
CSci 555: Functional Programming
Type System Concepts

H. Conrad Cunningham

3 February 2019

Contents
Type System Concepts 2

Introduction . 2
Types and Subtypes . 2
Constants, Variables, and Expressions 2
Static and Dynamic . 3
Nominal and Structural . 3
Polymorphic Operations . 4
Polymorphic Variables . 5
Exercises . 5
Acknowledgements . 6
References . 6
Terms and Concepts . 7

Copyright (C) 2018, 2019, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of February 2019 is a
recent version of Firefox from Mozilla.

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

Type System Concepts

Introduction

The goal of these notes are to examine the general concepts of type systems.

Types and Subtypes

The term type tends to be used in many different ways in programming languages.
What is a type?

Conceptually, a type is a set of values (i.e. possible states or objects) and a set
of operations defined on the values in that set.

Similarly, a type S is (a behavioral) subtype of type T if the set of values of
type S is a “subset” of the values in set T and set of operations of type S is a
“superset” of the operations of type T. That is, we can safely substitute elements
of subtype S for elements of type T because S’s operations behave the “same” as
T’s operations.

This is known as the Liskov Substitution Principle [Liskov 1987] [Wikipedia
2018a].

Consider a type representing all furniture and a type representing all chairs. In
general, we consider the set of chairs to be a subset of the set of furniture. A
chair should have all the general characteristics of furniture, but it may have
additional characteristics specific to chairs.

If we can perform an operation on furniture in general, we should be able to
perform the same operation on a chair under the same circumstances and get
the same result. Of course, there may be additional operations we can perform
on chairs that are not applicable to furniture in general.

Thus the type of all chairs is a subtype of the type of all furniture according to
the Liskov Substitution Principle.

Constants, Variables, and Expressions

Now consider the types of the basic program elements.

A constant has whatever types it is defined to have in the context in which it
is used. For example, the constant symbol 1 might represent an integer, a real
number, a complex number, a single bit, etc., depending upon the context.

A variable has whatever types its value has in a particular context and at a
particular time during execution. The type may be constrained by a declaration
of the variable.

2

An expression has whatever types its evaluation yields based on the types of the
variables, constants, and operations from which it is constructed.

Static and Dynamic

In a statically typed language, the types of a variable or expression can be deter-
mined from the program source code and checked at “compile time” (i.e. during
the syntactic and semantic processing in the front-end of a language processor).
Such languages may require at least some of the types of variables or expressions
to be declared explicitly, while others may be inferred implicitly from the context.

Java, Scala, and Haskell are examples of statically typed languages.

In a dynamically typed language, the specific types of a variable or expression
cannot be determined at “compile time” but can be checked at runtime.

Lisp, Python, JavaScript, and Lua are examples of dynamically typed languages.

Of course, most languages use a mixture of static and dynamic typing. For
example, Java objects defined within an inheritance hierarchy must be bound
dynamically to the appropriate operations at runtime. Also Java objects declared
of type Object (the root class of all user-defined classes) often require explicit
runtime checks or coercions.

Nominal and Structural

In a language with nominal typing, the type of value is based on the type name
assigned when the value is created. Two values have the same type if they have
the same type name. A type S is a subtype of type T only if S is explicitly
declared to be a subtype of T.

For example, Java is primarily a nominally typed language. It assigns types to
an object based on the name of the class from which the object is instantiated
and the superclasses extended and interfaces implemented by that class.

However, Java does not guarantee that subtypes satisfy the Liskov Substitution
Principle. For example, a subclass might not implement an operation in a
manner that is compatible with the superclass. (The behavior of subclass objects
are thus different from the behavior of superclass objects.) Ensuring that Java
subclasses preserve the Substitution Principle is considered good programming
practice in most circumstances.

In a language with structural typing, the type of a value is based on the structure
of the value. Two values have the same type if they have the “same” structure;
that is, they have the same public data attributes and operations and these are
themselves of compatible types.

3

In structurally typed languages, a type S is a subtype of type T only if S has
all the public data values and operations of type T and the data values and
operations are themselves of compatible types. Subtype S may have additional
data values and operations not in T.

Haskell is an example of a primarily structurally typed language.

Polymorphic Operations

Polymorphism refers to the property of having “many shapes”. In programming
languages, we are primarily interested in how polymorphic function names (or
operator symbols) are associated with implementations of the functions (or
operations).

In general, two primary kinds of polymorphic operations exist in programming
languages:

1. Ad hoc polymorphism, in which the same function name (or operator
symbol) can denote different implementations depending upon how it is
used in an expression. That is, the implementation invoked depends upon
the types of function’s arguments and return value.

There are two subkinds of ad hoc polymorphism.

a. Overloading refers to ad hoc polymorphism in which the language’s
compiler or interpreter determines the appropriate implementation
to invoke using information from the context. In statically typed
languages, overloaded names and symbols can usually be bound to
the intended implementation at compile time based on the declared
types of the entities. They exhibit early binding.

Consider the language Java. It overloads a few operator symbols, such
as using the + symbol for both addition of numbers and concatenation
of strings. Java also overloads calls of functions defined with the same
name but different signatures (patterns of parameter types and return
value). Java does not support user-defined operator overloading; C++
does.

