
A PROCEDURE FOR DESIGNING ABSTRACT INTERFACES FOR DEVICE INTERFACE MODULES

by Kathryn Heninger Britton, R. Alan Parker 9 David L. Parnas*

Code 7590~ Naval Research Laboratory 9 Washington~ D.C. 20375

Abstract

This paper describes the abstract interface
principl~: and shows how it can be applied in the
design ol device interface modules. The purpose of
this principle is to reduce maintenance costs for
embedded real-time software by facilitating the
adaptation of the software to altered hardware
interfaces. This principle has been applied in the
Naval Research Laboratory's redesign of the flight
software for the Navy's A-7 aircraft. This paper
discusse~ a design approach based on the abstract
interface principle and presents solutions to
interest~.ng problems encountered in the A-7 re-
design. The specification document for the A-7
device interface modules is available on request;
it provides a fully worked out example of the
design approach discussed in this paper.

Keywords

software design techniques
module specifications
abstract interfaces
software maintenance cost reduction
information-hiding modules
real-time software
embedded software
device interface modules
virtual devices

I. Introduction

Background
At the Naval Research Laboratory 9 we are re-

designing the flight software for the Navy's A-7
aircraft in order to evaluate the applicability of
new software engineering techniques for embedded
softwar~ design. (An embedded software system is a
single component of a significantly larger hardware
or software system. For a more complete descrip-

tion~ see Parnas' paper on abstract interfaces5.)
We intend to provide fully worked-out examples of
both well structured software and helpful documen-
tation in order to help other designers apply the
techniques that are found useful. For more infor-

mationp see Reninger's paper about the project.l

* On leave from University of North Carolina at
Chapel Rill. Also at IBM Corporation~ Federal
Systems Division~ Bethesda~ MD.

Much of the complexity of embedded real-time
software is associated with controlling special-
purpose hardware devices. Many designers seek to
reduce this complexity by isolating device charac-
teristics in software device interface modules~
thereby allowing most of the software to be pro-
grammed without knowledge of device details. While
these device interface modules generally do make
the rest of the software simpler~ their interfaces
are usually the result of an ad hoc design processp
and they fail to encapsulate the device details
completely. As a result9 device changes lead to
changes throughout the software~ rather than just
in the device interface module. We developed, a
systematic procedure based on the abstract inter-

face principle5 to design the interfaces to A-'7
device interface modules. We believe the resulting
interfaces will successfuly encapsulate device
dependencies~ so that replacing or modifying a
device will require only changes in the device
interface module~ not in the rest of the software.
This paper explains and illustrates this procedure.

Contents
Although the underlying principles described in

this paper are not new~ the design procedure is
both new and a significant deviation from current
practice. The procedure is a practical approach to
a recurring problem. As a result~ we expect the
paper to be of more interest to practicing software
engineers than to researchers interested in today's
hot topics.

Section II discusses device interface modules
and the goals designers hope to achieve by includ-
ing them in a system. Although this material is
not new~ it is included because it motivates the
rest of the paper.

Section III defines terms that are used in the
rest of the paper. Although the definitions are

not newS~ they are not widely known. The presen-
tation of the procedure relies on precise use of
these terms.

Section IV describes and illustrates the sys-
tematic procedure. The illustration shows several
stages in the development of an abstract interface
for one of the A-7 device interface modules.

Even systematic procedures do not make software
design easy. In the A-7 design we often had to
make difficult trade-offs between flexibility and
run-time efficiency. In retrospect~ we identified
several recurring problems. None of these problems
forced us to change the basic procedure~ but they
did cause us to add some additional guidelines for

U.S. Government work not protected by U.S. 195
copyright.

device interface design. Section V describes some
of these problems and the resulting guidelines.

II. Objectives

Embedded real-time software systems usually
have complex and restrictive external interfaces.
Since embedded software is usually a small compo-
nent of a much larger system, the interfaces are
seldom modified for the convenience of the software
designer. The A-7 avionics software is typical:
twenty-one devices are connected to the computer,
including sensors, displays, and equipment con-
trolled by the computer. Arbitrary interface
characteristics, such as value encodings and timing
quirks, are subject to change both during develop-
ment and after initial deployment. Inadequacies
may be discovered in the device specifications; a
supplier may deliver a device that is judged ade-
quate even though it does not exactly meet its
specifications; a device may be replaced by an
improved device; or new connections may be added
between devices.

It is a common but undesirable property of
embedded software that a change in a device inter-
face requires widespread changes to the software
because many programs are based on arbitrary inter-
face details. If an interface changes, programs
depending on it become invalid. Because these
dependencies are seldom explicitly documented,
interface changes often have surprising ramifica-
tions.

