
Little Languages: Little Maintenance?Arie van Deursen and Paul KlintCWI, P.O. Box 94079, 1090 GB Amsterdamhttp://www.cwi.nl/�farie,paulkg/, farie,paulkg@cwi.nlDecember 16, 1996AbstractSo-called little, or domain-speci�c languages (DSLs), have the potential tomake software maintenance simpler: domain-experts can directly use theDSL to make required routine modi�cations. At the negative side, how-ever, more substantial changes may become more di�cult: such changesmay involve altering the domain-speci�c language. This will require com-piler technology knowledge, which not every commercial enterprise haseasily available. Based on experience taken from industrial practice, wediscuss the role of DSLs in software maintenance, the dangers introducedby using them, and techniques for controlling the risks involved.1 IntroductionLittle languages, tailored towards the speci�c needs of a particular domain, cansigni�cantly ease building software systems for that domain [Ben86]. To citeHendon and Berzins [HB88],If a conceptual framework is rich enough and program tasks withinthe framework are common enough, a language supporting the prim-itive concepts of the framework is called for. (...) Many tasks canbe easily described by agreeing upon an appropriate vocabulary andconceptual framework. These frameworks may allow a descriptionof a few lines long to replace many thousand lines of code in otherlanguages.We will use the following terminology (see also Figure 1):Domain-Speci�c Language (DSL) A small, usually declarative, languageexpressive over the distinguishing characteristics of a set of programs in aparticular problem domain [Wal96].

Product De�nition (DSD)DSL Compiler(DSP)IT Support for ProductFigure 1: A DSL compiler.Domain-Speci�c Description (DSD) A \program" (speci�cation, descrip-tion, query, process, task, ...) written in a DSL.Domain-Speci�c Processor (DSP) A software tool for compiling, interpret-ing, or analyzing domain-speci�c descriptions.A well-designed DSL will help the application builder to write short, de-scriptive, and platform-independent DSDs. Moreover, the good DSL will bee�ectively implementable, where the DSPs capture the stable concepts and al-gorithmic ingredients of the particular domain. Using such a DSL for construct-ing domain-speci�c applications, increases reliability and repairability, providesself-documenting and portable descriptions, and reduces forward (and back-ward) engineering costs [HB88].In this paper, we elaborate on the advantages and problems of the use ofdomain-speci�c languages, emphasizing their role in software maintenance. Ev-idently, the attributes listed above will help reduce maintenance costs, and forthat reason domain-speci�c approaches are investigated in order to arrive at\inherently maintainable software" [GB96]. However, using a domain-speci�clanguage can also make a system more di�cult to maintain, for example ifchanges to the underlying domain model become necessary.To discuss these issues, we �rst give an example of the commercial use of aDSL taken from the area of �nancial engineering (Section 2). We then cover theimplications for software maintenance, and identify the risks and opportunitiesinvolved in the use of a DSL (Section 3). We conclude by describing two tech-niques (Sections 4 and 5) that will help to address two of the potential problemsin the use of DSLs.

2 The Financial Engineering Domain2.1 Interest Rate ProductsFinancial engineering deals, amongst others, with interest rate products. Suchproducts are typically used for inter-bank trade, or to �nance company take-overs involving triple comma �gures in multiple currencies.1 Crucial for suchtransactions are the protection against and the well-timed exploitation of riskscoming with interest rate or currency exchange rate
uctuations.The simplest interest rate product is the loan: a �xed amount in a certaincurrency is borrowed for a �xed period at a given interest rate. More com-plicated products, such as the �nancial future, the forward rate agreement , orthe capped
oater [Cog95, Chapter 12], all aim at risk reallocation. Banks caninvent new ways to do this, giving rise to more and more interest rate prod-ucts. Not surprisingly, di�erent interest rate products have much in common,making �nancial engineering an area suitable for incorporating domain-speci�cknowledge in tools, languages, or libraries.22.2 ChallengesA software system supporting the use of interest rate products typically dealswith the bank's �nancial administration (who is buying what), and | moreimportantly | provides management information allowing decision makers toassess risks involved in the products currently processed. Typical problemsfound in such systems are that it is:� too di�cult to introduce a new type of product, even if it is very similarto existing ones;� impossible to ensure that the instructions given by the �nancial engineerare correctly implemented by the software engineer.The �rst problem leads to a long time-to-market for new products;3 the secondleads to potentially incorrect behavior.1As an example, Dutch PTT (KPN) recently bought the Australian company TNT for 2billion Australian dollars. A clever cocktail of multi-currency loans, options, and swaps wasused to �nance this transaction, protectingKPN against interest rate di�erences and exchangerate
uctuations between the Australian and the Dutch �nancial markets.2As an example, [EG92] describe the ET++ Swaps Manager, an object-oriented libraryfor manipulating interest rate products.3This can be very important: as an example, one Dutch bank decided mid-February 1996to introduce a special one-day \leap year deposit" | a big success, but relying heavily on the
exibility of the bank's automated systems.

