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Abstract 

This paper describes the abstract interface 
principl~: and shows how it can be applied in the 
design ol device interface modules. The purpose of 
this principle is to reduce maintenance costs for 
embedded real-time software by facilitating the 
adaptation of the software to altered hardware 
interfaces. This principle has been applied in the 
Naval Research Laboratory's redesign of the flight 
software for the Navy's A-7 aircraft. This paper 
discusse~ a design approach based on the abstract 
interface principle and presents solutions to 
interest~.ng problems encountered in the A-7 re- 
design. The specification document for the A-7 
device interface modules is available on request; 
it provides a fully worked out example of the 
design approach discussed in this paper. 
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I. Introduction 

Background 
At the Naval Research Laboratory 9 we are re- 

designing the flight software for the Navy's A-7 
aircraft in order to evaluate the applicability of 
new software engineering techniques for embedded 
softwar~ design. (An embedded software system is a 
single component of a significantly larger hardware 
or software system. For a more complete descrip- 

tion~ see Parnas' paper on abstract interfaces5.) 
We intend to provide fully worked-out examples of 
both well structured software and helpful documen- 
tation in order to help other designers apply the 
techniques that are found useful. For more infor- 

mationp see Reninger's paper about the project.l 

* On leave from University of North Carolina at 
Chapel Rill. Also at IBM Corporation~ Federal 
Systems Division~ Bethesda~ MD. 

Much of the complexity of embedded real-time 
software is associated with controlling special- 
purpose hardware devices. Many designers seek to 
reduce this complexity by isolating device charac- 
teristics in software device interface modules~ 
thereby allowing most of the software to be pro- 
grammed without knowledge of device details. While 
these device interface modules generally do make 
the rest of the software simpler~ their interfaces 
are usually the result of an ad hoc design processp 
and they fail to encapsulate the device details 
completely. As a result9 device changes lead to 
changes throughout the software~ rather than just 
in the device interface module. We developed, a 
systematic procedure based on the abstract inter- 

face principle5 to design the interfaces to A-'7 
device interface modules. We believe the resulting 
interfaces will successfuly encapsulate device 
dependencies~ so that replacing or modifying a 
device will require only changes in the device 
interface module~ not in the rest of the software. 
This paper explains and illustrates this procedure. 

Contents 
Although the underlying principles described in 

this paper are not new~ the design procedure is 
both new and a significant deviation from current 
practice. The procedure is a practical approach to 
a recurring problem. As a result~ we expect the 
paper to be of more interest to practicing software 
engineers than to researchers interested in today's 
hot topics. 

Section II discusses device interface modules 
and the goals designers hope to achieve by includ- 
ing them in a system. Although this material is 
not new~ it is included because it motivates the 
rest of the paper. 

Section III defines terms that are used in the 
rest of the paper. Although the definitions are 

not newS~ they are not widely known. The presen- 
tation of the procedure relies on precise use of 
these terms. 

Section IV describes and illustrates the sys- 
tematic procedure. The illustration shows several 
stages in the development of an abstract interface 
for one of the A-7 device interface modules. 

Even systematic procedures do not make software 
design easy. In the A-7 design we often had to 
make difficult trade-offs between flexibility and 
run-time efficiency. In retrospect~ we identified 
several recurring problems. None of these problems 
forced us to change the basic procedure~ but they 
did cause us to add some additional guidelines for 
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device interface design. Section V describes some 
of these problems and the resulting guidelines. 

II. Objectives 

Embedded real-time software systems usually 
have complex and restrictive external interfaces. 
Since embedded software is usually a small compo- 
nent of a much larger system, the interfaces are 
seldom modified for the convenience of the software 
designer. The A-7 avionics software is typical: 
twenty-one devices are connected to the computer, 
including sensors, displays, and equipment con- 
trolled by the computer. Arbitrary interface 
characteristics, such as value encodings and timing 
quirks, are subject to change both during develop- 
ment and after initial deployment. Inadequacies 
may be discovered in the device specifications; a 
supplier may deliver a device that is judged ade- 
quate even though it does not exactly meet its 
specifications; a device may be replaced by an 
improved device; or new connections may be added 
between devices. 

It is a common but undesirable property of 
embedded software that a change in a device inter- 
face requires widespread changes to the software 
because many programs are based on arbitrary inter- 
face details. If an interface changes, programs 
depending on it become invalid. Because these 
dependencies are seldom explicitly documented, 
interface changes often have surprising ramifica- 
tions. 

