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Abstract 

Data abstraction is a valuable method for organizing programs to make them easier to modify and 
maintain. Inheritance allows one implementation of a data abstraction to be related to another 
hierarchically. This paper investigates the usefulness of hierarchy in program development, and concludes 
that although data abstraction is the more important idea, hierarchy does extend its usefulness in some 
situations. 
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1. Introduction 
An important goal in design is to identify a program structure that simplifies both program 

maintenance and program modifications made to support changing requirements. Data abstractions are a 

good way of achieving this goal. They allow us to abstract from the way data structures are implemented 

to the behavior they provide that other programs can rely on. They permit the representation of data to 

be changed locally without affecting programs that use the data. They are particularly important 

because they hide complicated things (data structures) that are likely to change in the future. They also 

simplify the structure of programs that use them because they present a higher level interface. For 

example, they reduce the number of arguments to procedures because abstract objects are communicated 

instead of their representations. 

Object-oriented programming is primarily a data abstraction technique, and much of its power derives 

from this. However, it elaborates this technique with the notion of “inheritance.” Inheritance can be 

used in a number of ways, some of which enhance the power of data abstraction. In these cases, 

inheritance provides a useful addition to data abstraction. 

This paper discusses the relationship between data abstraction and object-oriented programming. We 

begin in Section 2 by defining data abstraction and its role in the program development process. Then in 

Section 3 we discuss inheritance and identify two ways that it is used, for implementation hierarchy and 

for type hierarchy. Of the two methods, type hierarchy really adds something to data abstraction, so in 

Section 4 we discuss uses of type hierarchy in program design and development. Next we discuss some 

issues that arise in implementing type hierarchy. We conclude with a summary of our results. 

2. Data Abstraction 

The purpose of abstraction in programming is to separate behavior from implementation. The first 

programming abstraction mechanism was the procedure. A procedure performs some task or function; 

other parts of the program call the procedure to accomplish the task. To use the procedure, a 

programmer cares only about what it does and not how it is implemented. Any implementation that 

provides the needed function will do, provided it implements the function correctly and is efficient 

enough. 

Procedures are a useful abstraction mechanism, but in the early seventies some researchers realized that 

they were not enough [15, 16, 71 and proposed a new way of organizing programs around the 

“connections” between modules. The concept of data abstraction or abstract data type arose from these 

ideas [5, 121. 

Data abstractions provide the same benefits as procedures, but for data. Recall that the main idea is to 
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separate what an abstraction is from how it is implemented so that implementations of the same 

abstraction can be substituted freely. The implementation of a data object is concerned with how that 

object is represented in the memory of a computer; this information is called the representation, or rep 

for short. To allow changing implementations without affecting users, we need a way of changing the 

representation without having to change all using programs. This is achieved by encapsulating the rep 

with a set of operations that manipulate it and by restricting using programs so that they cannot 

manipulate the rep directly, but instead must call the operations. Then, to implement or reimplement 

the data abstraction, it is necessary to define the rep and implement the operations in terms of it, but 

using code is not affected by a change. 

Thus a data abstraction is a set of objects that can be manipulated directly only by a set of operations. 

An example of a data abstraction is the integers: the objects are 1, 2, 3, and so on and there are 

operations to add two integers, to test them for equality, and so on. Programs using integers manipulate 

them by their operations, and are shielded from implementation details such as whether the 

representation is 2’s complement. Another example is character strings, with objects such as ua” and 

uxyz,M and operations to select characters from strings and to concatenate strings. A final example is sets 

of integers, with objects such as { } (the empty set) and (3, 7}, and operations to insert an element in a 

set, and to test whether an integer is in a set. Note that integers and strings are built-in data types in 

most programming languages, while sets and other application-oriented data abstractions such as stacks 

and symbol tables are not. Linguistic mechanisms that permit user-defined abstract data types to be 

implemented are discussed in Section 2.2. 

A data or procedure abstraction is defined by a specification and implemented by a program module 

coded in some programming language. The specification describes what the abstraction does, but omits 

any information about how it is implemented. By omitting such detail, we permit many different 

implementations. An implementation is correct if it provides the behavior defined by the specification. 