2.3 The Risla LanguageDutch bankMeesPierson, together with software house CAP Volmac saw the useof a speci�c language for describing interest rate products as the solution to theproblems of long time-to-market and potentially inaccurate implementations.The language was to be readable for �nancial engineers, and descriptions inthis language were to be compiled into COBOL. In this section we summarizeearlier (and more detailed) accounts given in [Deu94, ADR95, BDK+96] of thedevelopment and use of this language.The development of this language, called Risla (for Rente Informatie Sys-teem Language | Interest rate information system language), started in 1992,and can be summarized as follows:� MeesPierson had a very good library of COBOL routines for operating oncash
ows, intervals, interest payment schemes, date manipulations, etc.;� Using this library directly in COBOL did not provide the right level ofabstraction, and cumbersome encoding tricks were needed to use, e.g., listswithout a �xed length;� An interest rate product can be considered as a \class": it contains in-stance variables to be assigned at creation time (the principal amount,the interest rate, the currency, etc.), information methods for inspectingactual products (when is interest to be paid), and registration methodsfor recording state changes (pay one redemption).The language Risla was designed to describe interest rate products alongthese lines. An instantiated product is called a contract , �xing the actualamount, rate, etc. of a particular product sold. The language is based on anumber of built-in data types for representing cash
ows, intervals, etc., andhas a large number of built-in operations manipulating these data types (theoperations correspond to the subroutines in the COBOL library). A productde�nition speci�es the contract parameters, information methods, and registra-tion methods.Risla is translated into COBOL. Other systems in the bank can invoke thegenerated COBOL to create new contracts, to ask information about existingcontracts, or to update contract information. The initial version of Risla wasused to de�ne about 30 interest rate products.After a few years of working with Risla, the users experienced the modular-ization features of Risla as inadequate. A Risla description de�nes a completeproduct; but di�erent products are constructed from similar components. Toremedy this situation, a project Modular Risla was started. Risla was ex-tended with a small modular layer, featuring parameterization and renaming.Moreover, a component library was developed, and the most important productswere described using this library.

Select COBOLCompile

Some editing

Expand

Interactive

RISLA

Modular

Questionnaire

Flat

RISLAFigure 2: From questionnaire, via Modular and
at Risla, to COBOLIn addition to that, the Risla development team made an e�ort to make thelanguage more accessible to the �nancial experts. To that end, an inter-activequestionnaire interface to the component library was developed. End-users cancombine existing components into a new product by �lling in the answers of aquestionnaire.This use of questionnaires and modular Risla gives rise to the �nancialproduct life cycle as shown in Figure 2. An interactive questionnaire is �lledin, and the answers are used to select the relevant Risla components. Thisde�nition may contain some holes that are speci�c to this product, which canbe �lled by writing the appropriate Risla code. The modular de�nition is thenexpanded to a
at (non-modular) de�nition, which in turn is compiled intoCOBOL.As a last point of interest, the actual questionnaire used is de�ned usinga second domain-speci�c language: Risquest. This is a language for de�ningquestions together with permitted answers (choice from a �xed set, free text).Moreover, Risquest has constructs for indicating in which order questions areto be asked, and how this sequencing may depend on the actual answers given.Last but not least, Risquest can be used to associate library components withthe possible answers. A Risquest de�nition is entered in textual form, and it isgenerated into a Tcl/Tk program. This program can be invoked by a �nancialengineer to �ll in the questionnaire and to generate the corresponding modularRisla.2.4 EvaluationAt the positive side, the Risla project has met its targets: the time it coststo introduce a new product is down from an estimated three months to two orthree weeks. Moreover, �nancial engineers themselves can use the questionnaireto compose new products. Last but not least, it has become much easier tovalidate the correctness of the software realization of the interest rate products.At the negative side, it is not so easy to extend the language. When anew data type or a new built-in function is required, the compiler, as wellas the COBOL library, needs to be adapted. This requires skills in compilerconstruction technology, which is not the typical background of people working