To avoid these problems it is common to divide
the software into two groups of components: i) the
device interface modules containing the device-
dependent code~ and 2-~ the device-independent
remainder of the software, including the user pro~-
rams, so called because they use the device inter-
face modules. Device interface modules provide
virtual devices~ that is, device-like capabilities
that are pa--~ally implemented in software. For
example, there is a virtual altimeter for the A-7
system. The virtual altimeter returns a value of
type range, instead of the bitstring read in from
the actual sensor. The raw data is read, scaled,
corrected, and filtered within the altimeter device
interface module. This software structure is
illustrated in Figure I.

Design of device interface modules has the
following goals:

Confining chan~e_s: Designing device
interface modules is a special case of the

information-hiding approach6; hardware interface
details are hidden within modules that should be
the only system components requiring changes when
devices are modified or replaced by others that can
perform the same basic functions. Problems in con-
fining change are "caused by three types of errors:
i) The device interface module allows user pro-

grams to exploit special characteristics of a
particular device so that user programs must be
revised if the device is replaced.

2) The virtual device lacks essential capabili-
ties, so that user programs must access the
actual device directly; again user programs
must be revised if the device is replaced.

3) P~ograms that are not necessarily device-
dependent are included in the device interface
module. As a result, the device interface
module may need to be changed if the require-
ments change even if the device is not changed.
Furthermore the module will be harder to change
when the device is changed.
In summary, a device interface module will

ideally
I) be the only component that needs to change if a

device is changed;
2) not need to change unless the device is

changed; and
3) be relatively small and straightforward so that

it is easy to change.
Simplifyin~ the rest of the software:

Embedded software is often hard to understand
because its correctness depends on many arbitrary
interface details. If these details are confined
to device interface modules, user programs should
be simpler, easier to write correctly, and easier
to understand, than they would be if they used the
hardware interfaces directly.

Enforcing disciplined use of resources:
Software reliability is enhanced when all programs
that access a device adhere to certain disciplines,

such as regular checks for undesired events 7 and

standard protocols for device sharing3. If these
disciplines are built into the device interface

I
I

I us er
Programs

l
Legend:

Figure I: Software Designed with Abstract Interfaces

Abstract
inter facey

Device Interface
Module n r ardware ~ nter face n

~ --I: software

Q : hardware

~ - - ~ : i n t e r f ace

196

modules, they are systematically enforced; program-
mers writing user programs need not be concerned
with them.

Code sharing: When many programs access a
device directly, they often contain similar sub-
programs performing the same device control func-
tions. With device interface modules, this code
need only be written once, saving programming,
debugging, and testing time, and possibly computer
storage.

Efficient use of devices: Independently
written programs often cause devices to repeat
actions unnecessarily. Centralizing device-access
code should make it easier to avoid unnecessary
operations.

To achieve these goals and to avoid the mis-
takes mentioned earlier, the interface between a
device interface module and user programs should be
an abstract interface, as defined in the next
section.

III. Definitions

Interface: The interface between two pro-
grams consists of the set of assumptions that each
programmer needs to make about the other program in
order to demonstrate the correctness of his own
program. For convenience, we use the phrase
"assumptions made by program A about program B," to
mean the properties of B that must be true in order
for A to work properly. These assumptions are not
limited to the calling sequences and parameter
formats traditionally found in interface documents;
they include additional information such as the
meaning and limits of information exchanged, re-
strictions on the order of events, and expected
behavior when undesired events occur. There is an
analogous definition of the interface between a
program and a device.

Abstraction: An abstraction of a set of
objects is a description that applies equally well
to any one of them. Each object is an instance of
the abstraction. For a non-trivial abstraction,
there is a one-to-many relationship between the
abstraction and the objects it describes. Differ-
ential equations are an example of a mathematical
abstraction representing systems as diverse as
electrical circuits and collections of springs and
weights.

An abstraction that is appropriate for a given
purpose is easier to study than the actual system
because it omits details that are not relevant for
that purpose. A road map is an abstraction used to
represent a road network; the graph represents the
directions, relative lengths, and intersections of
roads, but it does not show whether a road is made
of asphalt or how it is banked. It is far easier
to find a good route by studying a road map than by
exploring the ~ctual roads.

Any result obtained by studying an abstraction
can be applied to any system represented by the
same abstraction. Well-known graph theoretic
results can be applied to a road map to determine
the shortest route; the same methods have been
applied to solve a wide variety of problems in
other systems represented by directed graphs. Re-
suits may be misleading if they are obtained from
an inappropriate abstraction~ i.e.9 one that omits
relevant details. For example 9 a road map is not

sufficient to find the quickest route because it
does not show other factors affecting driving time
such as speed limits.

Abstract interface: An abstract interface
is an abstraction that represents more than one
interface; it consists of the assumptions that are
included in all of the interfaces that it repre-
sents. An abstract interface for a given type of
device reveals somej but not all, properties of the
actual device: it describes the common aspects of
devices of that type, omitting the aspects that
distinguish them from each other.

