Little Languages: Little Maintenance?
Arie van Deursen and Paul Klint

CWI, P.O. Box 94079, 1090 GB Amsterdam
http://www.cwi.nl/~{arie,paulk}/, {arie,paulk}@cwi.nl

December 16, 1996

Abstract

So-called little, or domain-specificlanguages (DSLs), have the potential to
make software maintenance simpler: domain-experts can directly use the
DSL to make required routine modifications. At the negative side, how-
ever, more substantial changes may become more difficult: such changes
may involve altering the domain-specific language. This will require com-
piler technology knowledge, which not every commercial enterprise has
easily available. Based on experience taken from industrial practice, we
discuss the role of DSLs in software maintenance, the dangers introduced
by using them, and techniques for controlling the risks involved.

1 Introduction

Little languages, tailored towards the specific needs of a particular domain, can
significantly ease building software systems for that domain [Ben86]. To cite
Hendon and Berzins [HB88],

If a conceptual framework is rich enough and program tasks within
the framework are common enough, a language supporting the prim-
itive concepts of the framework is called for. (...) Many tasks can
be easily described by agreeing upon an appropriate vocabulary and
conceptual framework. These frameworks may allow a description
of a few lines long to replace many thousand lines of code in other
languages.

We will use the following terminology (see also Figure 1):

Domain-Specific Language (DSL) A small, usually declarative, language
expressive over the distinguishing characteristics of a set of programs in a
particular problem domain [Wal96].

Product Definition (DSD)

Y
DSL Compiler
(DSP)

A J

IT Support for Product

Figure 1: A DSL compiler.

Domain-Specific Description (DSD) A “program” (specification, descrip-
tion, query, process, task, ...) written in a DSL.

Domain-Specific Processor (DSP) A software tool for compiling, interpret-
ing, or analyzing domain-specific descriptions.

A well-designed DSL will help the application builder to write short, de-
scriptive, and platform-independent DSDs. Moreover, the good DSL will be
effectively implementable, where the DSPs capture the stable concepts and al-
gorithmic ingredients of the particular domain. Using such a DSL for construct-
ing domain-specific applications, increases reliability and repairability, provides
self-documenting and portable descriptions, and reduces forward (and back-
ward) engineering costs [HB88].

In this paper, we elaborate on the advantages and problems of the use of
domain-specific languages, emphasizing their role in software maintenance. Ev-
idently, the attributes listed above will help reduce maintenance costs, and for
that reason domain-specific approaches are investigated in order to arrive at
“inherently maintainable software” [GB96]. However, using a domain-specific
language can also make a system more difficult to maintain, for example if
changes to the underlying domain model become necessary.

To discuss these issues, we first give an example of the commercial use of a
DSL taken from the area of financial engineering (Section 2). We then cover the
implications for software maintenance, and identify the risks and opportunities
involved in the use of a DSL (Section 3). We conclude by describing two tech-
niques (Sections 4 and 5) that will help to address two of the potential problems
in the use of DSLs.

2 The Financial Engineering Domain

2.1 Interest Rate Products

Financial engineering deals, amongst others, with interest rate products. Such
products are typically used for inter-bank trade, or to finance company take-
overs involving triple comma figures in multiple currencies.! Crucial for such
transactions are the protection against and the well-timed exploitation of risks
coming with interest rate or currency exchange rate fluctuations.

The simplest interest rate product is the loan: a fixed amount in a certain
currency is borrowed for a fixed period at a given interest rate. More com-
plicated products, such as the financial future, the forward rate agreement, or
the capped floater [Cog95, Chapter 12], all aim at risk reallocation. Banks can
invent new ways to do this, giving rise to more and more interest rate prod-
ucts. Not surprisingly, different interest rate products have much in common,
making financial engineering an area suitable for incorporating domain-specific
knowledge in tools, languages, or libraries.?

2.2 Challenges

A software system supporting the use of interest rate products typically deals
with the bank’s financial administration (who is buying what), and — more
importantly — provides management information allowing decision makers to
assess risks involved in the products currently processed. Typical problems
found in such systems are that it is:

e too difficult to introduce a new type of product, even if it is very similar
to existing ones;

e impossible to ensure that the instructions given by the financial engineer
are correctly implemented by the software engineer.