To avoid these problems it is common to divide 
the software into two groups of components: i) the 
device interface modules containing the device- 
dependent code~ and 2-~ the device-independent 
remainder of the software, including the user pro~- 
rams, so called because they use the device inter- 
face modules. Device interface modules provide 
virtual devices~ that is, device-like capabilities 
that are pa--~ally implemented in software. For 
example, there is a virtual altimeter for the A-7 
system. The virtual altimeter returns a value of 
type range, instead of the bitstring read in from 
the actual sensor. The raw data is read, scaled, 
corrected, and filtered within the altimeter device 
interface module. This software structure is 
illustrated in Figure I. 

Design of device interface modules has the 
following goals: 

Confining chan~e_s: Designing device 
interface modules is a special case of the 

information-hiding approach6; hardware interface 
details are hidden within modules that should be 
the only system components requiring changes when 
devices are modified or replaced by others that can 
perform the same basic functions. Problems in con- 
fining change are "caused by three types of errors: 
i) The device interface module allows user pro- 

grams to exploit special characteristics of a 
particular device so that user programs must be 
revised if the device is replaced. 

2) The virtual device lacks essential capabili- 
ties, so that user programs must access the 
actual device directly; again user programs 
must be revised if the device is replaced. 

3) P~ograms that are not necessarily device- 
dependent are included in the device interface 
module. As a result, the device interface 
module may need to be changed if the require- 
ments change even if the device is not changed. 
Furthermore the module will be harder to change 
when the device is changed. 
In summary, a device interface module will 

ideally 
I) be the only component that needs to change if a 

device is changed; 
2) not need to change unless the device is 

changed; and 
3) be relatively small and straightforward so that 

it is easy to change. 
Simplifyin~ the rest of the software: 

Embedded software is often hard to understand 
because its correctness depends on many arbitrary 
interface details. If these details are confined 
to device interface modules, user programs should 
be simpler, easier to write correctly, and easier 
to understand, than they would be if they used the 
hardware interfaces directly. 

Enforcing disciplined use of resources: 
Software reliability is enhanced when all programs 
that access a device adhere to certain disciplines, 

such as regular checks for undesired events 7 and 

standard protocols for device sharing3. If these 
disciplines are built into the device interface 
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modules, they are systematically enforced; program- 
mers writing user programs need not be concerned 
with them. 

Code sharing: When many programs access a 
device directly, they often contain similar sub- 
programs performing the same device control func- 
tions. With device interface modules, this code 
need only be written once, saving programming, 
debugging, and testing time, and possibly computer 
storage. 

Efficient use of devices: Independently 
written programs often cause devices to repeat 
actions unnecessarily. Centralizing device-access 
code should make it easier to avoid unnecessary 
operations. 

To achieve these goals and to avoid the mis- 
takes mentioned earlier, the interface between a 
device interface module and user programs should be 
an abstract interface, as defined in the next 
section. 

III. Definitions 

Interface: The interface between two pro- 
grams consists of the set of assumptions that each 
programmer needs to make about the other program in 
order to demonstrate the correctness of his own 
program. For convenience, we use the phrase 
"assumptions made by program A about program B," to 
mean the properties of B that must be true in order 
for A to work properly. These assumptions are not 
limited to the calling sequences and parameter 
formats traditionally found in interface documents; 
they include additional information such as the 
meaning and limits of information exchanged, re- 
strictions on the order of events, and expected 
behavior when undesired events occur. There is an 
analogous definition of the interface between a 
program and a device. 

Abstraction: An abstraction of a set of 
objects is a description that applies equally well 
to any one of them. Each object is an instance of 
the abstraction. For a non-trivial abstraction, 
there is a one-to-many relationship between the 
abstraction and the objects it describes. Differ- 
ential equations are an example of a mathematical 
abstraction representing systems as diverse as 
electrical circuits and collections of springs and 
weights. 

An abstraction that is appropriate for a given 
purpose is easier to study than the actual system 
because it omits details that are not relevant for 
that purpose. A road map is an abstraction used to 
represent a road network; the graph represents the 
directions, relative lengths, and intersections of 
roads, but it does not show whether a road is made 
of asphalt or how it is banked. It is far easier 
to find a good route by studying a road map than by 
exploring the ~ctual roads. 

Any result obtained by studying an abstraction 
can be applied to any system represented by the 
same abstraction. Well-known graph theoretic 
results can be applied to a road map to determine 
the shortest route; the same methods have been 
applied to solve a wide variety of problems in 
other systems represented by directed graphs. Re- 
suits may be misleading if they are obtained from 
an inappropriate abstraction~ i.e.9 one that omits 
relevant details. For example 9 a road map is not 

sufficient to find the quickest route because it 
does not show other factors affecting driving time 
such as speed limits. 

Abstract interface: An abstract interface 
is an abstraction that represents more than one 
interface; it consists of the assumptions that are 
included in all of the interfaces that it repre- 
sents. An abstract interface for a given type of 
device reveals somej but not all, properties of the 
actual device: it describes the common aspects of 
devices of that type, omitting the aspects that 
distinguish them from each other. 