Device interface module: A device inter-
face module is a set of programs that translate
between the abstract interface and the actual
hardware interface. The implementation of this
module is possible only if all assumptions in the
abstract interface are true of the actual device.

Secret: Secrets of a device interface
module are assumptions about the actual device that
user programs are not allowed to make. The secrets
are information about the current device that need
not be true of other devices with the same func-
tions. Secrets must be taken into account some-
where in correctly working software; they are en-
capsulated in a device interface module.

Undesired event assumptions: The inter-
face between programs A and B includes both the
assumptions made by A about B and the assumptions
made by B about A. Systems can be designed so that
only one of two programs relies on the other meet-
ing its specifications. A program can be designed
so that it does not rely on user programs using it

correctly; it can check for improper uses and sig-
nal undesired events when they occur. However, the
error checking and reporting require extra instruc-
tions. In development versions of the A-7 soft-
ware, the device interface modules will assume that
undesired events can occur; they will contain code
to check for errors made by user programs. In the
production version there will not be room for that
error-checking. The device interface modules will
assume that improper uses will not occur; the
error-checking code will be omitted to make the
system smaller and faster. If a problem occurs
during operation of the production system, the
error-checking will be reinserted to help locate
the cause. The software will be written in such a
way that the error-checking code can be easily
included or omitted when the program is assembled.
This applies only to programming errors; error

checks specified in the software requirements 2
will never be omitted.

Access functions: An access function is a
program that is part of one module and may be
called by programs in other modules. There are
different kinds of access functions; some return
information to the caller; others change the state
of the module to which they belong.

Events: Events are signals from a module
to user programs indicating the occurrence of some
state change within the module. They resemble
hardware interrupts because they occur at unpre-
dictable times and are not synchronized with the
control flow of the user programs. In the A-7
system, modules will use a mechanism such as

eventcounts8 to signal the occurrence of an event
to user programs that are waiting for it to occur.

197

IV. Design Approach

This section describes a procedure for the
design of abstract interfaces. The procedure is
based on obtaining two partially redundant descrip-
tions of the interface.

DESCRIPTION 1: ASSUMPTION LIST CHARAC-
TERIZING THE VIRTUAL DEVICE.

For an application area such as avionics, many
devices fall into standard types; all devices of
given type have many common characteristics. For
example, as shown by advertisements in Aviatio~
Week and Space Technology, computer panels vary
little in the features seen by the pilot. For each
hardware device, make a list of the characteristics
that are not likely to change if the device is re-
placed by another device of the same type. To do
so requires considerable study of devices that are
available or being de~eloped. The list of common
characteristics is a description of the assumptions
that user programs are allowed to make about the
virtual device. The assumptions characterize de-
vice capabilities, modes, information require-
ments, behavior, and proper use of the device. A
typical assumption might be:

"The device provides information from which
barometric altitude can be determined."

We are quite certain that only devices satisfying
this assumption will replace the current barometric
altitude sensor. Note that this assumption does
not describe the form of the information, which may
vary from one device to another.

Many assumptions will appear innocuous, but
they must be recorded anyway. During the A-7
design reviews, some seemingly innocuous assump-
tions were found to be false.

DESCRIPTION 2: PROGRAMMING CONSTRUCTS
EMBODYING THE ASSUMPTIONS.

The second description specifies the access
functions and events that can be used by user
programs. The access functions can be called by
user programs to access the data or facility pro-
vided by the virtual device. For example, an
interface might provide an access function
"GET BAROALT", which returns a barometric altitude
value. For each access function, we specify the
values returned, the limitations, and the effect it
has on the virtual device to which it belongs.
User programs can also use the events in order to
be signalled when the virtual device changes state.
For example, user programs may need to be signalled
when a virtual sensor is no longer operational.
Why two descriptions?

These two descriptions are partially redundant,
i.e., the specifications for the programming con-
structs imply the assumptions. For example, speci-
fications for the access function "GET BAROALT"
imply the assumption that the device provides in-
formation from which barometric altitude can be
determined. The access function specifications
provide additional information, namely the form of
the data exchange between the device interface
module and the user programs. For example, rather
than provide barometric altitude directly, the
device interface module might provide two or three
quantities from which it could be computed. Such a
design change would require a change in the func-
tion specification but not in the assumption list.