mainly in a COBOL environment. Finally, the Risla product de�nitions havebecome longer and longer. Whenever there was a new software system requiringinformation about products that was not provided in the existing methods, newmethods had to be provided, sometimes requiring new data types or extensionsto the Risla language.3 The Maintenance Perspective3.1 Maintainability FactorsThe literature on software maintenance (see, e.g., [Pig97] and the referencescited there in) deals, among others, extensively with maintainability , de�ned asthe ease with which a system can be kept in operation when modi�cations to thecode become necessary [Pig97, p.274]. The factors a�ecting maintenance canbe divided into three categories: the state the system is in (how reliable, under-standable, testable, modular, and extensible is it?), the nature of the changesrequired (is the design prepared for the anticipated changes), and the skills ofand process used by the maintenance team (procedures for recording modi�ca-tion and enhancement requests, use of steps that have future maintainability asan objective, etc).Some of these maintainability factors (e.g., quality of the con�guration man-agement) are not a�ected by the use of a domain-speci�c language. Others arenegatively in
uenced: The number of di�erent languages used in the system[Pig97, p.283] increases, which in itself makes maintenance more di�cult. Also,it may be di�cult to �nd personnel
uent in this particular DSL (proper doc-umentation of the use, design, and implementation of the DSL, will reduce thisrisk by making the DSL easy to learn).The use of an explicit software maintenance model (who is performing whichsteps in what order) by the maintainers is considered an important factor forimproving maintainability [Pig97, p.40]. Adopting a DSL a�ects only the ac-tual steps taken: domain experts without much programming or maintenanceexperience now can inspect the consequences and quality of the modi�cationsmade by the maintainers (for the Risla case this is particularly important: theinterest rate product implementations should correspond to reality).Positively impacted by the use of a DSL are the source code maintainabilityattributes (modularity, encapsulation, cohesion, portability, understandability,etc), which many regard as the predominant maintainability factors [Pig97,OH94, p.289]. The most important properties are that the DSDs are muchsmaller than their general purpose language counterparts, and that the DSDsare more descriptive, avoiding the need for many comment lines in the DSDs,and thus reducing the chance of obsolete comment lines.Finally, increased maintainability will a�ect the principal maintenance costindicator, the annual change tra�c (ACT) | the fraction of code changed due

to maintenance each year. The maintenance e�ort ME is related to ACT andthe initial development cost in man months DM as follows [Boe81]:ME = F �DM �ACTwhere F is a multiplication factor representing the system maintainability.When using a DSL, one should split this into the development costs and ACTof both the DSL compiler (the DSPs) and the actual set of DSL programs used(the DSDs):ME = FDSD �DMDSD �ACTDSD + FDSP �DMDSP �ACTDSPTypically, ACTDSP should be close to zero (the compiler should be stable). Thecosts of a high change rate for the DSL programs (ACTDSD) is only related tothe development costs of the DSDs, not to the development costs of the compiler.When deciding whether to use a DSL, estimates of the costs related to ACTin a traditional language and in a DSL setting will play an important role.3.2 Bene�ts of DSLsThe single most important bene�t of using domain-speci�c languages is that thedomain-speci�c knowledge is formalized at the right level of abstraction. This,in turn, has the advantages that:� Domain experts themselves can understand, validate, and modify the soft-ware by adapting the domain-speci�c descriptions (DSDs).� Modi�cations are easier to make and their impact is easier to understand.� Domain-speci�c knowledge is explicitly available, and not hidden into,e.g., COBOL code (the use of a DSL avoids the need for business ruleextraction).� The explicitly available knowledge can be re-used across di�erent applica-tions.� The way the knowledge is represented is independent of the implemen-tation platform; the DSPs hide whether the DSDs are translated into C,Fortran, COBOL, : : :.Concerning the costs of using DSLs, there is empirical evidence suggestingthat the use of DSLs increases
exibility, productivity, reliability, and usability[KMB+96]. As a way of reducing the costs of the initial development of the DSLand DSPs, the language and its tools can be sold as a product to competitorsin the same �eld. In this way, it is possible to earn back initial developmentcosts but at the same time keeping secret the suite of DSDs (DSL programs)that describe the company's proprietary products.