The first problem leads to a long time-to-market for new products;® the second
leads to potentially incorrect behavior.

1As an example, Dutch PTT (KPN) recently bought the Australian company TNT for 2
billion Australian dollars. A clever cocktail of multi-currency loans, options, and swaps was
used to finance this transaction, protecting KPN against interest rate differences and exchange
rate fluctuations between the Australian and the Dutch financial markets.

2As an example, [EG92] describe the ET++ Swaps Manager, an object-oriented library
for manipulating interest rate products.

3This can be very important: as an example, one Dutch bank decided mid-February 1996
to introduce a special one-day “leap year deposit” — a big success, but relying heavily on the
flexibility of the bank’s automated systems.

2.3 The Risla Language

Dutch bank MeesPierson, together with software house CAP Volmac saw the use
of a specific language for describing interest rate products as the solution to the
problems of long time-to-market and potentially inaccurate implementations.
The language was to be readable for financial engineers, and descriptions in
this language were to be compiled into COBOL. In this section we summarize
earlier (and more detailed) accounts given in [Deu94, ADR95, BDK*96] of the
development and use of this language.

The development of this language, called RisLA (for Rente Informatie Sys-
teem Language — Interest rate information system language), started in 1992,
and can be summarized as follows:

e MeesPierson had a very good library of COBOL routines for operating on
cash flows, intervals, interest payment schemes, date manipulations, etc.;

e Using this library directly in COBOL did not provide the right level of
abstraction, and cumbersome encoding tricks were needed to use, e.g., lists
without a fixed length;

e An interest rate product can be considered as a “class”: it contains in-
stance variables to be assigned at creation time (the principal amount,
the interest rate, the currency, etc.), information methods for inspecting
actual products (when is interest to be paid), and registration methods
for recording state changes (pay one redemption).

The language RISLA was designed to describe interest rate products along
these lines. An instantiated product is called a contract, fixing the actual
amount, rate, etc. of a particular product sold. The language is based on a
number of built-in data types for representing cash flows, intervals, etc., and
has a large number of built-in operations manipulating these data types (the
operations correspond to the subroutines in the COBOL library). A product
definition specifies the contract parameters, information methods, and registra-
tion methods.

RisLa is translated into COBOL. Other systems in the bank can invoke the
generated COBOL to create new contracts, to ask information about existing
contracts, or to update contract information. The initial version of RISLA was
used to define about 30 interest rate products.

After a few years of working with RISLA, the users experienced the modular-
1zation features of RISLA as inadequate. A RISLA description defines a complete
product; but different products are constructed from similar components. To
remedy this situation, a project Modular RISLA was started. RISLA was ex-
tended with a small modular layer, featuring parameterization and renaming.
Moreover, a component library was developed, and the most important products
were described using this library.

Interactive Modular Flat

Questionnaire Select RISLA Expand RISLA Compile COBOL
Some editing

Figure 2: From questionnaire, via Modular and flat Risla, to COBOL

In addition to that, the RiSLA development team made an effort to make the
language more accessible to the financial experts. To that end, an inter-active
questionnaire interface to the component library was developed. End-users can
combine existing components into a new product by filling in the answers of a
questionnaire.

This use of questionnaires and modular RIiSLA gives rise to the financial
product life cycle as shown in Figure 2. An interactive questionnaire is filled
in, and the answers are used to select the relevant RISLA components. This
definition may contain some holes that are specific to this product, which can
be filled by writing the appropriate RISLA code. The modular definition is then
expanded to a flat (non-modular) definition, which in turn is compiled into
COBOL.

As a last point of interest, the actual questionnaire used is defined using
a second domain-specific language: RISQUEST. This is a language for defining
questions together with permitted answers (choice from a fixed set, free text).
Moreover, RISQUEST has constructs for indicating in which order questions are
to be asked, and how this sequencing may depend on the actual answers given.
Last but not least, RISQUEST can be used to associate library components with
the possible answers. A RISQUEST definition is entered in textual form, and it is
generated into a Tel/Tk program. This program can be invoked by a financial
engineer to fill in the questionnaire and to generate the corresponding modular
RisLA.