Device interface module: A device inter- 
face module is a set of programs that translate 
between the abstract interface and the actual 
hardware interface. The implementation of this 
module is possible only if all assumptions in the 
abstract interface are true of the actual device. 

Secret: Secrets of a device interface 
module are assumptions about the actual device that 
user programs are not allowed to make. The secrets 
are information about the current device that need 
not be true of other devices with the same func- 
tions. Secrets must be taken into account some- 
where in correctly working software; they are en- 
capsulated in a device interface module. 

Undesired event assumptions: The inter- 
face between programs A and B includes both the 
assumptions made by A about B and the assumptions 
made by B about A. Systems can be designed so that 
only one of two programs relies on the other meet- 
ing its specifications. A program can be designed 
so that it does not rely on user programs using it 

correctly; it can check for improper uses and sig- 
nal undesired events when they occur. However, the 
error checking and reporting require extra instruc- 
tions. In development versions of the A-7 soft- 
ware, the device interface modules will assume that 
undesired events can occur; they will contain code 
to check for errors made by user programs. In the 
production version there will not be room for that 
error-checking. The device interface modules will 
assume that improper uses will not occur; the 
error-checking code will be omitted to make the 
system smaller and faster. If a problem occurs 
during operation of the production system, the 
error-checking will be reinserted to help locate 
the cause. The software will be written in such a 
way that the error-checking code can be easily 
included or omitted when the program is assembled. 
This applies only to programming errors; error 

checks specified in the software requirements 2 
will never be omitted. 

Access functions: An access function is a 
program that is part of one module and may be 
called by programs in other modules. There are 
different kinds of access functions; some return 
information to the caller; others change the state 
of the module to which they belong. 

Events: Events are signals from a module 
to user programs indicating the occurrence of some 
state change within the module. They resemble 
hardware interrupts because they occur at unpre- 
dictable times and are not synchronized with the 
control flow of the user programs. In the A-7 
system, modules will use a mechanism such as 

eventcounts8 to signal the occurrence of an event 
to user programs that are waiting for it to occur. 
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IV. Design Approach 

This section describes a procedure for the 
design of abstract interfaces. The procedure is 
based on obtaining two partially redundant descrip- 
tions of the interface. 

DESCRIPTION 1: ASSUMPTION LIST CHARAC- 
TERIZING THE VIRTUAL DEVICE. 

For an application area such as avionics, many 
devices fall into standard types; all devices of 
given type have many common characteristics. For 
example, as shown by advertisements in Aviatio~ 
Week and Space Technology, computer panels vary 
little in the features seen by the pilot. For each 
hardware device, make a list of the characteristics 
that are not likely to change if the device is re- 
placed by another device of the same type. To do 
so requires considerable study of devices that are 
available or being de~eloped. The list of common 
characteristics is a description of the assumptions 
that user programs are allowed to make about the 
virtual device. The assumptions characterize de- 
vice capabilities, modes, information require- 
ments, behavior, and proper use of the device. A 
typical assumption might be: 

"The device provides information from which 
barometric altitude can be determined." 

We are quite certain that only devices satisfying 
this assumption will replace the current barometric 
altitude sensor. Note that this assumption does 
not describe the form of the information, which may 
vary from one device to another. 

Many assumptions will appear innocuous, but 
they must be recorded anyway. During the A-7 
design reviews, some seemingly innocuous assump- 
tions were found to be false. 

DESCRIPTION 2: PROGRAMMING CONSTRUCTS 
EMBODYING THE ASSUMPTIONS. 

The second description specifies the access 
functions and events that can be used by user 
programs. The access functions can be called by 
user programs to access the data or facility pro- 
vided by the virtual device. For example, an 
interface might provide an access function 
"GET BAROALT", which returns a barometric altitude 
value. For each access function, we specify the 
values returned, the limitations, and the effect it 
has on the virtual device to which it belongs. 
User programs can also use the events in order to 
be signalled when the virtual device changes state. 
For example, user programs may need to be signalled 
when a virtual sensor is no longer operational. 
Why two descriptions? 

These two descriptions are partially redundant, 
i.e., the specifications for the programming con- 
structs imply the assumptions. For example, speci- 
fications for the access function "GET BAROALT" 
imply the assumption that the device provides in- 
formation from which barometric altitude can be 
determined. The access function specifications 
provide additional information, namely the form of 
the data exchange between the device interface 
module and the user programs. For example, rather 
than provide barometric altitude directly, the 
device interface module might provide two or three 
quantities from which it could be computed. Such a 
design change would require a change in the func- 
tion specification but not in the assumption list. 

