MTSL is used in more speci4c domains. And the update activities vary by
command center. Our initial misconception that the DSSL and the MTSL would be
used together was suggested by our experience with program language design, where a
set of declarations is used to shape the use of other constructs. For example, an array
declaration might set up the use of bracketed subscripts in the program proper. Here
the people doing the declarations may have done it years before the message types
using them are de4ned. On the other hand, the reuse made our language design job
somewhat simpler.

Two related lessons were brought home in the SIC experiment. The failure to meet
one of the objectives of the SIC is directly attributable to our misunderstanding of
the census designers’ expertise. They had several concerns about the role of COTS
as the user interfaces to their tools. They found them to be unintuitive and to require
considerable training. Hence, one must be sure to:
Lesson O1 Corollary 1: Understand the background expertise of the people a<ected

by the DSL technology introduction.
Moreover, they apparently do not design survey instruments as a routine activity,

but rather as something that occurs sporadically, for one complaint was that: “the tool
[would not] be easy to learn and easy to remember how to use after long periods of
inactivity.” We would certainly never claim that PowerPoint or Access had either of
these properties (and Tarantula was admittedly just a “place-holder” for a more widely
accepted form-design tool). Our hope would be that they would use the COTS tools
in other activities in their daily lives, e.g., as many military employees do. Hence, it
is important to:
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Lesson O1 Corollary 2: Understand the present solution design process thoroughly
before undertaking to substitute a DSL approach.

A second organizational lesson may have been more a misunderstanding on their
part than ours, but it is clear that one must:
Lesson O2: Be sure that the intended technology transfer process from your product

into their organization’s infrastructure is consistent with their business model.
Again in the SIC experiment, another problem with COTS concerned the maintenance

of tools based on them as the COTS tools evolve, as they are sure to do. In fact, this
concern had to do with the very structure of their tool support system, and is something
we overlooked from the beginning. To quote the evaluation “Most federal statistical
agencies do not want to get into the CAI maintenance or development business”. There
was probably some confusion on their part here, but this is a serious concern in general.
This lesson covers a multitude of potential problems with inserting the technology into
the organization; these solutions can be very diJcult. This is an especially tricky
problem for researchers who are essentially proselytizing a speci4c technology: it is
really quite possible that their tools or methodologies cannot 4t into the organization,
and it is very important to discover this early on.

Speci4c computing platforms may need to be supported, information ideally shared
by two groups may need to be kept separate for security reasons, programming process
models may be in place that need to be maintained for the contract to be 4lled, and
who knows what legal hurdles may exist! Testing and injecting the technology may be
made diJcult by organizational standards as well. Often a parallel development e:ort
(shadow project) is used to validate the approach; this may be simply too expensive
or dangerous in some situations.

4.3. Social issues

Finally, social issues are often the most daunting of all problems when designing
and introducing a DSL technology! Almost certainly, the most important lesson here
is to:
Lesson S1: Find an advocate for your technology in their organization.
In the MME we had found one but were not aware of how important an asset he

was. Unfortunately, we did not have a strong domain-expert advocate for the RAS ex-
periment and therefore we had to invent the algorithms for simulating ship movements,
timing the events, etc. These were somewhat diJcult for us and were certainly beyond
our expertise for producing a polished product. As a demonstration, the algorithms
worked well enough, but we had diJculties adapting the MODSAF framework for the
purposes of ship movement simulation, in that some assumptions about artillery—the
original domain for which the framework was designed—were built into the frame-
work! For example, we could not understand why our ships could not be placed closer
than 100 f from one another. It turned out that the simulator took the object’s longest
dimension—the ship’s length in this case—and rotated it about its center to determine
the object’s “boundary”!
Lesson S1 Corollary: Establish close ties with a domain expert to produce the

infrastructure that the system will be translated into.
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We did not really recognize how important having an expert=advocate for the new
technology is until the third experiment, but it was clear after the RAS experiment
how important the “expert” part is!

In fact, it is clear that the organizational misunderstandings that we had in the
SIC experiment could easily have been remedied by closer ties with domain experts.
Unlike in the 4rst project, we did not evolve the product with close interaction with
a knowledgeable advocate for our technology, or rather the evolutionary grain-size
was far too coarse. Our interactions were more-or-less “demo driven” with fairly long
periods between them during which little communication occurred.

Other lessons in this experiment were somewhat surprising; for example, our in-
adequacy in the role of teacher and trainer (neither Bob nor myself have teaching
experience) frustrated the students with exercises that were too complicated. Had we
consistently trained someone from the evaluation team throughout the product devel-
opment, they would have conveyed the appropriate level of exercise to us and helped
with other misunderstandings. Hence,
Lesson S2: Understand your weaknesses and make contingency plans for dealing

with them.
But some of the problems perceived by the SIC evaluators were simply errors of mis-

understanding or overly-ambitious expectations. For example, they thought that it was
necessary to develop the speci4cations in a particular order. In fact, this was not intrin-
sic to the approach, but merely an artifact of how the training session was presented.