Correctness can be proved mathematically if the specification is written in a language with precise 

semantics; otherwise we establish correctness by informal reasoning or by the somewhat unsatisfactory 

technique of testing. Correct implementations differ from one another in how they work, i.e., what 

algorithms they use, and therefore they may have different performance. Any correct implementation is 

acceptable to the caller provided it meets the caller’s performance requirements. Note that correct 

implementations need not be identical to one another; the whole point is to allow implementations to 

differ, while ensuring that they remain the same where this is important. The specification describes 

what is important. 

For abstraction to work, implementations must be encapsulated. If an implementation is encapsulated, 

then no other module can depend on its implementation details. Encapsulation 1 gll arantees that modules 
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can be implemented and reimplemented independently; it is related to the principle of “information 

hiding” advocated by Parnas [15]. 

2.1. Locality 

Abstraction when supported by specifications and encapsulation provides localitgl within a program. 

Locality allows a program to be implemented, understood, or modified one module at a time: 

1. The implementer of an abstraction knows what is needed because this is described in the 
specification. Therefore, he or she need not interact with programmers of other modules (or 
at least the interactions can be very limited). 

2. Similarly, the implementer of a using module knows what to expect from an abstraction, 
namely the behavior described by the specification. 

3. Only local reasoning is needed to determine what a program does and whether it does the 
right thing. The program is studied one module at a time. In each case we are concerned 
with whether the module does what it is supposed to do, that is, does it meet its specification, 
However, we can limit our attention to just that module and ignore both modules that use it, 
and modules that it uses. Using modules can be ignored because they depend only on the 
specification of this module, not on its code. Used modules are ignored by reasoning about 
what they do using their specifications instead of their code. There is a tremendous saving of 
effort in this way because specifications are much smaller than implementations. For 
example, if we had to look at the code of a called abstraction, we would be concerned not only 
with its code, but also with the code of any modules it uses, and so on. 

4. Finally, program modification can be done module by module. If a particular abstraction 
needs to be reimplemented to provide better performance or correct an error or provide 
extended facilities, the old implementing module can be replaced by a new one without 
affecting other modules. 

Locality provides a firm basis for fast prototyping. Typically there is a tradeoff between the 

performance of an algorithm and the speed with which it is designed and implemented. The initial 

implementation can be a simple one that performs poorly.- Later it can be replaced by another 

implementation with better performance. Provided both implementations are correct, the calling 

program’s correctness will be unaffected by the change. 

Locality also supports program evolution. Abstractions can be used to encapsulate potential 

modifications. For example, suppose we want a program to run on different machines. We can 

accomplish this by inventing abstractions that hide the differences between machines so that to move the 

program to a different machine only those abstractions need be reimplemented. A good design principle 

is to think about expected modifications and organize the design by using abstractions that encapsulate 

the changes. 

The benefits of locality are particularly important for data abstractions. Data structures are often 
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complicated and therefore the simpler abstract view provided by the specification allows the rest of the 

program to be simpler. Also, changes to storage structures are likely as programs evolve; the effects of 

such changes can be minimized by encapsulating them inside data abstractions. 

2.2. Linguistic Support for Data Abstraction 

Data abstractions are supported by linguistic mechanisms in several languages. The earliest such 

” language w&s Simula 67 [3]. T wo major variations, those in CLU and Smalltalk, are discussed below. 

CLU [S, 111 provides a mechanism called a cluster for implementing an abstract type. A template for a 

cluster is shown in Figure 2-l. The header identifies the data type being implemented and also lists the 

operations of the type; it serves to identify what procedure definitions inside the cluster can be called 

from the outside. The “rep = ” line defines how objects of the type are represented; in the example, we 

are implementing sets as linked lists. The rest of the cluster consists of procedures; there must be a 

procedure for each operation, and in addition, there may be some procedures that can be used only inside 

the cluster. 

int -set = cluster is create, insert, is-in, size, . . . 

rep = int-list 

create = proc . . . end create 

insert = proc . . . end insert 

end int -set 

Figure 2-I: Template of a CLU Cluster. 

In Smalltalk [4], data abstractions are implemented by classes. Classes can be arranged hierarchically, 

but we ignore this for now. A class implements a data abstraction similarly to a cluster. Instead of the 

“rep =‘I line, the rep is described by a sequence of variable declarations; these are the instance 

variables.’ The remainder of the class consists of methods, which are procedure definitions. There is a 

method for each operation of the data type implemented by the class. (There cannot be any internal 

methods in Smalltalk classes because it is not possible to preclude outside use of a method.) Methods are 

called by “sending messages,” which has the same effect as calling operations in CLU. 