2.4 Evaluation

At the positive side, the RISLA project has met its targets: the time it costs
to introduce a new product is down from an estimated three months to two or
three weeks. Moreover, financial engineers themselves can use the questionnaire
to compose new products. Last but not least, it has become much easier to
validate the correctness of the software realization of the interest rate products.

At the negative side, it is not so easy to extend the language. When a
new data type or a new built-in function is required, the compiler, as well
as the COBOL library, needs to be adapted. This requires skills in compiler
construction technology, which is not the typical background of people working

mainly in a COBOL environment. Finally, the RiSLA product definitions have
become longer and longer. Whenever there was a new software system requiring
information about products that was not provided in the existing methods, new
methods had to be provided, sometimes requiring new data types or extensions
to the RisLA language.

3 The Maintenance Perspective

3.1 Maintainability Factors

The literature on software maintenance (see, e.g., [Pigd7] and the references
cited there in) deals, among others, extensively with maintainability, defined as
the ease with which a system can be kept in operation when modifications to the
code become necessary [Pig97, p.274]. The factors affecting maintenance can
be divided into three categories: the state the system is in (how reliable, under-
standable, testable, modular, and extensible is it?), the nature of the changes
required (is the design prepared for the anticipated changes), and the skills of
and process used by the maintenance team (procedures for recording modifica-
tion and enhancement requests, use of steps that have future maintainability as
an objective, etc).

Some of these maintainability factors (e.g., quality of the configuration man-
agement) are not affected by the use of a domain-specific language. Others are
negatively influenced: The number of different languages used in the system
[Pig97, p.283] increases, which in itself makes maintenance more difficult. Also,
it may be difficult to find personnel fluent in this particular DSL (proper doc-
umentation of the use, design, and implementation of the DSL, will reduce this
risk by making the DSL easy to learn).

The use of an explicit software maintenance model (who is performing which
steps in what order) by the maintainers is considered an important factor for
improving maintainability [Pig97, p.40]. Adopting a DSL affects only the ac-
tual steps taken: domain experts without much programming or maintenance
experience now can inspect the consequences and quality of the modifications
made by the maintainers (for the RISLA case this is particularly important: the
interest rate product implementations should correspond to reality).

Positively impacted by the use of a DSL are the source code maintainability
attributes (modularity, encapsulation, cohesion, portability, understandability,
etc), which many regard as the predominant maintainability factors [Pig97,
OH94, p.289]. The most important properties are that the DSDs are much
smaller than their general purpose language counterparts, and that the DSDs
are more descriptive, avoiding the need for many comment lines in the DSDs,
and thus reducing the chance of obsolete comment lines.

Finally, increased maintainability will affect the principal maintenance cost
indicator, the annual change traffic (ACT) — the fraction of code changed due

to maintenance each year. The maintenance effort ME is related to ACT and
the initial development cost in man months DM as follows [Boe81]:

where F is a multiplication factor representing the system maintainability.
When using a DSL, one should split this into the development costs and ACT
of both the DSL compiler (the DSPs) and the actual set of DSL programs used
(the DSDs):

ME = Fpsp * DM psp * ACTpsp + Fpsp * DM psp x ACT psp

Typically, ACT psp should be close to zero (the compiler should be stable). The
costs of a high change rate for the DSL programs (ACT pgp) is only related to
the development costs of the DSDs, not to the development costs of the compiler.

When deciding whether to use a DSL, estimates of the costs related to ACT
in a traditional language and in a DSL setting will play an important role.