They somewhat surprisingly thought the metadata databases should be built automat-
ically, indicating a misunderstanding of their process on our part (violating Corollary 2
to Lesson O1). We thought the redundancy of declaring what is desirable to collect
vs. what will be collected by the survey was useful; we even designed an analyzer to
check for this. Indeed, we could have done the declarations instead! Hence, for some
user communities:
Lesson S3: Do not expect the domain experts to know what the computer can

(should) do for them.
Another observation that indicates either a lack of understanding of the current sys-

tem or an over-ambitious requirement on any system concerned automating updates:
For example, if the user wished to make a change to the metadata, other parts
of the system (e.g. form design and database) would occur automatically, or the
user would be prompted to make relevant changes. The current system requires
the user to remember to make changes in all places a:ected, thus making it prone
to error. [sic]

(The system actually provided analyzers to indicate where these changes needed to
be made.) The “view update problem” of multiple views of a system is not tractable.
Their solution of interacting with the user is naive—they claim to want the roles of
meta-data designer, questionnaire designer, and Row designer to be separate; yet here
they would be asking one to do the others’ work.
Lesson S3 Corollary 1: Do not expect the domain experts to understand what the

computer cannot possibly do for them!
This is more a characterization of what type of person should be a DSL designer than

anything else. One needs breadth and experience in other 4elds to do these designs.
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Harkening back to Lesson S2, if you do not have the breadth, enlist the help of someone
who does, who may not have any expertise at language design.

And, as a 4nal social lesson, one must not release software prematurely!
Finally, technical diJculties with the software further heightened the frustration
level of the users. : : : Holding a test training session with a few users could have
eliminated or reduced these problems.
They will be very busy trying to understand how what works 4ts with their models.

Asking them to overlook baroque interfaces and unnatural syntax that will be “cleaned
up in the 4nal product” may very well be too distracting. That is,
Lesson S3 Corollary 2: Do not expect your users to overlook or forgive your

design mistakes.
I believe that the most important lesson for DSL designers to take to heart is the

guiding reason for DSL invention in the 4rst place:
Strive for, and expect, large improvements in expert productivity!
Above, I mentioned that we were somewhat surprised to experience a 50 to 1 im-

provement in lines of generated code vs. lines of speci4cation [1]! And again, a more
fair comparison would be to the source code we replaced, but we did not have that
available for comparison. But even if, by some strange quirk, we were generating 5
times too much code, the order-of-magnitude improvement cannot be dismissed easily.
In addition, most arguments comparing hand-coding to compilation techniques are spu-
rious, because one cannot normally a<ord to write that much optimized code by hand!
To balance this, a variety of approaches can achieve some domain-speci4city—such
as the use of a set of carefully designed abstract data types [15], and comparisons to
coding with such approaches will not likely yield such exuberant success.

At any rate, I believe that an order of magnitude improvement should be expected.
But one must be aware of the risk. A variety of personal relationship issues may be
problematical. You may be proposing to put someone out of a job—often many people!
Without incredible incentives, perhaps for retraining into more advanced roles, you will
be unable to get any help from those you displace regarding their expertise. But beware,
even an expert can be protective of such tedium—if using the DSL technology it only
takes him or her one day to do what used to be done in ten, you are eliminating
several copies of him or changing the nature of her job signi4cantly. They may now
become part-time resources!

Another social phenomenon concerns the introduction of new technology into the
methodology of the domain problem solvers: there may be several roles a:ected by
the introduction. One should avoid this as much as possible, or more accurately, be
sure to separate the concerns of each without impinging on the other. Our third ex-
periment failed miserably in this regard, because we only designed the system for
a single user, who apparently took on the roles of three di:erent designers. A dis-
tributed systems approach would have been more amenable, with carefully separated
functionality.

A third social phenomenon concerns the way the technology is initially sold to the
client and later introduced into the working environment. Demos are meretricious! It is
important to avoid creating overly high expectations; naturally, this must be balanced
with the need to generate high interest.
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A 4nal social phenomenon concerns yourself ! Understand the roles you, the designer,
will play: protocol observer (to see how things are done today), designer, speci4er,
engineer, training manual author, teacher, 4eld expert in the domain itself ! Recognize
the areas you will be weak in and plan the technology development, introduction, and
training, to minimize the impact of these weaknesses.