1 
We ignore the class variables here since they are not important for the distinctions we are trying to make. CLU has an 

analogous mechanism: a cluster can have some ‘own’ variables IS]. 

October 1987 OOPSLA ‘87 Addendum to the Proceedings 21 



Both CLU and Smalltalk enforce encapsulation but CLU uses compile-time type checking, while 

Smalltalk uses runtime checking. Compile-time checking is better because it allows a class of errors to be 

caught before the program runs, and it permits more efficient code to be generated by a compiler. 

(Compile-time checking can limit expressive power unless the programming language has a powerful type 

system; this issue is discussed further in Section 5.) Other objectcoriented languages, e.g., [I, 131, do not 

enforce encapsulation at all. It is true that in the absence of language support encapsulation can be 

guaranteed by manual procedures such as code reading, but these techniques are error-prone, and 

although the situation may be somewhat manageable for a newly-implemented program, it will degrade 

rapidly as modifications are made. Automatic checking, at either runtime or compile-time, can be relied 

on with confidence and without the need to read any code at all. 

Another difference between CLU and Smalltalk is found in the semantics of data objects. In Smalltalk, 

the operations are part of the object and can access the instance variables that make up the object’s rep 

since these variables are part of the object too. In CLU, operations do not belong to the object but 

instead belong to a type. This gives them special privileges with respect to their type’s objects that no 

other parts of the program have, namely, they can see the reps of these objects. (This view was first 

described by Morris [14].) The CLU view works better for operations that manipulate several objects of 

the type simultaneously because an operation can see the reps of several objects at once, Examples of 

such operations are adding two integers or forming the union of two sets. The Smalltalk view does not 

support such operations as well, since an operation can be inside of only one object. On the other hand, 

the Smalltalk view works better when we want to have several implementations of the same type running 

within the same program. In CLU an operation can see the rep of any object of its type, and therefore 

must be coded to cope with multiple representations explicitly. Smalltalk avoids this problem since an 

operation can see the rep of only one object. 

3. Inheritance and Hierarchy 
This section discusses inheritance and how it supports hierarchy. We begin by talking about what it 

means to construct a program using inheritance. Then we discuss two major uses of inheritance, 

implementation hierarchy and type hierarchy; see [18] for a similar discussion. Only one of these, type 

hierarchy, adds something new to data abstraction. 

3.1. Inheritance 

In a language with inheritance, a data abstraction can be implemented in several pieces that are related 

to one another. Although various languages provide different mechanisms for putting the pieces together, 

they are all similar. Thus we can illustrate them by examining a single mechanism, the subclass 

mechanism in Smalltalk. 
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In Smalltalk a class can be declared to be a subclass of another class2, which is its superclass. The first 

thing that needs to be understood about the mechanism is what code results from such a definition. This 

question is important for understanding what a subclass does. For example, if we were to reason about 

its correctness, we would need to look at this code. 

From the point of view of the resulting code, saying that one class is a subclass of another is simply a 

shorthand notation for building programs. The exact program that is constructed depends on the rules of 

the language, e.g., such things as when methods of the subclass override methods of the superclass. The 

exact details of these rules are not important for our discussion (although they clearly are important if 

the language is to be sensible and useful). The point is that the result is equivalent to directly 

implementing a class containing the instance variables and methods that result from applying the rules. 

For ‘example, suppose class T has operations or and o2 and instance variable vr and class S, which is 

declared to be a subclass of T, has operations or and os and instance variable v2. Then the result in 

Smalltalk is effectively a class with two instance variables, v1 and v2, and three operations, or, 02, 03, 

where the code of o2 is supplied by T, and the code of the other two operations is supplied by S. It is this 

combined code that must be understood, or modified if S is reimplemented, unless’s is restricted as 

discussed further below. 

One problem with almost all inheritance mechanisms is that they compromise data abstraction to an 

extent. In languages with inheritance, a data abstraction implementation (i.e., a class) has two kinds of 

users. There are the “outsiders” who simply use the objects by calling the operations. But in addition 

there are the “insiders.” These are the subclasses, which are typically permitted to violate encapsulation. 