3.3 DSL DevelopmentThe development of a DSL requires a thorough understanding of the underlyingdomain. The steps to be taken include:� Identify problem domain of interest.� Gather all relevant knowledge in this domain.� Cluster this knowledge in a handful of semantic notions and operations onthem.� Construct a library that implements the semantic notions.� Design a DSL that concisely describes applications in the domain.� Design and implement a compiler that translates DSL programs to a se-quence of library calls.� Write DSL programs for all desired applications and compile them.3.4 DSL Design QuestionsWith respect to software maintenance, there are a number of considerations tobe taken into account during the design of a DSL:� Who is going to write the DSDs? What is the expected domain-speci�cbackground, and how much programming knowledge is required?� How many DSDs will there be needed, and how long are they going tobe? It may be possible to validate the correctness of three pages of DSLcode, but who is going to predict the impact of a change in one out of 100DSDs, each 25 pages long?� Which (decidable) forms of static analysis and which integrity checks onDSDs are anticipated?� What should happen if it turns out that the language requires new datatypes or new functionality?One approach could be to give the DSL su�cient expressive power to de�nenew data types or data operations, but this complicates the constructionof the DSPs. For example, some form of iteration or recursion increasesexpressive power, but making the language Turing complete will make theveri�cation of important properties (termination) undecidable.� Does the DSL support user-de�nable syntax for, e.g., naming procedures?This may increase the readability, an important issue in DSLs, but itseriously complicates the construction of DSPs, including analysis toolsthat are needed during later maintenance phases.

� Is the main library written in the DSL or written in the target language?Who will be responsible for maintaining the library?� Is the interface (data representation) to other systems easily adaptable oris it hidden inside the implementation of the DSL compiler?� Who is going to maintain the DSPs? Is the knowledge about the domainsu�ciently stable such that changes in the design of the DSL or the DSPare not to be expected?The actual trade-o� to be made for each of these issues clearly depends onthe domain and the application at hand, and on the prominence maintenanceconsiderations take during the DSL design.3.5 RisksThe maintenance risks involved in the use of DSLs can partly be related tomaking the wrong trade-o�s in the design questions listed above. Other issuesinclude:� The use of a DSL involves a shift from maintaining hand-built applicationstowards maintaining (a) DSDs (DSL programs de�ning each application);(b) DSPs (the DSL compiler); (c) a DSL library of prede�ned objects.Especially maintaining the DSL compiler requires skills not available inevery organization.� For existing, widely used, languages one can pro�t from readily availablemanuals, tutorials, courses, and experienced people. For a new DSL onehas to develop this all from scratch.� For related, but di�erent, application areas di�erent DSLs are needed.How can applications based on them cooperate?In the remaining sections, we will discuss two techniques to alleviate two ofthese risks.4 Designing and Implementing DSLsAs mentioned above, the use of a DSL has important bene�ts, but moves partof the maintenance problems to the DSP level. In this section, we discussthe Asf+Sdf Meta-Environment, and how it supports the development andmaintenance of application languages. It was in fact used during the design ofRisla and Risquest, the languages described in Section 2.It is the aim of Asf+Sdf to assist during the design and further develop-ment of (domain-speci�c) languages [BHK89, Kli93, DHK96]. It consists of aformalism to describe languages and of a Meta-Environment to derive tools from