The two versions of the interface have differ- 
ent purposes: i) the assL~ption list explicitly 
states assumptions that are implicit in the func- 
tion specifications, making invalid assumptions 
easier to detect, and 2) the programming constructs 
can be used directly in user programs. It is es- 
sential that the two descriptions be consistent. 
The assumptions should be embodied clearly in the 
programming construct specifications, and the pro- 
gramming construct specifications should not imply 
any capabilities that are not stated in the assump- 
tion list. The assumption list should be reviewed 
by prograrmuers, users, and hardware engineers who 
have the knowledge necessary to check it for vali- 
dity and generality. For example, the A-7 assump- 
tions were reviewed by system engineers and hard- 
ware engineers familiar with the A-7, A-6, and F-18 
aircraft. Assumptions written in prose are easier 
for non-programmers to review. The specifications 
of the programming constructs should be reviewed by 
programmers who have worked with similar programs. 
These reviewers evaluate how well the abstract 
interface supports user programs and whether the 
device interface module can be implemented effi- 
ciently. The procedures and criteria used to re- 
view the A-7 device interface modules are de- 

scribed in device interface document4. 
Design Procedure 

Obtaining a correct and consistent dual de- 
scription of an abstract interface is an iterative 
process. Although we attempted to list assumptions 
first, many of the necessary assumptions were quite 
subtle and only became apparent when we designed 
the programming constructs. Review of the assump- 
tion lists revealed errors in the programming con- 
structs. The interfaces are the result of several 
cycles of review~ Both internally at NRL and by the 
A-7 maintenance team at the Naval Weapons Center 
(NWC). The first drafts were reviewed several 
times informally by the NRL A-7 team before they 
were submitted for an informal review at NWC. 
After further revisions within the NRL team, we 
held a formal review at NWC, resulting in the 
current version. 
Illustration 

As an example of this procedure, this section 
sketches the development of the abstract interface 
to the Air Data Computer (ADC). The ADC is a 
sensor that measures barometric altitude, true 
airspeed, and the mach number respresentation of 
airspeed. 

Figures 2 through 4 are excerpted from succes- 
sive versions of the ADC abstract interface. Each 
figure includes an assumption list and tables 
showing the associated programming constructs. 
These figures are not the complete specifications; 
other tables define system generation parameters 
and specify the ranges and resolutions of values. 
In the access function tables~ "I" indicates an 
input parameter whose value is supplied by userl 
programs; "O" indicates an output parameter whose 
value is returned by the ADC module. 

Although the early draft shown in Figure 2 
seemed simple and reasonable to us, NRL and NWC 
reviewers found the following errors in it. 

- The current ADC hardware and most replace- 
ment devices include a built-in test capability 
that cannot be accessed with the current inter- 
face. 

198 



Figure 2: Excerpts from an Early Draft of the ADC Abstract Interface 

Assumption List 

i. The ADC provides a measure of barometric altitude~ mach number~ and true 
airspeed. 

2. The above measurements are based on a common set of sensors. Therefore an 
inaccuracy in one ADC sensor may affect any of these outputs. 

3. The ADC provides an indication if any of its sensors are not functioning 
properly. 

4. The measurements are made assuming a sea level pressure of 29.92 inches of 
mercury. 

Access Function Table 

Function name Parameter type Parameter information 
G ADC ALTITUDE pl:distance;O altitude assuming 29.92 inches 

sea level pressure 
G ADC MACH INDEX pl:mach;O mach 
G ADC TRUE AIRSPEED pl:speed;O true airspeed 
G ADC FAlL--INDICATOR pl:logical;O true if ADC failed 

Figure 3: Excerpts from Draft of the ADC Abstract Interface 
Used for Formal NWC Review 

Assumption List 

I. The ADC provides measurements of the barometric altitude~ true airspeed~ 
and the mach number representation of the airspeed of the aircraft. Any 
known measurement errors are compensated for within the module. Altitude 
measurements are made assuming that the air pressure at sea level is 29.92 
inches of mercury. 

2. All of these measurements are based on a common set of sensors; therefore 
an inaccuracy in one ADC sensor will affect all measurements. 

3. User programs are notified by means of an event when the ADC hardware 
fails. If the access functions for barometric altitude~ true airspeed~ 
and mach number are called during an ADC failure~ the last valid 
measurements (stale values) are provided. 

4. The ADC is capable of performing a self-test upon command from the 
software. The result of this test is returned to the software. 

5. The minimum measurable value for mach number and true airspeed is zero. 
The minimum barometric altitude measurable is fixed after system 
generation time 9 as are the maximum value and resolution for all 
measurements. 