There are three ways that encapsulation can be violated [18]: the subclass might access an instance 

variable of its superclass, call a private operation of its superclass, or refer directly to superclasses of its 

superclass. (This last violation is not possible in Smalltalk.) 

When encapsulation is not violated, we can reason about operations of the superclass using their 

specifications and we can ignore the rep of the superclass. When encapsulation is violated, we lose the 

benefits of locality. We must consider the combined code of the sub- and superclass in reasoning about 

the subclass, and if the superclass needs to be reimplemented, we may need to reimplement its subclasses 

too. For example, this would be necessary if an instance variable of the superclass changed, or if a 

subclass refers directly to a superclass of its superclass T and then T is reimplemented to no longer have 

this superclass. 

Violating encapsulation can be useful in bringing up a prototype quickly since it allows code to be 

2 We ignore multiple inheritance to simplify the discussion. 

October 1987 OOPSLA ‘87 Addendum to the Proceedings 23 



produced by extension and modification of existing code. It is unrealistic, however, to expect that 

modifications to the implementation of the superclass can be propagated automatically to the subclass. 

Propagation is useful only if the resulting code works, which means that all expectations of the subclass 

about the superclass must be satisfied by the new implementation. These expectations can be captured by 

providing another specification for the superclass; this is a different specification from that for outsiders, 

since it contains additional constraints. Using this additional specification, a programmer can determine 

whether a proposed change to the superclass can usefully propagate to the subclass. Note that the more 

specific the additional specification is about details of the previous superclass implementation, the less 

likely that a new superclass implementation will meet it. Also, the situation will be unmanageable if each 

subclass relies on a different specification of the superclass. One possible approach is to define a single 

specification for use by all subclasses that contains more detail than the specification for outsiders but 

still abstracts from many implementation details. Some work in this direction is described in [l?]. 

3.2. Implementation Hierarchy 

The first way that inheritance is used is simply as a technique for implementing data types that are 

similar to other existing types. For example, suppose we want to implement integer sets, with operations 

(among others) to tell whether an element is a member of the set and to determine the current size of the 

set. Suppose further that a list data type has already been implemented, and that it provides a member 

operation and a size operation, as well ac a convenient way of representing the set. Then we could 

implement set as a subclass of list; we might have the list hold the set elements without duplication, i.e., 

if an element were added to the set twice, it would be appear in the list only once. Then we would not 

need to provide implementations for member and sire, but we would need to implement other operations 

such as one that inserts a new element into the set. Also, we should suppress certain other operations, 

such as car, to make them unavailable since they are not meaningful for sets. (This can be done in 

Smalltalk by providing implementations in the .subclass for the suppressed operations; such an 

implementation would signal an exception if called.) 

Another way of doing the same thing is to use one (abstract) type as the rep of another. For example, 

we might implement sets by using list as the rep. In this case, we would need to implement the size and 

member operations; each of these would simply call the corresponding operation on lists. Writing down 

implementations for these two operations, even though the code is very simple, is more work than not 

writing anything for them. On the other hand, we need not do anything to take away undesirable 

operations such as car. 

Since implementation hierarchy does not allow us to do anything that we could not already do with 

data abstraction, we will not consider it further. It does permit us to violate encapsulation, with both the 

benefits and problems that ensue. However, this ability could also exist in the rep approach if desired. 
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3.3. Type Hierarchy 

A type hierarchy is composed of subtypes and supertypes. The intuitive idea of a eubtype is one whose 

objects provide all the behavior of objects of another type (th e supertype) plus something extra. What is 

wanted here is something like the following substitution property [S]: If for each object o1 of type S there 

is an object o2 of type T such that for all programs P defined in terms of T, the behavior of P is 

unchanged when o1 is substituted for oz, then S is a subtype of T. (See also [2, 171 for other work in this 

area.) 

We are using the words “subtype” and “supertype” here to emphasize that now we are talking about a 

semantic distinction. By contrast, “subclass” and “superclass” are simply linguistic concepts in 

programming languages that allow programs to be built in a particular way. They can be used to 

implement subtypes, but also, as mentioned above, in other ways. 

We begin with some examples of types that are not subtypes of one another. First, a set is not a 

subtype of a list nor is the reverse true. If the same element is added to a set twice, the result is the same 

as if it had been added only once and the element is counted only once in computing the size of the set. 