5. Suggestions

It is diJcult to over-emphasize the importance of these simple observations. Gen-
erally, we are introducing new speci4cation artifacts, usually in a newly designed
language (taken loosely to mean concrete syntax, abstract syntax, database schema, or
graphical style). Some set of tools is developed to produce and process the artifacts—
variously parsers, GUIs, analyzers, generators, viewers, storage mechanisms—that as-
sume the presence of a new infrastructure that is used to accomplish tasks that used to
be done a di:erent way. Generally, some of the tools will compile artifacts written in
the new language into this infrastructure in order to e:ect the problem solving purpose.
If there is any complexity at all to what is introduced, the methodology used to solve
problems in the domain will need to be altered.

So in e:ect, just suggesting that someone use a DSL technology where none was
used before is introducing as many as 4ve intrusive innovations: artifacts, language,
tools, infrastructure and methodology. They have to be trained and feel comfortable
with each of these innovations before they can again be e:ective in their problem
solving domain; presumably much more e:ective.

Now most of this is not unique to DSLs: the introduction of any new technology
may entail changes in these 4ve technical areas. In fact, the hope for DSL designers is
that, because the languages they design will be close to those with which the domain
experts are already familiar, the artifacts and languages will seem natural to them. But
this is only half of the problem. How the new tools and infrastructure 4t with their
old ways of doing business is equally important. In fact, as proselytizers of speci4c
tool and infrastructure technologies, we DSL designers are often somewhat careless in
integrating our tools into their legacy methods and infrastructure, inventing baroque
procedures they must follow to shoehorn the technology in.

Some clients will already be familiar with very well-de4ned languages, such as
the NATO speci4cation portion of the MTSL we used above, or people in problem
domains with well-established mathematic models, such as in the control theory domain.
There, the novelty will lie in the tools and infrastructure to be introduced by the DSL
technology and the introduction of new tools may be more aggressive than initially
desirable in a situation where no language existed in the 4rst place, because they have
less to learn. Again though, one must beware not to introduce arti4cial complexity into
the problem solving process. For example, using a synthesizer and then implementing
a manual process to integrate the synthesized output into a legacy framework—e.g.
a “make” phase—may be very unfamiliar to an expert in the domain, but not in the
implementation world. What we 4nd to be an acceptable procedure as programmers
can be very frustrating for non-experts in system matters.
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    Artifact 

(in DSL)
  Analyze 

Fig. 10. Artifact, language, and tool.

It is unlikely that one can develop a universally useful checklist to ensure that the
issues mentioned are avoided. It is especially unlikely that the order of issues considered
can be prescribed. But I expect that it is important to cover issues broadly from each
area before delving into too great a level of detail on any one.

I am now convinced that the key to overcoming the technical problems with the
introduction of a DSL technology is to make sure that every step of the introduction
process seems very simple and obvious to the a:ected community and occurs over a
suJcient time period to incorporate feedback along the way. Reject monolithic solutions
and strive to produce functionality that can be incrementally adopted.

To see what might be possible, let us consider again the innovations the application
engineers are being asked to learn and use: artifacts, language, tools, infrastructure and
methodology. The simplest introduction of a DSL involves at least the 4rst three of
these as in Fig. 10. One should probably strive to introduce the application engineers
to a single analysis tool as soon after the language is designed as possible. Comfort
and acceptance of this will probably be the major hurdle to overcome, especially if
there is no in-place application infrastructure that the DSL technology is replacing.
It is also very likely to give you, in your role of technology designer, insight into
the extent of familiarity with common interface idioms—e.g. the Microsoft tool look-
and-feel—and into the ease with which the language and tool command elements can
be assimilated by the engineer. In addition to becoming familiar with the language
and the feedback from the tool, platform issues can be ironed out at this stage. It is
often the case with DSLs that the tool support is provided on a di:erent platform than
the application infrastructure if one is already in place (since legacy systems tend to
run on older mainframes and not personal computers), so progress here can be very
important.

The diJculty of introducing even this much technology can vary widely. The two
factors that will be most inRuential will be the extent to which formalisms are already
part of the domain and the application engineer’s familiarity with the tool platform. In
all of the examples above the level of formalism was fairly low; there, simply intro-
ducing a concise and precise way to formulate what they had been saying informally
for years was an important, incremental 4rst step. They should have been familiarized
and trained with that before progressing to what might be done with artifacts in the
new language.

The early introduction of a tool, even a tool as simple as a parser with error message
feedback, could have potential organizational and sociological advantages as well. It
forces the issue of 4nding an advocate and, potentially, an expert domain engineer.
(One can imagine that the advocate would be expert enough to act as application en-
gineer, but not necessarily have the implementation savvy to 4ll the domain engineer’s
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role.) Moreover, this way organizational issues surrounding the choice of platform and
interaction style must be faced early on.