3.2 Benefits of DSLs

The single most important benefit of using domain-specific languages is that the
domain-specific knowledge is formalized at the right level of abstraction. This,
in turn, has the advantages that:

e Domain experts themselves can understand, validate, and modify the soft-
ware by adapting the domain-specific descriptions (DSDs).

e Modifications are easier to make and their impact is easier to understand.

e Domain-specific knowledge is explicitly available, and not hidden into,
e.g., COBOL code (the use of a DSL avoids the need for business rule
extraction).

e The explicitly available knowledge can be re-used across different applica-
tions.

e The way the knowledge is represented is independent of the implemen-
tation platform; the DSPs hide whether the DSDs are translated into C,
Fortran, COBOL,

Concerning the costs of using DSLs, there is empirical evidence suggesting
that the use of DSLs increases flexibility, productivity, reliability, and usability
[KMBT96]. As a way of reducing the costs of the initial development of the DSL
and DSPs, the language and its tools can be sold as a product to competitors
in the same field. In this way, it is possible to earn back initial development
costs but at the same time keeping secret the suite of DSDs (DSL programs)
that describe the company’s proprietary products.

3.3

DSL Development

The development of a DSL requires a thorough understanding of the underlying
domain. The steps to be taken include:

3.4

Identify problem domain of interest.
Gather all relevant knowledge in this domain.

Cluster this knowledge in a handful of semantic notions and operations on
them.

Construct a library that implements the semantic notions.
Design a DSL that concisely describes applications in the domain.

Design and implement a compiler that translates DSL programs to a se-
quence of library calls.

Write DSL programs for all desired applications and compile them.

DSL Design Questions

With respect to software maintenance, there are a number of considerations to
be taken into account during the design of a DSL:

Who is going to write the DSDs? What is the expected domain-specific
background, and how much programming knowledge is required?

How many DSDs will there be needed, and how long are they going to
be? It may be possible to validate the correctness of three pages of DSL
code, but who is going to predict the impact of a change in one out of 100
DSDs, each 25 pages long?

Which (decidable) forms of static analysis and which integrity checks on
DSDs are anticipated?

What should happen if it turns out that the language requires new data
types or new functionality?

One approach could be to give the DSL sufficient expressive power to define
new data types or data operations, but this complicates the construction
of the DSPs. For example, some form of iteration or recursion increases
expressive power, but making the language Turing complete will make the
verification of important properties (termination) undecidable.

Does the DSL support user-definable syntax for, e.g., naming procedures?
This may increase the readability, an important issue in DSLs, but it
seriously complicates the construction of DSPs, including analysis tools
that are needed during later maintenance phases.

e Is the main library written in the DSL or written in the target language?
Who will be responsible for maintaining the library?

e Is the interface (data representation) to other systems easily adaptable or
is it hidden inside the implementation of the DSL compiler?

e Who is going to maintain the DSPs? Is the knowledge about the domain
sufficiently stable such that changes in the design of the DSL or the DSP
are not to be expected?

The actual trade-off to be made for each of these issues clearly depends on
the domain and the application at hand, and on the prominence maintenance
considerations take during the DSL design.

3.5 Risks

The maintenance risks involved in the use of DSLs can partly be related to
making the wrong trade-offs in the design questions listed above. Other issues
include:

e The use of a DSL involves a shift from maintaining hand-built applications
towards maintaining (a) DSDs (DSL programs defining each application);
(b) DSPs (the DSL compiler); (c¢) a DSL library of predefined objects.
Especially maintaining the DSL compiler requires skills not available in
every organization.

e For existing, widely used, languages one can profit from readily available
manuals, tutorials, courses, and experienced people. For a new DSL one
has to develop this all from scratch.

e For related, but different, application areas different DSLs are needed.
How can applications based on them cooperate?

In the remaining sections, we will discuss two techniques to alleviate two of
these risks.

4 Designing and Implementing DSLs

As mentioned above, the use of a DSL has important benefits, but moves part
of the maintenance problems to the DSP level. In this section, we discuss
the AsF+SDF Meta-Environment, and how it supports the development and
maintenance of application languages. It was in fact used during the design of
RisLA and RISQUEST, the languages described in Section 2.

It is the aim of ASF4SDF to assist during the design and further develop-
ment of (domain-specific) languages [BHK89, K1i93, DHK96]. It consists of a
formalism to describe languages and of a Meta-Environment to derive tools from

such language descriptions. Ingredients often found in an ASF+4SDF language
definition include the description of the (1) context-free grammar, (2) context-
sensitive requirements, (3) transformations or optimizations that are possible,
(4) operational semantics expressing how to execute a program, and (5) trans-
lation to the desired target language. The Meta-Environment turns these into
a parser, type checker, optimizer, interpreter, and compiler, respectively.