Haskell’s type class mechanism implements overloading polymorphism
in Haskell. There are similar mechanisms in other languages such as
Scala and Rust.

b. Subtyping (also known as subtype polymorphism or inclusion poly-
morphism) refers to ad hoc polymorphism in which the appropriate
implementation is determined by searching a hierarchy of types. The
function may be defined in a supertype and redefined (overridden)
in subtypes. Beginning with the actual types of the data involved,
the program searches up the type hierarchy to find the appropriate

4

implementation to invoke. This usually occurs at runtime, so this
exhibits late binding.

The object-oriented programming community often refers to
inheritance-based subtype polymorphism as simply polymorphism.
This is the polymorphism associated with the class structure in Java.

Haskell does not support subtyping. Its type classes do support class
extension, which enables one class to inherit the properties of another.
However, Haskell’s classes are not types.

2. Parametric polymorphism, in which the same implementation can be
used for many different types. In most cases, the function (or class)
implementation is stated in terms of one or more type parameters. In
statically typed languages, this binding can usually be done at compile
time (i.e. exhibiting early binding).

The object-oriented programming (e.g. Java) community often calls this
type of polymorphism generics or generic programming.

The functional programming (e.g. Haskell) community often calls this
simply polymorphism.

TODO: Bring “row polymorphism” into the above discussion?

Polymorphic Variables

A polymorphic variable is a variable that can “hold” values of different types
during program execution.

For example, a variable in a dynamically typed language (e.g. Python) is poly-
morphic. It can potentially “hold” any value. The variable takes on the type of
whatever value it “holds” at a particular point during execution.

Also, a variable in a nominally and statically typed, object-oriented language
(e.g. Java) is polymorphic. It can “hold” a value its declared type or of any of
the subtypes of that type. The variable is declared with a static type; its value
has a dynamic type.

A variable that is a parameter of a (parametrically) polymorphic function is
polymorphic. It may be bound to different types on different calls of the function.

Exercises

TODO

5

Acknowledgements

In Spring 2018, I wrote the general Type System Concepts section as a part of a
chapter that discusses the type system of Python 3 [Cunningham 2018a].

In Summer 2018, I revised it to become Section 5.2 in the new Chapter 5 of the
textbook Exploring Languages with Interpreters and Functional Programming
(ELIFP) [Cunningham 2018b]. I also moved the “Kinds of Polymorphism”
discussion from the 2017 List Programming chapter of that book to the new
subsection “Polymorphic Operations”. (This section draws on various Wikipedia
articles [Wikipedia 2018b] and other sources.)

In Fall 2018, I copied the general concepts from ELIFP and recombined it with
the Python-specific content from the first part of [Cunningham 2018a] to form a
chapter for a posible future book based on Python 3.

This chapter sought to be compatible with the concepts, terminology, and ap-
proach of the 2018 version of my textbook Exploring Languages with Interpreters
and Functional Programming [Cunningham 2018b], in particular of Chapters 2,
3, and 5.

In Spring 2019, I extracted the general concepts discussion from the Python 3
chapter for use in a Scala-based course

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

References

[Cunningham 2018a]: H. Conrad Cunningham. Basic Features Supporting
Metaprogramming, Chapter 2, Python 3 Reflexive Metaprogramming, 2018.

[Cunningham 2018b]: H. Conrad Cunningham. Exploring Languages with
Interpreters and Functional Programming, https://www.cs.olemiss.edu/
~hcc/csci450/ELIFP/ExploringLanguages.html, draft 2018.

[Liskov 1987]: Barbara Liskov. Keynote Address—Data Abstraction and Hier-
archy, In the Addendum to the Proceedings on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA ’87), Leigh Power
and Zvi Weiss, Editors, ACM, 1987. [local]

[Wikipedia 2018a]: Wikipedia, Liskov Substitution Principle, accessed 30
August 2018.

[Wikipedia 2018b]: Wikipedia articles on “Polymorphism”, “Ad Hoc Poly-
morphism”, “Parametric Polymorphism”, “Subtyping”, and “Function
Overloading”, accessed 30 August 2018.

6

https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta02.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta02.html
https://www.cs.olemiss.edu/~hcc/csci450/ELIFP/ExploringLanguages.html
https://www.cs.olemiss.edu/~hcc/csci450/ELIFP/ExploringLanguages.html
https://en.wikipedia.org/wiki/Liskov_substitution_principle

Terms and Concepts

Object, object characteristics (state, operations, identity, encapsulation, inde-
pendent lifecycle), immutable vs. mutable, type, subtype, Liskov Substitution
Principle, types of constants, variables, and expressions, static vs. dynamic
types, declared and inferred types, nominal vs. structural types, polymorphic
operations (ad hoc, overloading, subtyping, parametric/generic), early vs. late
binding, compile time vs. runtime, polymorphic variables.

7

	Type System Concepts
	Introduction
	Types and Subtypes
	Constants, Variables, and Expressions
	Static and Dynamic
	Nominal and Structural
	Polymorphic Operations
	Polymorphic Variables
	Exercises
	Acknowledgements
	References
	Terms and Concepts