One must balance the need to have an early introduction of the technology with the
tendency to release unreliable code. (This exercise might also demonstrate just how
fragile tool introduction can be, if done incorrectly!)

Fig. 11 illustrates the next logical step: adding a program generator to the tool mix.
Not only will the additional functionality of the generator provide added complexity, but
also the role it plays on a potentially di:erent platform could be problematical. Again, if
there is already an application in place that this is replacing, much of the complexity
for the user will be reduced. The need to learn how to compile or assemble the
application code will not arise. One should try to invoke as much of that functionality
automatically. If possible, make invocation be an icon click in the initial tool stage
development. What might seem to be a trivial step to you, the developer, can be just
one more complication for an application expert.

Organizational issues likely to be encountered at this stage include misunderstandings
about the application platform and misunderstandings about the process of inserting the
application code into the application. For example, this could reveal that the intended
frequency of regeneration was inconsistent with the allowable frequency. Perhaps there
will be a design process requirement that the application be tested by another group in
the corporation! Naturally, this kind of problem will have implications on the socio-
logical relationships among the people in the di:erent roles in the engineering process.

The 4nal complications to be introduced are those that involve a second engineer, the
operating engineer (e.g. the census survey taker in the third example) or perhaps a more
complex infrastructure than the simple application infrastructure of Fig. 11. (If possible,
one should try to hide such complexity from the application engineer, even if only a
small part of the run-time system is generated.) Additional complexity might occur if
there is yet another party whose responsibility it is, e.g., to install the software on the
application platform. Once again, organizational issues might complicate introduction
well beyond what appears to be simple.

Although this phase appears to be the 4nal phase for technology introduction, it
should probably merely be an intermediate phase in what now spirals back to the initial
phase involving concerns with providing additional analyzers. One needs to establish a
mechanism for choosing which analyzer to use and perhaps a process for using one or
more analyzers before doing generation. In short, an entire methodology may need to
be developed. In the limit, a process “wizard” might be called for, to keep the various
players in line with the progress of design, analysis, compilation and installation of the
new software.

Notice that although Fig. 12 separates out the roles of the application engineer (AE)
and operating engineer (OE), it is still too simpli4ed to reRect the complexity of
our Survey Instrument Creator. Several analyzers were o:ered, some relying on the
successful execution of others. An engineer would install the software on the survey
takers’ laptops. Moreover, several languages and processors were needed to construct
the application. It is little wonder that our attempt failed: we presented the entire
package and tried to educate people on how to use it in two days! And that is without
even considering the considerable complexity of the domain itself !
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Fig. 11. Adding generator into application platform.
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Fig. 12. Operating engineer and application infrastructure.
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6. Previous work and $nal remarks

Most of the work in DSLs that I am familiar with is concerned with the technological
approaches and the unique situations in which they have been introduced [10,15]. Little
has been written on the problems with the introduction of technology into the working
environment. Levy’s attempt to motivate the use of domain-speci4c techniques [8] is
a notable exception, and is the source of the 80% lesson above.

Fourth Generation Languages (4GLs) are another source of inspiration for DSLs.
However, 4GLs try to be more “universal” than DSLs, or more accurately, tend to
encapsulate a problem solving technique, rather than a problem domain. The leverage
there comes about when problems are recast in terms of the problem solving technique,
rather than adapting the technique to the problem domain. Nonetheless, Martin’s treat-
ment of 4GLs [9] is an excellent source of detailed advice on how to design for
naturalness and “user-seductive” functionality.

I hope that the lessons learned can be of some value to others. Learning these
lessons the hard way has cost us a lot of time and been the source of missed op-
portunity for further funding. Nonetheless, in fact, I believe these lessons tend to
present an overly pessimistic outlook for the future of DSL technologies. For one
thing, the user communities here were all non-programmers. Introducing DSL tech-
nologies to the programmers of tools to support the domain can be the 4rst step in
an adoption scenario, wherein communication between systems analysts and experts
is facilitated by ever-increasing exposure of the domain experts to pieces of the DSL
itself. DSLs embedded in the syntax of the programmers’ language of choice might
be more readily adopted; a code-expansion factor of 50 is diJcult to ignore! DSLs
for computer-based technologies themselves are a likely candidate as well—robotics,
syntax processing, device drivers, etc.; in fact, many conference papers have described
successful DSLs in these areas [10], and the leveraged communities can be large. And
remember also, many of the lessons are simply reRective of the diJculty of introduc-
ing any new technology. DSLs have the big advantage of naturalness to the domain
experts.

In summary, I believe it is most important to maintain a conscious awareness of
how technical, organizational and social issues are impinging on your DSL technology
design and insertion process, introduce technology incrementally, and be con4dent that
a DSL approach is often the best.
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