The two versions of the interface have differ-
ent purposes: i) the assL~ption list explicitly
states assumptions that are implicit in the func-
tion specifications, making invalid assumptions
easier to detect, and 2) the programming constructs
can be used directly in user programs. It is es-
sential that the two descriptions be consistent.
The assumptions should be embodied clearly in the
programming construct specifications, and the pro-
gramming construct specifications should not imply
any capabilities that are not stated in the assump-
tion list. The assumption list should be reviewed
by prograrmuers, users, and hardware engineers who
have the knowledge necessary to check it for vali-
dity and generality. For example, the A-7 assump-
tions were reviewed by system engineers and hard-
ware engineers familiar with the A-7, A-6, and F-18
aircraft. Assumptions written in prose are easier
for non-programmers to review. The specifications
of the programming constructs should be reviewed by
programmers who have worked with similar programs.
These reviewers evaluate how well the abstract
interface supports user programs and whether the
device interface module can be implemented effi-
ciently. The procedures and criteria used to re-
view the A-7 device interface modules are de-

scribed in device interface document4.
Design Procedure

Obtaining a correct and consistent dual de-
scription of an abstract interface is an iterative
process. Although we attempted to list assumptions
first, many of the necessary assumptions were quite
subtle and only became apparent when we designed
the programming constructs. Review of the assump-
tion lists revealed errors in the programming con-
structs. The interfaces are the result of several
cycles of review~ Both internally at NRL and by the
A-7 maintenance team at the Naval Weapons Center
(NWC). The first drafts were reviewed several
times informally by the NRL A-7 team before they
were submitted for an informal review at NWC.
After further revisions within the NRL team, we
held a formal review at NWC, resulting in the
current version.
Illustration

As an example of this procedure, this section
sketches the development of the abstract interface
to the Air Data Computer (ADC). The ADC is a
sensor that measures barometric altitude, true
airspeed, and the mach number respresentation of
airspeed.

Figures 2 through 4 are excerpted from succes-
sive versions of the ADC abstract interface. Each
figure includes an assumption list and tables
showing the associated programming constructs.
These figures are not the complete specifications;
other tables define system generation parameters
and specify the ranges and resolutions of values.
In the access function tables~ "I" indicates an
input parameter whose value is supplied by userl
programs; "O" indicates an output parameter whose
value is returned by the ADC module.

Although the early draft shown in Figure 2
seemed simple and reasonable to us, NRL and NWC
reviewers found the following errors in it.

- The current ADC hardware and most replace-
ment devices include a built-in test capability
that cannot be accessed with the current inter-
face.

198

Figure 2: Excerpts from an Early Draft of the ADC Abstract Interface

Assumption List

i. The ADC provides a measure of barometric altitude~ mach number~ and true
airspeed.

2. The above measurements are based on a common set of sensors. Therefore an
inaccuracy in one ADC sensor may affect any of these outputs.

3. The ADC provides an indication if any of its sensors are not functioning
properly.

4. The measurements are made assuming a sea level pressure of 29.92 inches of
mercury.

Access Function Table

Function name Parameter type Parameter information
G ADC ALTITUDE pl:distance;O altitude assuming 29.92 inches

sea level pressure
G ADC MACH INDEX pl:mach;O mach
G ADC TRUE AIRSPEED pl:speed;O true airspeed
G ADC FAlL--INDICATOR pl:logical;O true if ADC failed

Figure 3: Excerpts from Draft of the ADC Abstract Interface
Used for Formal NWC Review

Assumption List

I. The ADC provides measurements of the barometric altitude~ true airspeed~
and the mach number representation of the airspeed of the aircraft. Any
known measurement errors are compensated for within the module. Altitude
measurements are made assuming that the air pressure at sea level is 29.92
inches of mercury.

2. All of these measurements are based on a common set of sensors; therefore
an inaccuracy in one ADC sensor will affect all measurements.

3. User programs are notified by means of an event when the ADC hardware
fails. If the access functions for barometric altitude~ true airspeed~
and mach number are called during an ADC failure~ the last valid
measurements (stale values) are provided.

4. The ADC is capable of performing a self-test upon command from the
software. The result of this test is returned to the software.

5. The minimum measurable value for mach number and true airspeed is zero.
The minimum barometric altitude measurable is fixed after system
generation time 9 as are the maximum value and resolution for all
measurements.

Access Function Table

Function name Parameter type Parameter information

G ADC BARO_ALTITUDE pl:distance;O

G ADC MACH INDEX pl:mach;O
G ADC RELIABILITY pl:logical;O
G ADC TRUE AIRSPEED pl:speed;O
TEST ADC pl:logical;O

corrected altitude asstnning sea
level pressure = 29.92 inches mercury
corrected mach
true if ADC reliable
corrected true airspeed
true if ADC passed self test

Event Table

Event When signalled

@T(ADC unreliable) When "ADC reliable" changes from true to false

199

Figure 4: Excerpts from the Final Version of the ADC Abstract Interface

Assumption List

I.

2.

3.

4.

5.