such language descriptions. Ingredients often found in an Asf+Sdf languagede�nition include the description of the (1) context-free grammar, (2) context-sensitive requirements, (3) transformations or optimizations that are possible,(4) operational semantics expressing how to execute a program, and (5) trans-lation to the desired target language. The Meta-Environment turns these intoa parser, type checker, optimizer, interpreter, and compiler, respectively.4.1 The ASF+SDF FormalismThe language Asf+Sdf grew out of the integration of the Algebraic Speci�ca-tion Formalism ASF and the Syntax De�nition Formalism SDF [BHK89]. AnAsf+Sdf speci�cation consists of a declaration of the functions that can beused to build terms, and of a set of equations expressing equalities betweenterms.If we use Asf+Sdf to de�ne a language L, the grammar is described by aseries of functions for constructing abstract syntax trees. Transformations, typechecking, translations to a target language L0, etc., are all described as functionsmapping L to, respectively, L, Boolean values, and L0. These functions arespeci�ed using conditional equations, which may have negative premises. Inaddition to that, Asf+Sdf supports so-called default-equations, which can beused to \cover all remaining cases", a feature which can result in signi�cantlyshorter speci�cations for real-life situations [DHK96]. Speci�cation in the largeis supported by some basic modularization constructs.Terms can be written in arbitrary user-de�ned syntax. In fact, an Asf+Sdfsignature is at the same time a context-free grammar, and de�nes a �xed map-ping between sentences over the grammar and terms over the signature. Thus,an Asf+Sdf de�nition of a set of language constructors speci�es the concreteas well as the abstract syntax at the same time. Moreover, concrete syntaxcan be used in equations when specifying language properties. This smoothintegration of concrete syntax with equations is one of the factors that makesAsf+Sdf attractive for language de�nition.4.2 The ASF+SDF Meta-EnvironmentThe role of the Asf+Sdf Meta-Environment [Kli93] is to support the develop-ment of language de�nitions, and to produce prototype tools from these. It isbest explained using Figure 3. A modular de�nition of language L, generatesparsers, which can map L-programs to L-terms, rewriters, which compute func-tions over L-programs by reducing terms to their normal form, and pretty print-ers, which map the result to a textual representation. In the Meta-Environment,the generators are invisible, and run automatically when needed. The derivedpretty printer can be �ne-tuned, allowing one to specify compilers to languagesin which layout is semantically relevant (e.g., COBOL) [BV96].

text
target

text
source Printer

PrettyRewriterParser

toLaTex

 modules

term

Generator

Pretty Print

Generator

Rewrite

Rule Generator

Parser

document
of L

LaTeX
Definition of language L

term
result

L

in ASF+SDF

syn

eqs

syn

eqs

Figure 3: A language de�nition for L in the Asf+Sdf Meta-Environment.This pattern gives rise to a series of language processors, with a functionalityas speci�ed in the language de�nition. Basic user-interface primitives can beused to connect the processors to an integrated L-speci�c environment.The ToLaTeX facility of the Asf+Sdf Meta-Environment encourages thelanguage designer to write his or her de�nition as a literate speci�cation.4.3 Industrial ApplicationsThe typical industrial usage of Asf+Sdf is to build tools for the analysis andtransformation of programs in existing languages as well as for the design andprototyping of domain-speci�c languages. In this paper we will concentrateon the latter. The Asf+Sdf formalism is used to write a formal languagede�nition, and the Meta-Environment is used to obtain prototype tools. Oncethe language design is stable and completed successfully, the prototype toolscan | depending on the needs of the application | be re-implemented in ane�cient language like C, although there are also examples in which the generatedprototype is satisfactory, and re-implementation is not even considered.The underlying observation is that language design is both critical and di�-cult, and that it should not be disturbed by implementation e�orts in a languagelike C. At the same time, prototype tools are required during the design phaseto get feedback from language users. Asf+Sdf helps to obtain these tools withminimal e�ort, by executing the language de�nitions, and by o�ering a numberof generation facilities.This requires an extra investment during the design phase, since Asf+Sdfenforces users to write a thorough language de�nition. The assumption is thatthis investment will pay for itself during the implementation phase, an assump-tion con�rmed by the various projects carried out so far, such as the ones dis-cussed in [BDK+96].