Access Function Table 

Function name Parameter type Parameter information 

G ADC BARO_ALTITUDE pl:distance;O 

G ADC MACH INDEX pl:mach;O 
G ADC RELIABILITY pl:logical;O 
G ADC TRUE AIRSPEED pl:speed;O 
TEST ADC pl:logical;O 

corrected altitude asstnning sea 
level pressure = 29.92 inches mercury 
corrected mach 
true if ADC reliable 
corrected true airspeed 
true if ADC passed self test 

Event Table 

Event When signalled 

@T(ADC unreliable) When "ADC reliable" changes from true to false 
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Figure 4: Excerpts from the Final Version of the ADC Abstract Interface 

Assumption List 

I. 

2. 

3. 

4. 

5. 

The ADC provides measurements of the barometric altitude, true airspeed, 
and the mach number representation of the airspeed of the aircraft (mach 
index). Any known measurement errors are compensated for within the 
module. 
User programs are notified by means of events when one or more of the 
outputs are unavailable. A user program can also inquire about the 
reliability of individual outputs. If the access functions for 
barometric altitude, true airspeed, and mach number are called while the 
values are unreliable, the last valid measurements (stale values) are 
provided. 

The ADC is capable of performing a self-test upon command from a user 
program. The result of this test is returned to the user program. 
The minimum, maximum, and resolution of all ADC measurements are fixed 
after system generation time. 
The ADC will compute its outputs on the basis of a value for Sea Level 
Pressure (SLP) supplied to it by a user program. If no value is 
provided, an SLP of 29.92 will be assumed. 

Access Function Table 

Function name Parameter type Parameter information 

G ADC ALTITUDE pl:distance;O 

p2:logical;O 
G ADC MACH INDEX pl:mach;O 

p2:logical;O 
G ADC TRUE AIRSPEED pl:speed;O 

p2:logical;O 
S ADC SLP pl:pressure;l 
TE6T ADC pl:logical;O 

corrected altitude assuming SLP=29.92 
or user supplied SLP 
true if altitude valid 
corrected mach 
true if mach valid 
corrected true airspeed 
true if true airspeed valid 
sea level pressure 
true if ADC passed self test 

Event Table 

Event When signalled 

@T(altitude invalid) 

@T(airspeed invalid) 
@T(mach invalid) 

When "altitude valid" changes from true to false 
When "true airspeed valid" changes from true to false 
When "roach valid" changes from true to false 

- The description does not specify the values 
to be returned by the access functions while 
the ADC is in a failed state. 
- The description does not specify the range 
of possible values for the measured quantities. 
The ranges are device-dependent, but they also 
affect user programs. 
- The virtual ADC does not signal when it 
fails. User programs must poll the validity 
function to detect changes in reliability. 
- The description does not make it clear 
whether the module performs device-dependent 
corrections to the raw sensor values. 
After we corrected these errors, the interface 

shown in Figure 3 was reviewed formally at NWC. 
The following problems were pointed out. 

- There is a device-dependent correction 
necessary for actual sea level pressure. The 
assumption of constant pressure is a poor one 
as i~ will force a device-dependent correction 
to be done by user programs. Future hardware 
may perform this correction automatically. 

- Although the current hardware has one rell- 
ability indicator for all three values, re- 
placement devices might not. In replacement 
devices the measurements might be made using 
independent sensors. 
- We cannot assume that the minimum mach and 
true airspeed values are zero; some devices 
might not be capable of measuring such low 
values. 
Figure 4 illustrates the product of the final 

revisions. 
The development of the ADC abstract interface 

shows how the procedure supported our design 
efforts. Even the version in Figure 2 is a reason- 
able design; the errors it contains are typical of 
errors made in embedded software. As a result of 
our procedure, the erroneous assumptions were 
written explicitly in a form meant for review, 
rather than left implicit. Unwise assumptions, 
which might have escaped our notice until after the 
code was written, were caught when they could be 
corrected relatively easily. The current version 
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of the ADC interface may not be perfect, but it is 
much bette~ than it would have been if we had not 
followed the procedure. Having two partially 
redundant descriptions of the interface was very 
important. We have examined our records and found 
that some errors were found in the assumption lists 
and others in the programming construct specifica- 
tions. Seldom wa 9 the same error found in both 
versions. 