The ADC provides measurements of the barometric altitude, true airspeed,
and the mach number representation of the airspeed of the aircraft (mach
index). Any known measurement errors are compensated for within the
module.
User programs are notified by means of events when one or more of the
outputs are unavailable. A user program can also inquire about the
reliability of individual outputs. If the access functions for
barometric altitude, true airspeed, and mach number are called while the
values are unreliable, the last valid measurements (stale values) are
provided.

The ADC is capable of performing a self-test upon command from a user
program. The result of this test is returned to the user program.
The minimum, maximum, and resolution of all ADC measurements are fixed
after system generation time.
The ADC will compute its outputs on the basis of a value for Sea Level
Pressure (SLP) supplied to it by a user program. If no value is
provided, an SLP of 29.92 will be assumed.

Access Function Table

Function name Parameter type Parameter information

G ADC ALTITUDE pl:distance;O

p2:logical;O
G ADC MACH INDEX pl:mach;O

p2:logical;O
G ADC TRUE AIRSPEED pl:speed;O

p2:logical;O
S ADC SLP pl:pressure;l
TE6T ADC pl:logical;O

corrected altitude assuming SLP=29.92
or user supplied SLP
true if altitude valid
corrected mach
true if mach valid
corrected true airspeed
true if true airspeed valid
sea level pressure
true if ADC passed self test

Event Table

Event When signalled

@T(altitude invalid)

@T(airspeed invalid)
@T(mach invalid)

When "altitude valid" changes from true to false
When "true airspeed valid" changes from true to false
When "roach valid" changes from true to false

- The description does not specify the values
to be returned by the access functions while
the ADC is in a failed state.
- The description does not specify the range
of possible values for the measured quantities.
The ranges are device-dependent, but they also
affect user programs.
- The virtual ADC does not signal when it
fails. User programs must poll the validity
function to detect changes in reliability.
- The description does not make it clear
whether the module performs device-dependent
corrections to the raw sensor values.
After we corrected these errors, the interface

shown in Figure 3 was reviewed formally at NWC.
The following problems were pointed out.

- There is a device-dependent correction
necessary for actual sea level pressure. The
assumption of constant pressure is a poor one
as i~ will force a device-dependent correction
to be done by user programs. Future hardware
may perform this correction automatically.

- Although the current hardware has one rell-
ability indicator for all three values, re-
placement devices might not. In replacement
devices the measurements might be made using
independent sensors.
- We cannot assume that the minimum mach and
true airspeed values are zero; some devices
might not be capable of measuring such low
values.
Figure 4 illustrates the product of the final

revisions.
The development of the ADC abstract interface

shows how the procedure supported our design
efforts. Even the version in Figure 2 is a reason-
able design; the errors it contains are typical of
errors made in embedded software. As a result of
our procedure, the erroneous assumptions were
written explicitly in a form meant for review,
rather than left implicit. Unwise assumptions,
which might have escaped our notice until after the
code was written, were caught when they could be
corrected relatively easily. The current version

j200

of the ADC interface may not be perfect, but it is
much bette~ than it would have been if we had not
followed the procedure. Having two partially
redundant descriptions of the interface was very
important. We have examined our records and found
that some errors were found in the assumption lists
and others in the programming construct specifica-
tions. Seldom wa 9 the same error found in both
versions.

V. Design Problems

The design considerations mentioned earlier
serve as design guidelines and as standards for
judging results. Although they help considerably,
it is not always easy to apply, them. Conflicts
arise among three design goals: small device
interface modules, device-independent user pro-
grams, and efficiency. What if user programs could
use a device more efficiently if they could exploit
assumptions that are not valid for all possible
replacement devices? What if encapsulation of
assumptions that are not always valid makes a
device interface module slower or bigger? Accept-
able compromises must be based on estimates of the
likelihood of future changes. This section shows
tradeoff problems and how we resolved them, at-
tempting to minimize the expected cost of the
software over its entire period of use.
Problem 1: Major variations among available
devices

Deciding how much capability to include in a l

idevice interface module is particularly difficult
When there are major differences among replacement
devices. For example, new Inertial Measurement Set
(IMS) models produce present position data; other
IMS devices produce velocity data; and the current
A-7 IMS produces only velocity increments. In
order to simulate an IMS that produces present
position using the current IMS hardware, much of
the navigation software would have to be inside the
IMS device interface module; the result would be a
very large module. One must choose between a) con-
fining major changes within the device interface
module, and b) keeping the device interface module
small, so that minor but more likely changes are
easier to make. Our compromise limits the range of
devices represented by our virtual IMS, with th~
understanding that the remaining differences can be
confined to a small set of user programs. Although
our virtual IMS does not provide present position,
it does provide velocities rather than velocity
increments; the velocity increments are only used
to compute velocities, and the velocities are
widely used. The resulting virtual IMS is consid-
erably easier to use than the hardware IMS, yet we
expect the IMS module to be reasonably small.
Problem 2: Devices with characteristics that
change independently