4.1 The ASF+SDF Formalism

The language ASF+SDF grew out of the integration of the Algebraic Specifica-
tion Formalism ASF and the Syntax Definition Formalism SDF [BHKS89]. An
AsF-+SDF specification consists of a declaration of the functions that can be
used to build terms, and of a set of equations expressing equalities between
terms.

If we use ASF4-SDF to define a language L, the grammar is described by a
series of functions for constructing abstract syntax trees. Transformations, type
checking, translations to a target language L', etc., are all described as functions
mapping L to, respectively, L, Boolean values, and L’. These functions are
specified using conditional equations, which may have negative premises. In
addition to that, ASF4+SDF supports so-called default-equations, which can be
used to “cover all remaining cases”, a feature which can result in significantly
shorter specifications for real-life situations [DHK96]. Specification in the large
is supported by some basic modularization constructs.

Terms can be written in arbitrary user-defined syntax. In fact, an ASF+4SDF
signature is at the same time a context-free grammar, and defines a fixed map-
ping between sentences over the grammar and terms over the signature. Thus,
an ASF+SDF definition of a set of language constructors specifies the concrete
as well as the abstract syntax at the same time. Moreover, concrete syntax
can be used in equations when specifying language properties. This smooth
integration of concrete syntax with equations is one of the factors that makes
AsSF+SDF attractive for language definition.

4.2 The ASF+SDF Meta-Environment

The role of the AsF+SDF Meta-Environment [K1i93] is to support the develop-
ment of language definitions, and to produce prototype tools from these. It is
best explained using Figure 3. A modular definition of language L, generates
parsers, which can map L-programs to L-terms, rewriters, which compute func-
tions over L-programs by reducing terms to their normal form, and pretty print-
ers, which map the result to a textual representation. In the Meta-Environment,
the generators are invisible, and run automatically when needed. The derived
pretty printer can be fine-tuned, allowing one to specify compilers to languages
in which layout is semantically relevant (e.g., COBOL) [BV96].

@a\\ LaTeX
Definition of language L aul document
in ASF+SDF modu "" of L

Rewrite Pretty Print
Generator Rule Generator Generator

— Rewriter Pretty —
source |/ -\ result\ Printer target
text term text

Figure 3: A language definition for L in the ASF4SDF Meta-Environment.

This pattern gives rise to a series of language processors, with a functionality
as specified in the language definition. Basic user-interface primitives can be
used to connect the processors to an integrated L-specific environment.

The ToLaTeX facility of the AsF+SDF Meta-Environment encourages the
language designer to write his or her definition as a literate specification.

4.3 Industrial Applications

The typical industrial usage of ASF+SDF is to build tools for the analysis and
transformation of programs in existing languages as well as for the design and
prototyping of domain-specific languages. In this paper we will concentrate
on the latter. The ASF4SDF formalism is used to write a formal language
definition, and the Meta-Environment is used to obtain prototype tools. Once
the language design is stable and completed successfully, the prototype tools
can — depending on the needs of the application — be re-implemented in an
efficient language like C, although there are also examples in which the generated
prototype is satisfactory, and re-implementation is not even considered.

The underlying observation is that language design is both critical and diffi-
cult, and that it should not be disturbed by implementation efforts in a language
like C. At the same time, prototype tools are required during the design phase
to get feedback from language users. ASF+4SDF helps to obtain these tools with
minimal effort, by executing the language definitions, and by offering a number
of generation facilities.

This requires an extra investment during the design phase, since ASF+4SDF
enforces users to write a thorough language definition. The assumption is that
this investment will pay for itself during the implementation phase, an assump-
tion confirmed by the various projects carried out so far, such as the ones dis-
cussed in [BDK*96].

paLe nd
N CENORICIEIRG

eval value
do
ack-event event
Adapters:

Tools: T T .