V. Design Problems 

The design considerations mentioned earlier 
serve as design guidelines and as standards for 
judging results. Although they help considerably, 
it is not always easy to apply, them. Conflicts 
arise among three design goals: small device 
interface modules, device-independent user pro- 
grams, and efficiency. What if user programs could 
use a device more efficiently if they could exploit 
assumptions that are not valid for all possible 
replacement devices? What if encapsulation of 
assumptions that are not always valid makes a 
device interface module slower or bigger? Accept- 
able compromises must be based on estimates of the 
likelihood of future changes. This section shows 
tradeoff problems and how we resolved them, at- 
tempting to minimize the expected cost of the 
software over its entire period of use. 
Problem 1: Major variations among available 
devices 

Deciding how much capability to include in a l 

idevice interface module is particularly difficult 
When there are major differences among replacement 
devices. For example, new Inertial Measurement Set 
(IMS) models produce present position data; other 
IMS devices produce velocity data; and the current 
A-7 IMS produces only velocity increments. In 
order to simulate an IMS that produces present 
position using the current IMS hardware, much of 
the navigation software would have to be inside the 
IMS device interface module; the result would be a 
very large module. One must choose between a) con- 
fining major changes within the device interface 
module, and b) keeping the device interface module 
small, so that minor but more likely changes are 
easier to make. Our compromise limits the range of 
devices represented by our virtual IMS, with th~ 
understanding that the remaining differences can be 
confined to a small set of user programs. Although 
our virtual IMS does not provide present position, 
it does provide velocities rather than velocity 
increments; the velocity increments are only used 
to compute velocities, and the velocities are 
widely used. The resulting virtual IMS is consid- 
erably easier to use than the hardware IMS, yet we 
expect the IMS module to be reasonably small. 
Problem 2: Devices with characteristics that 
change independently 

Some devices have several sets of characteris- 
tics that can change independently. For example, 
the Projected Map Display Set (pMDS) consists of a 
set of filmstrips and a hardware drive that posi- 
tions a filmstrip in a display. The same drive 
could be used with new filmstrips containing maps 
in a different format, and the same filmstrips 
could be used with a different drive. According to 
the information-hiding principle~ two independent 
sets of characteristics should be hidden in differ- 

ent modules so that they can be changed indepen- 
dently. However it is unnecessary for user pro- 
grams to be aware of the separation. We chose to 
hide both sets of characteristicf in one PMDS 
device interface module. The module will later be 
divided into two submodules, each insulated from 
changes in the other. Since the division is a 
secret of the PMDS device module, it is not appar- 
ent to user programs and is not presented in the 
interface specification. 
Problem 3: Virtual device characteristics that are 
likely to change 

Some changeable device characteristics must be 
revealed to user programs so that they can exploit 
the device effectively. Examples include measure- 
ment resolutions, the number of positions on 
switches~ and device limitations such as a maximum 
displayable value. Although we would like user 
programs to be insulated from all device changes, 
they must behave differently if such characteris- 
tics change. For example, user programs control- 
ling the PMDS must behave differently if the vir- 
tual PMDS provides maps of three different scales 
instead of just two. We represent such character- 
istics by symbolic constants. Both user programs 
and device programs are written in terms of sym- 
bolic constants rather than actual values. At 
system generation time, code can be generated by 
conditional macro expansion based on the actual 
values of the parameters. 

We defined system generation parameters for the 
range and resolution of input and output data 
because I) range and resolution are highly likely 
to vary among different devices; and 2) this infor- 
mation is needed by user programs in order to per- 
form arithmetic accurately and efficiently. User 
programs written in terms of system generation 
parameters do not need to be rewritten if the 
parameter values change. 

Initially we assumed that all parameter values 
would be known at system generation time; i.e., we 
explicitly assumed that whenever a replacement 
device is introduced, a new version of the program 
will be generated and deployed wi~h the device. 
This assumption was questioned at the design re- 
view. It is Navy policy not to have multiple ver- 
sions of the software in the fleet, even though 
equipment changes cannot be made simultaneously. 
Furthermore, we cannot require a new system genera- 
tion if a new device breaks down and is temporarily 
replaced by a device of the old type. As a result, 
some of the parameters must be changeable at run- 
time. In theory this is true for any of the 
parameters; in fact, changeover problems are more 
likely for same devices than others. The cost of 
run-time variability also differs among devices, 
depending on whether the parameter can be used to 
control code generation so that run-time tests can 
be avoided. If changes are unlikely, we are re- 
luctant to give up the efficiency advantages of 
binding the values at system generation time; if 
binding the value early causes no significant 
savings, we are reluctant to give up flexibility. 
We decided each case individually, using the 

following guidelines: 
I) Parameters with a low cost for variability are 
treated as run-time variables, whatever the like- 
lihood of change. Access functions to store and 
retrieve values appear in the module interface. 
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See problem 4 for an additional problem about these 
parameters. 
2) Parameters with a low likelihood of change and 
a high cost for variability are bound at system 
generation time. 
3) For parameters with both a high likelihood of 
change and a high cost for variability, there are 
two possible solutions: 

a) They can be treated as run-time variables, 
with the option to bind them earlier by provid- 
ing values at system generation time. This 
option allows us to delay the final choice 
until we have more information. 
b) We can find a conservative value that can 
be used for both devices, allowing us to bind 
the value at system generation time. 