Some devices have several sets of characteris-
tics that can change independently. For example,
the Projected Map Display Set (pMDS) consists of a
set of filmstrips and a hardware drive that posi-
tions a filmstrip in a display. The same drive
could be used with new filmstrips containing maps
in a different format, and the same filmstrips
could be used with a different drive. According to
the information-hiding principle~ two independent
sets of characteristics should be hidden in differ-

ent modules so that they can be changed indepen-
dently. However it is unnecessary for user pro-
grams to be aware of the separation. We chose to
hide both sets of characteristicf in one PMDS
device interface module. The module will later be
divided into two submodules, each insulated from
changes in the other. Since the division is a
secret of the PMDS device module, it is not appar-
ent to user programs and is not presented in the
interface specification.
Problem 3: Virtual device characteristics that are
likely to change

Some changeable device characteristics must be
revealed to user programs so that they can exploit
the device effectively. Examples include measure-
ment resolutions, the number of positions on
switches~ and device limitations such as a maximum
displayable value. Although we would like user
programs to be insulated from all device changes,
they must behave differently if such characteris-
tics change. For example, user programs control-
ling the PMDS must behave differently if the vir-
tual PMDS provides maps of three different scales
instead of just two. We represent such character-
istics by symbolic constants. Both user programs
and device programs are written in terms of sym-
bolic constants rather than actual values. At
system generation time, code can be generated by
conditional macro expansion based on the actual
values of the parameters.

We defined system generation parameters for the
range and resolution of input and output data
because I) range and resolution are highly likely
to vary among different devices; and 2) this infor-
mation is needed by user programs in order to per-
form arithmetic accurately and efficiently. User
programs written in terms of system generation
parameters do not need to be rewritten if the
parameter values change.

Initially we assumed that all parameter values
would be known at system generation time; i.e., we
explicitly assumed that whenever a replacement
device is introduced, a new version of the program
will be generated and deployed wi~h the device.
This assumption was questioned at the design re-
view. It is Navy policy not to have multiple ver-
sions of the software in the fleet, even though
equipment changes cannot be made simultaneously.
Furthermore, we cannot require a new system genera-
tion if a new device breaks down and is temporarily
replaced by a device of the old type. As a result,
some of the parameters must be changeable at run-
time. In theory this is true for any of the
parameters; in fact, changeover problems are more
likely for same devices than others. The cost of
run-time variability also differs among devices,
depending on whether the parameter can be used to
control code generation so that run-time tests can
be avoided. If changes are unlikely, we are re-
luctant to give up the efficiency advantages of
binding the values at system generation time; if
binding the value early causes no significant
savings, we are reluctant to give up flexibility.
We decided each case individually, using the

following guidelines:
I) Parameters with a low cost for variability are
treated as run-time variables, whatever the like-
lihood of change. Access functions to store and
retrieve values appear in the module interface.

201

See problem 4 for an additional problem about these
parameters.
2) Parameters with a low likelihood of change and
a high cost for variability are bound at system
generation time.
3) For parameters with both a high likelihood of
change and a high cost for variability, there are
two possible solutions:

a) They can be treated as run-time variables,
with the option to bind them earlier by provid-
ing values at system generation time. This
option allows us to delay the final choice
until we have more information.
b) We can find a conservative value that can
be used for both devices, allowing us to bind
the value at system generation time.

Problem 4: Device-dependent characteristics that
vary at run-time

In some circumstances, user programs must
handle device-dependent data. For example, when
one IMS is replaced by another of the same type,
the software must be adjusted because of manufac-
turing variations. The IMS software is parameter-
ized so that it can be tailored to fit a particular
piece of hardware. It is a requirement that we be
able to change these parameters without reassembly.
The parameters are entered at run-time through the
computer panel. To receive the data, the IMS
module provides access functions, which are called
by the user programs that read in the panel data.
Unfortunately, the existence of a run-time param-
eter such as drift rate reveals a secret of the IMS
module, i.e., that the actual device drifts out of
alignment. An additional drawback is that a re-
placement device might require different calibra-
tion data, requiring a change in the interface. We
restrict use of these access functions so that the
software making use of them is limited and easily
identified. The restricted ass~ptions and access
functions are called reconfiguration interfaces and
are appended to the normal interfaces.
Problem 5: Interconnecti6ns between virtual
devices