Figure 4: Global organization of the TooLBUS

5 Coordinating different DSLs

So far we have seen how language technology can be applied to design and
prototype a specific DSL and how to build supporting tools for DSL programs.
In general, however, one will need a whole range of DSLs to cover the application
areas that occur in a large organization. How can applications that have been
built by means of different DSLs be coordinated? We answer this question in
two steps: first we introduce the ToOLBUS coordination architecture and then
we show how it solves the coordination issue just raised.

5.1 The TooLBUS coordination architecture

In [BK96b, BK96a] the TooLBUS coordination architecture has been proposed
that facilitates the interoperability of heterogeneous, distributed, software com-
ponents. To get control over the possible interactions between components
(“tools”) direct inter-tool communication is forbidden. Instead, all interactions
are controlled by a “T script” that formalizes all the desired interactions among
tools. This leads to a communication architecture resembling a hardware com-
munication bus.

The global architecture of the TooLBUS is shown in Figure 4. The TooLBUS
serves the purpose of defining the cooperation of a variable number of tools T;
(¢ = 1,...,m) that are to be combined into a complete system. The internal
behavior or implementation of each tool is irrelevant: they may be implemented
in different programming languages, be generated from specifications, etc. Tools
may, or may not, maintain their own internal state. Here we concentrate on the
external behavior of each tool. In general an adapier will be needed for each tool
to adapt it to the common data representation and message protocols imposed
by the TooLBus.

The TooLBUs itself consists of a variable number of processes P; (i =

1,...,n). The parallel composition of the processes P; represents the intended
behavior of the whole system. Tools are external, computational activities,
most likely corresponding with operating system level processes. They come
into existence either by an execution command issued by the TooLBUS or their
execution is initiated externally, in which case an explicit connect command
has to be performed by the TooLBuUs. Although a one-to-one correspondence
between tools and processes seems simple and desirable, this is not enforced and
tools are permitted that are being controlled by more than one process as well
as clusters of tools being controlled by a single process.

At the implementation level, the T script is executed by an interpreter that
makes connections with tools via TCP/IP. In various case studies tools for user-
interfacing, data storage and retrieval, parsing, compiling, constraint solving,
scheduling, simulation and game-playing have been successfully integrated in
various combinations yielding seamlessly integrated applications although the
building blocks used are heterogeneous and may even execute in a distributed
fashion.

5.2 Exchanging data

When coordinating distributed, heterogeneous, components, two key questions
should be answered:

e How do components exchange data?
e How is the flow of control between components organized?

The former is discussed here, the latter is postponed to Section 5.3. There
are two alternatives for exchanging data between components. One can either
provide a direct mapping between the machine/language-specific representations
of data in the various components or one can provide a common representation
to which all machine/language-specific representations are converted.

In the case of the TooLBUS the latter approach has been chosen and simple
prefix terms are used as common data representation. Terms may consist of
integers, strings, reals, function applications (e.g., £(1,2)) and lists (e.g., [1,
"abc", 31). For most applications this suffices, but as a general escape mech-
anism, terms may contain so-called binary strings that can represent arbitrary
binary data such as, for instance, object files and bitmaps.

At the implementation level, terms are compressed before they are shipped
between components, thus enabling fast exchange of large amounts of data.

5.3 T scripts

A T script describes the overall behavior of a system and consists of a number
of definitions for processes and tools and one TooLBUS configuration describ-
ing the initial configuration of the system. A process is defined by a process

TooLBuUs: Py P,

Machine A Machine B

Figure 5: A Typical distributed application.

expression, and a tool by the name of its executable. Process behavior is based
on a variant of Discrete Time Process Algebra and provides primitives for

e synchronous, binary, communication (“messages”);
e asynchronous, broadcasting communication (“notes”);

e tool-related actions such as creation/connection, communication, and ter-
mination/disconnection;

e process composition operators such as sequential composition, choice, it-
eration, parallel composition, and conditional;

e remote monitoring of processes and tools;

e delay and timeout.