Problem 4: Device-dependent characteristics that 
vary at run-time 

In some circumstances, user programs must 
handle device-dependent data. For example, when 
one IMS is replaced by another of the same type, 
the software must be adjusted because of manufac- 
turing variations. The IMS software is parameter- 
ized so that it can be tailored to fit a particular 
piece of hardware. It is a requirement that we be 
able to change these parameters without reassembly. 
The parameters are entered at run-time through the 
computer panel. To receive the data, the IMS 
module provides access functions, which are called 
by the user programs that read in the panel data. 
Unfortunately, the existence of a run-time param- 
eter such as drift rate reveals a secret of the IMS 
module, i.e., that the actual device drifts out of 
alignment. An additional drawback is that a re- 
placement device might require different calibra- 
tion data, requiring a change in the interface. We 
restrict use of these access functions so that the 
software making use of them is limited and easily 
identified. The restricted ass~ptions and access 
functions are called reconfiguration interfaces and 
are appended to the normal interfaces. 
Problem 5: Interconnecti6ns between virtual 
devices 

Ideally, virtual devices would be independent 
of each other, allowing the associated abstract 
interfaces to be designed independently of each 
other. However the A-7 system has device inter ~ 
dependencies introduced for hardware convenience. 
Some of these interdependencies are based on 
ass~ptions made by hardware designers about the 
software. For example~ the Doppler and Ship Iner- 
tial Navigation Set might share a data path because 
someone assumed that the software will not need 
both devices simultaneously. We can hide the 
nature but not the existence of the interconnec- 
tions; if we hid the interconnections, later 
changes in the user programs might result in 
attempts to access the devices incorrectly. The 
existence of interconnections is revealed in the 
assumption lists in terms of restrictions on the 
use of virtual devices. For example, there may be 
an ass~ption that two virtual devices cannot be 
used simultaneously. If the hardware interconnec- 
tion is later removed, additional uses of one or 
both devices may become possible and desirable. 
Making such additions will inevitably require 

changes on both sides of the abstract interface: 
changes in user programs to exploit the new capa- 
bilities and changes in device interface modules to 

remove the restrictions. Since this cannot be 
avoided, there is no loss in revealing the restric- 
tion. 

A similar problem can arise within a singl~ 
device interface module if the present hardware 
does not allow two capabilities of the virtual 
device to be used at once. Again, we chose to 
reveal the restriction to user programs even though 
it might not be true of future devices. 

Interconnection problems also arise where one 
device (the provider) provides information used by 
another (the receiver). There are two cases to 
consider: 
i) The computer can detect the failure of the 
provider. If so, the virtual receiver signals a 
failure when the provider fails, even if the actual 
receiver does not detect the failure. The device 
interface module for the receiver can simulate 
detection of the failure, thereby hiding the inter- 
connection. 
2) The computer cannot detect the failure of the 
provider. The undetectable failure of the provider 
must be also considered an undetectable failure of 
the receiver. People writing user programs that 
rely on the virtual receiver must be aware that 
undetectable failures are possible, but they need 
not be aware of the interconnection. 
Problem 6: Inconsistencies in the hardware 
interfaces 

A hardware interface may provide similar 
functions in dissimilar ways. For example, the 
symbols on the HUD have three states: ON~ OFF~ and 
BLINKING. The HUD provides a hardware blink com- 
mand for some symbols, but for others the software 
must simulate the BLINKING state by alternating the 
symbol between the ON and OFF states. Whenever the 
hardware interface provides some means to perform 
the action, we provide the feature consistently in 
the virtual device. The virtual HUD has commands 
to blink all symbols. However, when the hardware 
interface does not provide a way to perform an 
action, we were forced to reveal the inconsistency 
in the interface. For example~ some HUD symbols 
have only two states: OFF and BLINKING. 
Since there is no way to simulate the ON state~ the 
virtual device cannot provide it. If the hardware 
limitation is removed in the future, the inconsis- 
tency can be removed from the virtual device. It 
is unavoidable that this change would require 
changes on both sides of the abstract interface: 
changes in user programs to exploit the new capa- 
bility and changes in the device interface module 
to implement it. 
Problem 7: Switch nomenclatures 

Many of the switches do nothing more than set a 
bit that the computer can read. The label on a 
switch is an easily changed characteristic and 
could be hidden. We could name th~ switches anony- 
mously (e.g. with integers) and use non-mnemonic 
names for the settings. However, a change in 
switch nomenclature will most likely be accom- 
panied by a change in the requirements. The ex ~ 
pected cost of working with non-mnemonic names, 
i.e., more errors, is high. In line with our basic 
principle of trying to minimize the expected cost 
of the software over its whole period of use, we 

have chosen to reveal the nomenclature in switch 
names and mnemonic values for the switch settings. 
The names may suggest more than is actually stated 
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in the assumptions; programmers are cautioned not 
to make assumptions about the switches beyond those 
that are explicitly stated in the interface 
documents. 