Ideally, virtual devices would be independent
of each other, allowing the associated abstract
interfaces to be designed independently of each
other. However the A-7 system has device inter ~
dependencies introduced for hardware convenience.
Some of these interdependencies are based on
ass~ptions made by hardware designers about the
software. For example~ the Doppler and Ship Iner-
tial Navigation Set might share a data path because
someone assumed that the software will not need
both devices simultaneously. We can hide the
nature but not the existence of the interconnec-
tions; if we hid the interconnections, later
changes in the user programs might result in
attempts to access the devices incorrectly. The
existence of interconnections is revealed in the
assumption lists in terms of restrictions on the
use of virtual devices. For example, there may be
an ass~ption that two virtual devices cannot be
used simultaneously. If the hardware interconnec-
tion is later removed, additional uses of one or
both devices may become possible and desirable.
Making such additions will inevitably require

changes on both sides of the abstract interface:
changes in user programs to exploit the new capa-
bilities and changes in device interface modules to

remove the restrictions. Since this cannot be
avoided, there is no loss in revealing the restric-
tion.

A similar problem can arise within a singl~
device interface module if the present hardware
does not allow two capabilities of the virtual
device to be used at once. Again, we chose to
reveal the restriction to user programs even though
it might not be true of future devices.

Interconnection problems also arise where one
device (the provider) provides information used by
another (the receiver). There are two cases to
consider:
i) The computer can detect the failure of the
provider. If so, the virtual receiver signals a
failure when the provider fails, even if the actual
receiver does not detect the failure. The device
interface module for the receiver can simulate
detection of the failure, thereby hiding the inter-
connection.
2) The computer cannot detect the failure of the
provider. The undetectable failure of the provider
must be also considered an undetectable failure of
the receiver. People writing user programs that
rely on the virtual receiver must be aware that
undetectable failures are possible, but they need
not be aware of the interconnection.
Problem 6: Inconsistencies in the hardware
interfaces

A hardware interface may provide similar
functions in dissimilar ways. For example, the
symbols on the HUD have three states: ON~ OFF~ and
BLINKING. The HUD provides a hardware blink com-
mand for some symbols, but for others the software
must simulate the BLINKING state by alternating the
symbol between the ON and OFF states. Whenever the
hardware interface provides some means to perform
the action, we provide the feature consistently in
the virtual device. The virtual HUD has commands
to blink all symbols. However, when the hardware
interface does not provide a way to perform an
action, we were forced to reveal the inconsistency
in the interface. For example~ some HUD symbols
have only two states: OFF and BLINKING.
Since there is no way to simulate the ON state~ the
virtual device cannot provide it. If the hardware
limitation is removed in the future, the inconsis-
tency can be removed from the virtual device. It
is unavoidable that this change would require
changes on both sides of the abstract interface:
changes in user programs to exploit the new capa-
bility and changes in the device interface module
to implement it.
Problem 7: Switch nomenclatures

Many of the switches do nothing more than set a
bit that the computer can read. The label on a
switch is an easily changed characteristic and
could be hidden. We could name th~ switches anony-
mously (e.g. with integers) and use non-mnemonic
names for the settings. However, a change in
switch nomenclature will most likely be accom-
panied by a change in the requirements. The ex ~
pected cost of working with non-mnemonic names,
i.e., more errors, is high. In line with our basic
principle of trying to minimize the expected cost
of the software over its whole period of use, we

have chosen to reveal the nomenclature in switch
names and mnemonic values for the switch settings.
The names may suggest more than is actually stated

202

in the assumptions; programmers are cautioned not
to make assumptions about the switches beyond those
that are explicitly stated in the interface
documents.

Problem 8: Switches with hardware side-effects
When a switch also affects other devices, the

meaning associated with it is not solely a software
decision; major hardware changes would be required
to use it for any other purpose. We consider such
a switch part of the device that it affects, even
if it is not physically located with the device.
As far as user programs are concer~ed, the switch
does not exist; the effects of the switch appear as
changes in the operating mode of the virtual
device. For example, the "Terrain Following"
switch located on the master function panel affects
the state of the Forward Looking Radar (FLR).
Instead of appearing~n the same interface descrip-
tion as the other master function switches, it is
• hidden within the FLR device interface module.
User programs cannot read the switch, but they can
call an access function that reveals the operating
mode of the FLR.
Problem 9: Reporting changes in device state

User programs are often required to respond
quickly to a change in device state. For example,
user programs determining the current navigation
mode need to know when the reliability status of
the IMS sensor changes. The device interface
module can either I) provide an access function
reporting the current state of the device, or
2) signal the state-change event. The choice of a
mechanism depends on wheth@r user programs base
decisions on the current state or wait for the
state to change. If we based the design on the
requirements of user programs, changes in their
requirements might result in changes in the device
interface module, violating the design goal that
the device module should not" need to be changed
unless the device is changed. We chose to specify
both mechanisms in every case, but plan to imple-
ment only the ones that are actually needed. Thus
requirements changes may require changes to device
interface modules, but these changes will consist
of implementing previously specified features. By
specifying possible additions in advance~ we expect
to reduce the cost of later reprogramming.
Problem I0: Devices requiring information from the
software