5.4 Examples

A typical application of the TooLBUS approach is shown in Figure 5. From
the user’s perspective, a database management system (DBMS) can be queried
through a graphical user-interface (GUI). From an architectural perspective,
the GUI and the DBMS are completely decoupled and they are even running
on different machines. The key issue here is that there is no fixed connection
between the components; both only communicate with the TooLBUS and the
processes running there (e.g., P; and P;) determine the routing of GUI requests
to the DBMS. This is achieved using the various communication primitives
available in T scripts. The routing may even be changed dynamically, without
disturbing the overall operation of the application.

Other examples are a distributed auction (where one auction master and a
variable number of bidders cooperate in an auction, each working via his/her

Product Product
Definition Definition

(DSL;) (DSLy)

Figure 6: Coordination of DSLs using the TooLBuUs.

own workstation), distributed multi-user games, multi-user distributed pro-
gramming environments and the like.

In all these examples, the T script defines the global architecture of each
application and a wide variety of components based on a range of implemen-
tation technologies can be fitted into this architecture provided that they obey
the protocol imposed by the T script.

5.5 Coordinating DSLs with the TooLBUs

Applications that have been constructed by means of different DSLs can be
coordinated using the TooLBUS technology as well. Recall from Figure 1 the
case of a product definition in some DSL and its compilation to the desired
IT support for that product. Next, we sketch in Figure 6 the case where two
different products are being defined using two different DSLs and how they can
be coordinated. Typically, all DSL compilers will generate TooLBUS compatible
components and an overall script will describe the cooperation of all (generated)
components.

There are several issues involved here related to maintenance, renovation,
and gradual evolution:

e The TooLBUS acts as a form of “middleware” that can connect new and
old software components. It enables the gradual transition from a sys-
tem based on traditional, hand-crafted, components to a system based on
generated components using DSLs.

e Maintenance of a specific DSL or its compiler does not affect the whole
system.

e Different DSLs can use different technology (when relevant). This enables
transitions to new technology during the evolution of a system.

e For flexibility and ease of maintenance, each DSL compiler can also be
based on a private TooLBUs (not shown in Figure 6).

6 Concluding remarks

6.1 DSL is not a panacea

DSLs are no panacea for solving all software engineering problems, but a DSL
designed for a well-chosen domain and implemented with adequate tools may
drastically reduce the costs for building new applications as well as for main-
taining existing ones.

On the positive side, in a DSL-based approach one concentrates all knowl-
edge about an application in the DSL and its supporting component libraries,
while all implementation knowledge is concentrated in the DSP (DSL compiler).
From the perspectives of flexibility, quality assurance, maintenance, and knowl-
edge management this is a highly desirable situation.

On the negative side, an application domain may not yet be sufficiently
understood to warrant the design of a DSL for it or adequate technology may not
be available to support the design and implementation of the DSL. Under such
circumstances a more traditional approach to system design and maintenance
should be preferred.

6.2 Future directions

We have already mentioned that the usability of DSLs by application domain
experts (as opposed to programmers) is a decisive factor for their acceptance
and success. There are several directions for increasing the ease of use of DSLs:

e Visual DSLs in which visual/iconic user-interfaces are used to compose
library components.

e Natural language DSLs in which stylized natural language sentences are
used to compose applications.

e Interactive DSLs in which domain experts are guided through a list of
queries in order to select and assemble an application from library com-
ponents.

e Prototyping environments for DSLs that support the realistic simulation
of applications.

Regarding the design and implementation of DSLs we see the following needs:

e Further development of tools for designing and implementing DSLs. Typ-
ical issues: (a) modular structure of the DSL; (b) static checking of DSDs
(DSL programs); (c) correctness of the translation rules used by the DSP.

e Tools for designing and implementing supporting component libraries.
Typical issues: (a) modular structure and design of the component library;
(b) implementation of the modular structure in given implementation lan-
guages, e.g., how to implement parameterized modules in COBOL? There
is a relation here with current work on designing so-called business objects.

e Tools for connecting different DSLs. Typical issue: while coordination
architectures as described in Section 5 provide basic connectivity and in-
teroperability, a more abstract, application level, model of coordination is
needed.

e Collection of empirical data concerning maintenance costs (ACT, cost of
maintenance per line of code, cost per enhancement request, ...) in systems
built using domain-specific languages.