Problem 8: Switches with hardware side-effects 
When a switch also affects other devices, the 

meaning associated with it is not solely a software 
decision; major hardware changes would be required 
to use it for any other purpose. We consider such 
a switch part of the device that it affects, even 
if it is not physically located with the device. 
As far as user programs are concer~ed, the switch 
does not exist; the effects of the switch appear as 
changes in the operating mode of the virtual 
device. For example, the "Terrain Following" 
switch located on the master function panel affects 
the state of the Forward Looking Radar (FLR). 
Instead of appearing~n the same interface descrip- 
tion as the other master function switches, it is 
• hidden within the FLR device interface module. 
User programs cannot read the switch, but they can 
call an access function that reveals the operating 
mode of the FLR. 
Problem 9: Reporting changes in device state 

User programs are often required to respond 
quickly to a change in device state. For example, 
user programs determining the current navigation 
mode need to know when the reliability status of 
the IMS sensor changes. The device interface 
module can either I) provide an access function 
reporting the current state of the device, or 
2) signal the state-change event. The choice of a 
mechanism depends on wheth@r user programs base 
decisions on the current state or wait for the 
state to change. If we based the design on the 
requirements of user programs, changes in their 
requirements might result in changes in the device 
interface module, violating the design goal that 
the device module should not" need to be changed 
unless the device is changed. We chose to specify 
both mechanisms in every case, but plan to imple- 
ment only the ones that are actually needed. Thus 
requirements changes may require changes to device 
interface modules, but these changes will consist 
of implementing previously specified features. By 
specifying possible additions in advance~ we expect 
to reduce the cost of later reprogramming. 
Problem I0: Devices requiring information from the 
software 

Some hardware devices require information that 
is not calculated within the associated device 
interface module. For example, the current IMS 
device needs to know whether or not the aircraft is 
above 70 ° latitude~ even though latitude is not 
calculated within the IMS module. One must choose 
between two ways to get the information to the 
device: I) the device d module cgn" provide an access 
function that a user program calls in order to 
provide the information; or 2) programs in the 
device module can call other programs to get the 
information. Our decision is based on whether or 
not the information requirement is common to the 
class of replacement devices. If it is, the device 
interface module provides access functions for 
receiving the information. This solution results 
in added requirements for the rest of the Goftware, 

and the user programs supplying the information 
must change if the information need changes. If 
the information n~ed is peculiar to a particular 

hardware device~ device interface programs call 
other programs to get the data. As long as the 
~eeded information is available from 4 the rest of 
the system, no program outside the device interface 
module needs to change if the need for information 
disappears. We chose the latter sorution for the 
IMS example because not all IMS devices require a 
signal from the computer at 70 ° latitude. 
Problem 11: Virtual devices that do not correspond 
to hardware devices 

Initially, we assumed that there would be one 
virtual device for each hardware device. We found 
that modeling the virtual devices on the actual 
devices does not always result in clear inter- 
faces. Some related capabilities are scattered 
among several hardware devices; some unrelated 
capabilities occur in the same device for physical 
convenience; other groupings can only be explained 
in terms of historical development. For example, 
weapons-related capabilities in the A-7 are scat- 
tered among several devices. Some weapons data 
comes from the device that controls weapon release, 
some is stored in tables, and some is provided by 
the pilot throug h switches. Additionally, the 
weapons release device fills two distinct roles: 
it is both a source of input data and the device 
that releases a weapon under computer control. Our 
final design includes one virtual device for 
weapons release and .one for weapon data. The vir- 
tual devices are much simpler to understand than 
the actual devices. It is important not to be 
unduly influenced by the physical location of 
hardware units. 

Vl. Summary 

We have applied a systematic procedure based on 
the abstract interface principle in the design of a 
substantial system. We find that the abstract 
interfaces make the system easier to code, and we 
expect to find that they make it easier to change 
in the future. Although the success of our ab- 
stract interface design cannot be judged until the 
A-7 implementation is complete ° and undergoing 
maintenance, our experiences so far have given us 
confidence to recommend the procedure to other 
designers. 

This paper serves as an introduction to a more 

complete report 4. Along with complete specifica- 
tions for all the A-7 device interface modules, the 
report contains a description of the documentation 
organization and notation, a discussion of addi- 
tional design problems, and a description of the 
procedures and questionnaires used for the major 
design review. The document is available from the 
authors. 
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