However, if the same element is added twice to a list, it occurs in the list twice. Thus a program 

expecting a list might not work if passed a set; similarly a program expecting a set might not work if 

passed a list. Another example of non-subtypes are stacks and queues. Stacks are LIFO; when an 

element is removed from a stack, the last item added (pushed) is removed. By contrast, queues are FIFO. 

A using program is likely to notice the difference between these two types. 

The above examples ignored a simple difference between the pairs of types, namely related operations, 

A subtype must have all the operations3 of its supertype since otherwise the using program could not use 

an operation it depends on. However, simply having operations of the right names and signatures is not 

enough. (A operation’s signature defines the numbers and types of its input and output arguments.) The 

operations must also do the same things. For example, stacks and queues might have operations of the 

same names, e.g., add-e1 to push or enqueue and rem -el to pop or dequeue, but they still are not 

subtypes of one another because the meanings of the operations are different for them. 

Now we give some examples of subtype hierarchies. The first is indexed collections, which have 

operations to access elements by index; e.g., there would be a fetch operation to fetch the jth element of 

the collection. All subtypes have these operations too, but, in addition, each would provide extra 

operations. Examples of subtypes are arrays, sequences, and indexed sets; e.g., sequences can be 

concatenated, and arrays can be modified by storing new objects in the elements. 

3 It needs the instance methods but not the class methods. 
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The second example is abstract devices, which unify a number of different kinds of input and output 

devices. Particular devices might provide extra operations. In this case, abstract device operations would 

be those that all devices support, e.g., the end-of-file test, while subtype operations would be device 

specific. For example, a printer would have modification operations such as put-char but not reading 

operations such as get-char. Another possibility is that abstract devices would have all possible 

operations, e.g., both put-char and get- char, and thus all subtypes would have the same set of 

operations. In this case, operations that not all real devices can do must be specified in a general way 

that allows exceptions to be signalled. For example, get- char would signal an exception when called on 

a printer. 

An inheritance mechanism can be used to implement a subtype hierarchy. There would be a class to 

implement the supertype and another class to implement each subtype. The class implementing a subtype 

would declare the supertype’s class as its superclass. 

4. Benefits of Type Hierarchy 
Data abstraction is a powerful tool in its own right. Type hierarchy is a useful adjunct to data 

abstraction. This section discusses how subtypes can be used in the development of the design for a 

program. (A detailed discussion of design based on data abstraction can be found in [ll).) It also 

discusses their use in organizing a program library. 

4.1. Incremental Design 

Data abstractions are usually developed incrementally as a design progresses. In early stages of a 

design, we only know some of a data abstraction’s operations and a part of its behavior. Such a stage of 

design is depicted in Figure 4-la. The design is depicted by a graph that illustrates how a program is 

subdivided into modules, There are two kinds of nodes; a node with a single bar on top represents a 

procedure abstraction, and a node with a double bar on top represents a data abstraction. An arrow 

pointing from one node to another means that the abstraction of the first node will be implemented using 

the abstraction of the second node. Thus the figure shows two procedures, P and Q, and one data 

abstraction, T. P will be implemented using Q (i.e., its code calls Q) and T (i.e., its code uses objects of 

type T). (Recursion is indicated by cycles in the graph. Thus if we expected the implementation of P to 

call P, there would be an arrow from P to P.) 

This figure represents an early stage of design, in which the designer has thought about how to 

implement P and has invented Q and T. At this point, some operations of T have been identified, and the 

designer has decided that an object of type T will be used to communicate between P and Q. 

The next stage of design is to investigate how to implement Q. (It would not make sense to look at T’s 
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P 

!?I 
Q 

T 

Figure 4-1: The Start of a Design. 

implementation at this point, because we do not know all its operations yet.) In studying Q we are likely 

to define additional operations for T. This can be viewed as refining T to a subtype S as is shown in 

Figure 4-2. Here a double arrow points from a supertype to a subtype; double arrows can only connect 

data abstractions (and there can be no cycles involving only double arrows). 

Figure 4-2: Later in the Design. 

The kind of refinement illustrated in the figures may happen several times; e.g., S in turn may have a 

subtype R and so on. Also, a single type may have several subtypes, representing the needs of different 

subparts of the program. 