P1 P2 P3 ::: Pnsnd sndToolBus: T1 T2 ::: Tmevaldoack-event valueeventTools:Adapters:Figure 4: Global organization of the ToolBus5 Coordinating di�erent DSLsSo far we have seen how language technology can be applied to design andprototype a speci�c DSL and how to build supporting tools for DSL programs.In general, however, one will need a whole range of DSLs to cover the applicationareas that occur in a large organization. How can applications that have beenbuilt by means of di�erent DSLs be coordinated? We answer this question intwo steps: �rst we introduce the ToolBus coordination architecture and thenwe show how it solves the coordination issue just raised.5.1 The ToolBus coordination architectureIn [BK96b, BK96a] the ToolBus coordination architecture has been proposedthat facilitates the interoperability of heterogeneous, distributed, software com-ponents. To get control over the possible interactions between components(\tools") direct inter-tool communication is forbidden. Instead, all interactionsare controlled by a \T script" that formalizes all the desired interactions amongtools. This leads to a communication architecture resembling a hardware com-munication bus.The global architecture of the ToolBus is shown in Figure 4. TheToolBusserves the purpose of de�ning the cooperation of a variable number of tools Ti(i = 1; :::;m) that are to be combined into a complete system. The internalbehavior or implementation of each tool is irrelevant: they may be implementedin di�erent programming languages, be generated from speci�cations, etc. Toolsmay, or may not, maintain their own internal state. Here we concentrate on theexternal behavior of each tool. In general an adapter will be needed for each toolto adapt it to the common data representation and message protocols imposedby the ToolBus.The ToolBus itself consists of a variable number of processes Pi (i =

1; :::; n). The parallel composition of the processes Pi represents the intendedbehavior of the whole system. Tools are external, computational activities,most likely corresponding with operating system level processes. They comeinto existence either by an execution command issued by the ToolBus or theirexecution is initiated externally, in which case an explicit connect commandhas to be performed by the ToolBus. Although a one-to-one correspondencebetween tools and processes seems simple and desirable, this is not enforced andtools are permitted that are being controlled by more than one process as wellas clusters of tools being controlled by a single process.At the implementation level, the T script is executed by an interpreter thatmakes connections with tools via TCP/IP. In various case studies tools for user-interfacing, data storage and retrieval, parsing, compiling, constraint solving,scheduling, simulation and game-playing have been successfully integrated invarious combinations yielding seamlessly integrated applications although thebuilding blocks used are heterogeneous and may even execute in a distributedfashion.5.2 Exchanging dataWhen coordinating distributed, heterogeneous, components, two key questionsshould be answered:� How do components exchange data?� How is the
ow of control between components organized?The former is discussed here, the latter is postponed to Section 5.3. Thereare two alternatives for exchanging data between components. One can eitherprovide a direct mapping between the machine/language-speci�c representationsof data in the various components or one can provide a common representationto which all machine/language-speci�c representations are converted.In the case of the ToolBus the latter approach has been chosen and simplepre�x terms are used as common data representation. Terms may consist ofintegers, strings, reals, function applications (e.g., f(1,2)) and lists (e.g., [1,"abc", 3]). For most applications this su�ces, but as a general escape mech-anism, terms may contain so-called binary strings that can represent arbitrarybinary data such as, for instance, object �les and bitmaps.At the implementation level, terms are compressed before they are shippedbetween components, thus enabling fast exchange of large amounts of data.5.3 T scriptsA T script describes the overall behavior of a system and consists of a numberof de�nitions for processes and tools and one ToolBus con�guration describ-ing the initial con�guration of the system. A process is de�ned by a process

::: P1 ::: P2 :::ToolBus: GUI DBMSMachine A Machine BFigure 5: A Typical distributed application.expression, and a tool by the name of its executable. Process behavior is basedon a variant of Discrete Time Process Algebra and provides primitives for� synchronous, binary, communication (\messages");� asynchronous, broadcasting communication (\notes");� tool-related actions such as creation/connection, communication, and ter-mination/disconnection;� process composition operators such as sequential composition, choice, it-eration, parallel composition, and conditional;� remote monitoring of processes and tools;� delay and timeout.5.4 ExamplesA typical application of the ToolBus approach is shown in Figure 5. Fromthe user's perspective, a database management system (DBMS) can be queriedthrough a graphical user-interface (GUI). From an architectural perspective,the GUI and the DBMS are completely decoupled and they are even runningon di�erent machines. The key issue here is that there is no �xed connectionbetween the components; both only communicate with the ToolBus and theprocesses running there (e.g., P1 and P2) determine the routing of GUI requeststo the DBMS. This is achieved using the various communication primitivesavailable in T scripts. The routing may even be changed dynamically, withoutdisturbing the overall operation of the application.Other examples are a distributed auction (where one auction master and avariable number of bidders cooperate in an auction, each working via his/her