Some hardware devices require information that
is not calculated within the associated device
interface module. For example, the current IMS
device needs to know whether or not the aircraft is
above 70 ° latitude~ even though latitude is not
calculated within the IMS module. One must choose
between two ways to get the information to the
device: I) the device d module cgn" provide an access
function that a user program calls in order to
provide the information; or 2) programs in the
device module can call other programs to get the
information. Our decision is based on whether or
not the information requirement is common to the
class of replacement devices. If it is, the device
interface module provides access functions for
receiving the information. This solution results
in added requirements for the rest of the Goftware,

and the user programs supplying the information
must change if the information need changes. If
the information n~ed is peculiar to a particular

hardware device~ device interface programs call
other programs to get the data. As long as the
~eeded information is available from 4 the rest of
the system, no program outside the device interface
module needs to change if the need for information
disappears. We chose the latter sorution for the
IMS example because not all IMS devices require a
signal from the computer at 70 ° latitude.
Problem 11: Virtual devices that do not correspond
to hardware devices

Initially, we assumed that there would be one
virtual device for each hardware device. We found
that modeling the virtual devices on the actual
devices does not always result in clear inter-
faces. Some related capabilities are scattered
among several hardware devices; some unrelated
capabilities occur in the same device for physical
convenience; other groupings can only be explained
in terms of historical development. For example,
weapons-related capabilities in the A-7 are scat-
tered among several devices. Some weapons data
comes from the device that controls weapon release,
some is stored in tables, and some is provided by
the pilot throug h switches. Additionally, the
weapons release device fills two distinct roles:
it is both a source of input data and the device
that releases a weapon under computer control. Our
final design includes one virtual device for
weapons release and .one for weapon data. The vir-
tual devices are much simpler to understand than
the actual devices. It is important not to be
unduly influenced by the physical location of
hardware units.

Vl. Summary

We have applied a systematic procedure based on
the abstract interface principle in the design of a
substantial system. We find that the abstract
interfaces make the system easier to code, and we
expect to find that they make it easier to change
in the future. Although the success of our ab-
stract interface design cannot be judged until the
A-7 implementation is complete ° and undergoing
maintenance, our experiences so far have given us
confidence to recommend the procedure to other
designers.

This paper serves as an introduction to a more

complete report 4. Along with complete specifica-
tions for all the A-7 device interface modules, the
report contains a description of the documentation
organization and notation, a discussion of addi-
tional design problems, and a description of the
procedures and questionnaires used for the major
design review. The document is available from the
authors.

VII. Acknowledgements

By reviewing interface specifications and
discussing design problems, John Shore contributed
greatly to the design of the A-7 abstract inter-
faces. Our collaborators at the Naval Weapons
Center r~viewed the A-7 abstract interface
specifications, pointing out errors and helping us
resolve the design problems. The authors also
thank Edward Britton 9 Pau~ Clements, Constance
Heitmeyer, and David Weiss for their careful
reviews of an earlier version.

203

References

i. K. L. Heninger, "Specifying Software Require-
ments for Complex Systems: New Techniques and
their Application," IEEE Trans. Software E~g. I
vol. SE-6, pp. 2-13, Jan. 1980.

2. K. L. Heninger, J. Kallander, D. L. Parnas, and
J. E. Shore, Software Requirements for the
A-7E Aircraft, Naval Research Lab., Washington,
D.C., Memorandum Report 3876, 27 Nov. 1978.

3. Hoare, C. A. R.; "Monitors: An Operating
System Structuring Concept;" Co~un. of ACM,
vol. 17, no. 10; Oct. 1.974.

4. R. A. Parker, K. L. Heninger, D. L. Parnas, and
J. E. Shore, Abstract Interface Specifications
for the A-7E Device Interface Modules, Naval
Research Lab. I Washingtonj D.C. I Memorandum
Report 43851 20 Nor.r1980.

5. D. L. Parnas, Use of Abstract Interfaces in
the Development of Software for Embedded
Computer Systems, Naval Research Lab.,
Washington, D.C., Report 8047, 1977.

6. D. L. Parnas, "On the Criteria to be Used in
Decomposing Systems into Modules," Commun.
Ass. Comput. Mach., vol. 15, no. 12,
p. 1053-1058, Dec. 1972.

7. D. L. Parnas and H. Wuerges, "Response to
Undesired Events in SoFtware Systems," Proc.
Second Int. Conf. Software Eng., pp. 437-446,
1976.

8. D. Reed and R. Kanodia, "Synchronization with
Eventcounts and Sequencers," Co~un. Ass.
Comput. Mach., v. 22, no. 21 pTp. 115-123, Feb.
1979.

204