Keeping track of these distinctions as subtypes is better than treating the group of types as a single 

type, for several reasons. First it can limit the effect of design errors. For example, suppose further 

investigation indicates a problem with S’s interface. When a problem of this sort occurs, it is necessary to 

look at every abstraction that uses the changed abstraction. For the figure, this means we must look at 

Q. However, provided T’s interface is unaffected, we need not look at P. If S and T had been treated as 

one type, then P would have had to be examined too. 
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Another advantage of distinguishing the types is that it may help in organizing the design rationale. 

The design rationale describes the decisions made at particular points in the design, and discusses why 

they were made and what alternatives exist. By maintaining the hierarchy to represent the decisions as 

they are made over time, we can avoid confusion and be more precise. If an error is discovered later, we 

can identify precisely at what point in the design it occurred. 

Finally, the distinction may help during implementation, for example, if S, but not T, needs to be 

reimplemented. However, it may be that the hierarchy is not maintained in the implementation. 

Frequently, the end of the design is just a single type, the last subtype invented, because implementing a 

single module is more convenient than having separate modules for the supertype and subtypes. Even so, 

however, the distinction remains useful after implementation, because the effects of specification changes 

can still be localized, even if implementation changes cannot. For example, a change to the specification 

of S but not T means that we need to reimplement Q but not P. However, if S and T are implemented as 

a single module, we must reimplement both of them, instead of just reimplementing S. 

4.2. Related Types 

The second use of subtypes is for related types. The designer may recognize that a program will use 

several data abstractions that are similar but different. The differences represent variants of the same 

general idea, where the subtypes may all have the same set of operations, or some of them may extend the 

supertype. An example is the generalized abstract device mentioned earlier. To accommodate related 

types in design, the designer introduces the supertype at the time the whole set of types is conceived, and 

then introduces the subtypes as they are needed later in design. 

Related types arise in two different ways. Sometimes the relationship is defined in advance, before any 

types are invented; this is the situation discussed above. Alternatively, the relationship may not be 

recognized until several related types already exist. This happens because of the desire to define a module 

that works on each of the related types but depends on only some small common part of them. For 

example, the module might be a sort routine that relies on its argument “collection” to allow it to fetch 

elements, and relies on the element type itself to provide a ” < ” operation, 

When the relationship is defined in advance, hierarchy is a good way to describe it, and we probably do 

want to use inheritance as an implementation mechanism. This permits us to implement just once (in the 

supertype) whatever can be done in a subtype-independent way. The module for a subtype is concerned 

only with the specific behavior of that subtype, and is independent of modules implementing other 

subtypes. Having separate modules for the super- and subtypes gives better modularity than using a 

single module to implement them all, Also, if a new subtype is added later, none of the existing code 

need be changed. 
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When khe relationship is recognized after the types have been defined, hierarchy may not be the right 

way to organize the program. This issue is discussed in Section 5.1. 

4.5. Organizing a Type Library 

There is one other way in which hierarchy is useful, and this is to aid in the organization of a type 

library. It has long been recognized that programming is more effective if it can be done in a context 

that encourages the reuse of program modules implemented by others. However, for such a context to be 

usable, it must be possible to navigate it easily to determine whether the desired modules exists. 

Hierarchy is useful as a way of organizing a program library to make searching easier, especially when 

combined with the kind of browsing tools present, e.g., in the Smalltalk environment. 

Hierarchy allows similar types to be grouped together. Thus, if a user want a particular kind of 

*collectionY abstraction, there is a good chance that the desired one, if it exists at all, can be found with 

the other collections. The hierarchy in use is a either a subtype hierarchy, or almost a subtype hierarchy 

(i.e., a subtype differs from an extension of the supertype in a fairly minor way). The point is that types 

are grouped based on their behavior rather than how they are used to implement one another, 

The search for collection types, or numeric types, or whatever, is aided by two things: The first is 

considering the entire library as growing from a single root or roots, and providing a browsing tool that 

allows the user to move around in the hierarchy. The second is a wise choice of names for the major 

categories, so that a user can recognize that “collection” is the part of the hierarchy of interest. 

Using hierarchy as a way of organizing a library is a good idea, but need not be coupled with a subclass 

mechanism in a programming language. Instead, an interactive system that supports construction and 

browsing of the library could organize the library in this way. 