DSL1 CompilerProductDe�nition(DSL1) DSL2 CompilerProductDe�nition(DSL2)
Figure 6: Coordination of DSLs using the ToolBus.own workstation), distributed multi-user games, multi-user distributed pro-gramming environments and the like.In all these examples, the T script de�nes the global architecture of eachapplication and a wide variety of components based on a range of implemen-tation technologies can be �tted into this architecture provided that they obeythe protocol imposed by the T script.5.5 Coordinating DSLs with the ToolBusApplications that have been constructed by means of di�erent DSLs can becoordinated using the ToolBus technology as well. Recall from Figure 1 thecase of a product de�nition in some DSL and its compilation to the desiredIT support for that product. Next, we sketch in Figure 6 the case where twodi�erent products are being de�ned using two di�erent DSLs and how they canbe coordinated. Typically, all DSL compilers will generate ToolBus compatiblecomponents and an overall script will describe the cooperation of all (generated)components.There are several issues involved here related to maintenance, renovation,and gradual evolution:

� The ToolBus acts as a form of \middleware" that can connect new andold software components. It enables the gradual transition from a sys-tem based on traditional, hand-crafted, components to a system based ongenerated components using DSLs.� Maintenance of a speci�c DSL or its compiler does not a�ect the wholesystem.� Di�erent DSLs can use di�erent technology (when relevant). This enablestransitions to new technology during the evolution of a system.� For
exibility and ease of maintenance, each DSL compiler can also bebased on a private ToolBus (not shown in Figure 6).6 Concluding remarks6.1 DSL is not a panaceaDSLs are no panacea for solving all software engineering problems, but a DSLdesigned for a well-chosen domain and implemented with adequate tools maydrastically reduce the costs for building new applications as well as for main-taining existing ones.On the positive side, in a DSL-based approach one concentrates all knowl-edge about an application in the DSL and its supporting component libraries,while all implementation knowledge is concentrated in the DSP (DSL compiler).From the perspectives of
exibility, quality assurance, maintenance, and knowl-edge management this is a highly desirable situation.On the negative side, an application domain may not yet be su�cientlyunderstood to warrant the design of a DSL for it or adequate technology may notbe available to support the design and implementation of the DSL. Under suchcircumstances a more traditional approach to system design and maintenanceshould be preferred.6.2 Future directionsWe have already mentioned that the usability of DSLs by application domainexperts (as opposed to programmers) is a decisive factor for their acceptanceand success. There are several directions for increasing the ease of use of DSLs:� Visual DSLs in which visual/iconic user-interfaces are used to composelibrary components.� Natural language DSLs in which stylized natural language sentences areused to compose applications.

� Interactive DSLs in which domain experts are guided through a list ofqueries in order to select and assemble an application from library com-ponents.� Prototyping environments for DSLs that support the realistic simulationof applications.Regarding the design and implementation of DSLs we see the following needs:� Further development of tools for designing and implementing DSLs. Typ-ical issues: (a) modular structure of the DSL; (b) static checking of DSDs(DSL programs); (c) correctness of the translation rules used by the DSP.� Tools for designing and implementing supporting component libraries.Typical issues: (a) modular structure and design of the component library;(b) implementation of the modular structure in given implementation lan-guages, e.g., how to implement parameterized modules in COBOL? Thereis a relation here with current work on designing so-called business objects.� Tools for connecting di�erent DSLs. Typical issue: while coordinationarchitectures as described in Section 5 provide basic connectivity and in-teroperability, a more abstract, application level, model of coordination isneeded.� Collection of empirical data concerning maintenance costs (ACT, cost ofmaintenance per line of code, cost per enhancement request, ...) in systemsbuilt using domain-speci�c languages.Domain speci�c languages (\little languages") introduce an appropriate ab-straction level for packaging domain-speci�c knowledge and technology. \Littlemaintenance" is becoming feasible for applications using them, provided thatstate-of-the-art techniques are used like the ones discussed in this paper.References[ADR95] B. R. T. Arnold, A. van Deursen, and M. Res. An algebraic speci�-cation of a language for describing �nancial products. In M. Wirsing,editor, ICSE-17 Workshop on Formal Methods Application in Soft-ware Engineering, pages 6{13. IEEE, April 1995.[Ben86] J. L. Bentley. Programming pearls: Little languages. Communica-tions of the ACM, 29(8):711{721, August 1986.[BHK89] J. A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Speci�-cation. ACM Press/Addison-Wesley, 1989.