Domain specific languages (“little languages”) introduce an appropriate ab-
straction level for packaging domain-specific knowledge and technology. “Little
maintenance” is becoming feasible for applications using them, provided that
state-of-the-art techniques are used like the ones discussed in this paper.

References

[ADR95] B. R.T. Arnold, A. van Deursen, and M. Res. An algebraic specifi-
cation of a language for describing financial products. In M. Wirsing,
editor, ICSE-17 Workshop on Formal Methods Application in Soft-
ware Engineering, pages 6—13. IEEE, April 1995.

[Ben86] J. L. Bentley. Programming pearls: Little languages. Communica-
tions of the ACM, 29(8):711-721, August 1986.

[BHK89] J. A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specifi-
cation. ACM Press/Addison-Wesley, 1989.

[BK96a]

[BK96b]

[Boe81]

[BDK+96]

[BV96]

[Cog95]

[Deud4]

[DHK96]

[EG92]

[GBY6]

[HB8S]

J. A. Bergstra and P. Klint. The Discrete Time ToolBus. In M. Wirs-
ing and M. Nivat, editors, Algebraic Methodology and Software Tech-
nology (AMAST ’96), volume 1101 of Lecture Notes in Computer
Science, pages 288-305. Springer-Verlag, 1996.

J. A. Bergstra and P. Klint. The ToolBus coordination architecture.
In P. Ciancarini and C. Hankin, editors, Coordination Languages
and Models (COORDINATION ’96), volume 1061 of Lecture Notes
in Computer Science, pages 75—88. Springer-Verlag, 1996.

B. W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

M. G. J. van den Brand, A. van Deursen, P. Klint, S. Klusener,
and E. A. van der Meulen. Industrial applications of ASF4+SDF.
In M. Wirsing and M. Nivat, editors, Algebraic Methodology and
Software Technology (AMAST ’96), volume 1101 of Lecture Notes
in Computer Science, pages 9-18. Springer-Verlag, 1996.

M. G. J. van den Brand and E. Visser. Generation of formatters for
context-free languages. ACM Transactions on Software Engineering

and Methodology, 5:1-41, 1996.

Ph. Coggan. The Money Machine: How the City Works. Pinguin,
1995. Third edition.

A. van Deursen. Ezecutable Language Definitions: Case Studies and
Origin Tracking Techniques. PhD thesis, University of Amsterdam,
1994.

A. van Deursen, J. Heering, and P. Klint, editors. Language Proto-
typing: An Algebraic Specification Approach, volume 5 of AMAST
Series in Computing. World Scientific Publishing Co., 1996.

Th. Eggenschwiler and E. Gamma. ET++ SwapsManager: Using
object technology in the financial engineering domain. In OOP-
SLA’92 Seventh Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 166-177. ACM, 1992. SIG-
PLAN Notices 27(10).

S. J. Glover and K. H. Bennet. An agent-based approach to rapid
software evolution based on a domain model. In Proceedings In-
ternational Conference on Software Maintenance ICSM’96, pages
228-237. IEEE Computer Society Press, 1996. Monterey, CA.

R. M. Herndon and V. A. Berzins. The realizable benefits of a lan-
guage prototyping language. IEEE Transactions on Software Engi-
neering, SE-14:803-809, 1988.

[K1i93]

[KMB+96]

[OHY94]

[Pig97]

[Wal96]

P. Klint. A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering and Methodol-
ogy, 2:176-201, 1993.

R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov,
J. Lewis, D. P. Oliva, T. Sheard, I. Smith, and L. Walton. A soft-
ware engineering experiment in software component generation. In
Proceedings of the 18th International Conference on Software Engi-
neering ICSE-18, pages b42-553. IEEE, 1996.

P. Oman and J. Hagemeister. Constructing and testing of polyno-
mials predicting software maintainability. Journal of Systems and

Software, 24(3):251-266, 1994.

T. M. Pigoski. Practical Software Maintenance — Best Practices for
Managing Your Software Investment. John Wiley and Sons, 1997.

L. Walton. Domain-specific design languages, 1996. URL http://-
www.cse.ogl.edu/~walton/dsdls.html.