5. Type Hierarchy and Inheritance 
Not all uses of type hierarchy require language support. No support is needed for the program library; 

instead all that is needed is to use the notion of type hierarchy as an organizing principle. Support is also 

usually not needed for hierarchy introduced as a refinement technique. As mentioned earlier, the most 

likely outcome of this design technique is a single type at the end (the last subtype introduced), which is 

most conveniently implemented as a unit. Therefore any language that supports data abstraction is 

adequate here, although inheritance can be useful for introducing additional operations discovered later. 

Special language support may be needed for related types, however. This support is discussed in Section 

5.1. Section 5.2 discusses the relationship of inheritance to multiple implementations of a type. 
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6.1, Polymorphism 

A polymorphk procedure or data abstraction is one that works for many different types. For example, 

consider a procedure that does sorting. In many languages, such a procedure would be implemented to 

work on an array of integers; later, if we needed to sort an array of strings, another procedure would be 

needed. This is unfortunate. The idea of sorting is independent of the particular type of element in the 

array, provided that it is possible to compare the elements to determine which ones are smaller than 

which other ones. We ought to be able to implement one sort procedure that works for all such types. 

Such a procedure would be polymorphic. 

Whenever there are related types in a program there is likely to be polymorphism. This is certainly the 

case when the relationship is indicated by the need for a polymorphic module. Even when the 

relationship is identified in advance, however, polymorphism is likely. In such a case the supertype is 

often virtual: it has no objects of its own, but is simply a placeholder in the hierarchy for the family of 

related types. In this case, any module that uses the supertype is polymorphic. On the other hand, if the 

supertype has objects of its own, some modules might use just it and none of its subtypes. 

Using hierarchy to support polymorphism means that a polymorphic module is conceived of as using a 

supertype, and every type that is intended to be used by that module is made a subtype of the supertype. 

When supertypes are introduced before subtypes, hierarchy is a good way to capture the relationships. 

The supertype is added to the type universe when it is invented, and subtypes are added below it later. 

If the types exist hefore the relationship, hierarchy does not work as well. In this case, introducing the 

supertype complicates the type universe: a new type (the supertype) must be added, all types used by the 

polymorphic module must be made its subordinates, and classes implementing the subtypes must be 

changed to reflect the hierarchy (and recompiled in a system that does compilation). For example, we 

would have to add a new type, “sortable,” to the universe and make every element type be a subtype of 

it. Note that each such supertype must be considered whenever a new type is invented: each new type 

must be made a subtype of the supertype if there is any chance that we may want to use its objects in the 

polymorphic module. Furthermore, the supertype may be useless as far as code sharing is concerned, 

since there may be nothing that can be implemented in it. 

An alternative approach is to simply allow the polymorphic module to use any type that supplies the 

needed operations. In this case no attempt is made to relate the types. Instead, an object belonging to 

any of the related types can be passed as an argument to the polymorphic module. Thus we get the same 

effect, but without the need to complicate the type universe. We will refer to this approach as the 

grouping approach. 

The two approaches differ in what is required to reason about program correctness. 111 (*ither case we 
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require the argument objects to have operations with the right signature and behavior. Signature 

requirements can be checked by type-checking, which can happen at runtime or compile time. Runtime 

checking requires no special mechanism; objects are simply passed to the polymorphic module, and type 

errors will be found if a needed operation is not present. Compile-time checking requires an adequate 

type system. If the hierarchy approach is used, then the language must combine compile-time type 

checking with inheritance; an example of such a language is discussed in [17]. If the grouping approach is 

used, then we need a way to express constraints on operations at compile-time. For example, both CLU 

and Ada [19] can do this. In CLU, the header of a sort procedure might be 

sort = proc [T: type] (a: array[T]) 
where T has It: proctype (T, T) returns (bool) 

This header constrains parameter T to be a type with an operation named It with the indicated signature; 

the specification of sort would explain that Et must be a “less than” test. An example of a call of sort is 

sort[int](x) 

In compiling such a call, the compiler checks that the type of z is array[int] and furthermore that int has 

an operation named It with the required signature. We could even define a more polymorphic sorting 

routine in CLU that would work for all collections that are “array-like,” i.e., whose elements can be 

fetched and stored by index. 