[BK96a] J. A. Bergstra and P. Klint. The Discrete Time ToolBus. In M. Wirs-ing and M. Nivat, editors, Algebraic Methodology and Software Tech-nology (AMAST '96), volume 1101 of Lecture Notes in ComputerScience, pages 288{305. Springer-Verlag, 1996.[BK96b] J. A. Bergstra and P. Klint. The ToolBus coordination architecture.In P. Ciancarini and C. Hankin, editors, Coordination Languagesand Models (COORDINATION '96), volume 1061 of Lecture Notesin Computer Science, pages 75{88. Springer-Verlag, 1996.[Boe81] B.W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.[BDK+96] M. G. J. van den Brand, A. van Deursen, P. Klint, S. Klusener,and E. A. van der Meulen. Industrial applications of ASF+SDF.In M. Wirsing and M. Nivat, editors, Algebraic Methodology andSoftware Technology (AMAST '96), volume 1101 of Lecture Notesin Computer Science, pages 9{18. Springer-Verlag, 1996.[BV96] M. G. J. van den Brand and E. Visser. Generation of formatters forcontext-free languages. ACM Transactions on Software Engineeringand Methodology, 5:1{41, 1996.[Cog95] Ph. Coggan. The Money Machine: How the City Works. Pinguin,1995. Third edition.[Deu94] A. van Deursen. Executable Language De�nitions: Case Studies andOrigin Tracking Techniques. PhD thesis, University of Amsterdam,1994.[DHK96] A. van Deursen, J. Heering, and P. Klint, editors. Language Proto-typing: An Algebraic Speci�cation Approach, volume 5 of AMASTSeries in Computing. World Scienti�c Publishing Co., 1996.[EG92] Th. Eggenschwiler and E. Gamma. ET++ SwapsManager: Usingobject technology in the �nancial engineering domain. In OOP-SLA'92 Seventh Conference on Object-Oriented Programming Sys-tems, Languages, and Applications, pages 166{177. ACM, 1992. SIG-PLAN Notices 27(10).[GB96] S. J. Glover and K. H. Bennet. An agent-based approach to rapidsoftware evolution based on a domain model. In Proceedings In-ternational Conference on Software Maintenance ICSM'96, pages228{237. IEEE Computer Society Press, 1996. Monterey, CA.[HB88] R. M. Herndon and V. A. Berzins. The realizable bene�ts of a lan-guage prototyping language. IEEE Transactions on Software Engi-neering, SE-14:803{809, 1988.

[Kli93] P. Klint. A meta-environment for generating programming environ-ments. ACM Transactions on Software Engineering and Methodol-ogy, 2:176{201, 1993.[KMB+96] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov,J. Lewis, D. P. Oliva, T. Sheard, I. Smith, and L. Walton. A soft-ware engineering experiment in software component generation. InProceedings of the 18th International Conference on Software Engi-neering ICSE-18, pages 542{553. IEEE, 1996.[OH94] P. Oman and J. Hagemeister. Constructing and testing of polyno-mials predicting software maintainability. Journal of Systems andSoftware, 24(3):251{266, 1994.[Pig97] T. M. Pigoski. Practical Software Maintenance { Best Practices forManaging Your Software Investment. John Wiley and Sons, 1997.[Wal96] L. Walton. Domain-speci�c design languages, 1996. URL http://-www.cse.ogi.edu/�walton/dsdls.html.