The behavior requirements must be checked by some form of program verification. The required 

behavior must be part of the specification, and the specification goes in different places in the two 

methods. With hierarchy, the specification belongs to the supertype; with related types, it is part of the 

specification of the polymorphic module. Behavior checking also happens at different times. With 

hierarchy, checking happens whenever a programmer makes a type a subtype of the supertype; with 

grouping, it happens whenever a programmer writes code that uses the polymorphic module. 

Both grouping and hierarchy have limitations. More flexibility in the use of the polymorphic module is 

desirable. For example, if sort is called with an operation that does a “greater than” test, this will lead 

to a different sorting of the array, but that different sorting mai be just what is wanted. In addition, 

there may be conflicts between the types intended for use in the polymorphic module: 

1. Not all types provide the required operation. 

2. Types use different names for the operation. 

3. Some type uses the name of the required operation for some other operation; e.g., the name It 
is used in type T to identify the “length” operation. 

One way of achieving more generality is to simply pass the needed operations as procedure arguments, 
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e.g., sort actually takes two arguments, the array, and the routine used to determine ordering.4 This 

method is general, but can be inconvenient. Methods that avoid the inconvenience in conjunction with 

the grouping approach exist in Argus [lo) and Ada. 

In summary, when related types are discovered early in design, hierarchy is a good way to express the 

relationship. Otherwise, either the grouping approach (with suitable language support) or procedures as 

arguments may be better. 

6.2. Multiple Implementations 

It is often useful to have multiple implementations of the same type. For example, for some matrices 

we use a sparse representation and for others a nonsparse representation. Furthermore, it is sometimes 

desirable to use objects of the same type but different representations within the same program. 

Object-oriented languages appear to allow users to simulate multiple implementations with inheritance. 

Each implementation would be a subclass of another class that implements the type. This latter class 

would probably be virtual; for example, there would be a virtual class implementing matrices, and 

subclasses implementing sparse and nonsparse matrices. 

Using inheritance in this way allows us to have several implementations of the same type in use within 

the same program, but it interferes with type hierarchy. For example, suppose we invent a subtype of 

matrices called e&ended-matrices. We would like to implement extended-matrices with a class that 

inherits from matrices rather than from a particular implementation of matrices, since this would allow 

us to combine it with either matrix implementation. This is not possible, however. Instead, the 

extended-matrix class must explicitly state in its program text that it is a subclass of sparse or nonsparse 

matrices. 

The problem arises because inheritance is being used for two different things: to implement a type and 

to indicate that one type is a subtype of another. These uses should be kept separate. Then we could 

have what we really want: two types (matrix and extended-matrix), one a subtype of the other, each 

having several implementations, and the ability to combine the implementations of the subtype with those 

of the supertype in various ways. 

4 
Of course, this solution would not work well in Smalltalk because procedures cannot conveniently be defined as individual entities 

nor treated as objects. 
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6. Conclusions 
Abstraction, and especially data abstraction, is an important technique for developing programs that are 

reasonably easy to maintain and to modify as requirements change. Data abstractions are particularly 

important because they hide complicated things (data structures) that are likely to change in the future. 

They permit the representation of data to be changed locally without affecting programs that use the 

data. 

Inheritance is an implementation mechanism that allows one type to be related to another 

hierarchically. It is used in two ways: to implement a type by derivation from the implementation of 

another type, and to define subtypes. We argued that the first use is uninteresting because we can 

achieve the same result by using one type as the rep of the other. Subtypes, on the other hand, do add a 

new ability. Three uses for subtypes were identified. During incremental design they provide a way to 

limit the impact of design changes and to organize the design documentation. They also provide a way to 

group related types, especially in the case where the supertype is invented before any subtypes. When the 

relationship is discovered after several types have already been defined, other methods, such as grouping 

or procedure arguments, are probably better than hierarchy. Finally, hierarchy is a convenient and 

sensible way of organizing a library of types. The hierarchy is either a subtype hierarchy, or almost one; 

the subtypes may not match our strict definition, but are similar to the supertype in some intuitive sense. 

Inheritance can be used to implement a subtype hierarchy. It is needed primarily in the case of related 

types when the supertype is invented first, because here it is convenient to implement common features 

just once in the superclass, and then implement the extensions separately for each subtype. 

We conclude that although data abstraction is more important, type hierarchy does extend its 

usefulness. Furthermore, inheritance is sometimes needed to express type hierarchy and is therefore a 

useful mechanism to provide in a programming language. 
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