
CSci 555: Functional Programming
Sandwich DSL Case Study (Scala)

H. Conrad Cunningham

14 May 2019

Contents
Sandwich DSL Case Study (Scala) 1

Introduction . 1
Building the DSL . 2
Exercise Set A . 4
Compiling the Program for the SueChef Controller 6
Exercise Set B . 7
Source Code . 7
Acknowledgements . 7
References . 8
Concepts . 8

Copyright (C) 2016, 2018, 2019, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Advisory: The HTML version of this document requires use of a browser that
supports the display of MathML. A good choice as of April 2019 is a recent
version of Firefox from Mozilla.

Sandwich DSL Case Study (Scala)

Introduction

Few computer science graduates will design and implement a general-purpose
programming language during their careers. However, many graduates will

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

design and implement—and all likely will use—special-purpose languages in their
work.

These special-purpose languages are often called domain-specific languages (or
DSLs). For more discussion of DSL concepts and terminology, see the accompa-
nying notes on Domain-Specific Languages.

In this case study, we design and implement a simple internal DSL. This DSL
describes simple “programs” using a set of Scala algebraic data types. We express
a program as an abstract syntax tree using the DSLs data types.

The case study first builds a package of functions for creating and manipulating
the abstract syntax trees. It then extends the package to translate the abstract
syntax trees to a sequence of instructions for a simple “machine”.

Building the DSL

Suppose Emerald de Gassy, the owner of the Oxford-based catering business
Deli-Gate, hires us to design a domain-specific language (DSL) for describing
sandwich platters. The DSL scripts will direct Deli-Gate’s robotic kitchen
appliance SueChef (Sandwich and Utility Electronic Chef) to assemble platters
of sandwiches.

In discussing the problem with Emerald and the Deli-Gate staff, we discover the
following:

• A sandwich platter consists of zero or more sandwiches. (Zero? Why not!
Although a platter with no sandwiches may not be a useful, or profitable,
case, there does not seem to be any harm in allowing this degenerate case.
It may simplify some of the coding and representation.)

• Each sandwich consists of layers of ingredients.

• The categories of ingredients are breads, meats, cheeses, vegetables, and
condiments.

• Available breads are white, wheat, and rye.

• Available meats are turkey, chicken, ham, roast beef, and tofu. (Okay, tofu
is not a meat, but it is a good protein source for those who do not wish
to eat meat. This is a college town after all. Oh, there is also a special
meat served for football games Thanksgiving week called “bulldog”, but it
is really just chicken, so we can ignore that choice for our purposes here.)

• Available cheeses are American, Swiss, jack, and cheddar.

• Available vegetables are tomato, lettuce, onion, and bell pepper.

• Available condiments are mayo, mustard, relish, and Tabasco. (Of course,
this being the South, the mayo is Blue Plate Mayonnaise and the mustard
is a Creole mustard.)

2

../../DomainSpecificLanguages.html

Let’s define this as an internal DSL—in particular, by using a relatively deep
embedding.

What is a sandwich? . . . Basically, it is a stack of ingredients.

Should we require the sandwich to have a bread on the bottom? . . . Probably.
. . . On the top? Maybe not, to allow “open-faced” sandwiches. . . . What can
the SueChef build? . . . We don’t know at this point, but let’s assume it can
stack up any ingredients without restriction.

For simplicity and flexibility, let’s define a Scala data type Sandwich to model
sandwiches. It wraps a possibly empty list of ingredient layers. We assume the
head of the list to be the layer at the top of the sandwich.

case class Sandwich(sandwich: List[Layer])

Note: In this case study, we implement Scala algebraic data type constructors
(i.e., product types) as case class or case object entities. We implement
union types using a sealed trait with subtypes for the variants.

Data type Sandwich gives the specification for a sandwich. When “executed”
by the SueChef, it results in the assembly of a sandwich that satisfies the
specification.

As defined, the Sandwich data type does not require there to be a bread in
the stack of ingredients. However, we add function newSandwich that starts a
sandwich with a bread at the bottom and a function addLayer that adds a new
ingredient to the top of the sandwich. We leave the implementation of these
functions as exercises.

def newSandwich(b: Bread): Sandwich
def addLayer(s: Sandwich)(x: Layer): Sandwich

Ingredients are in one of five categories: breads, meats, cheeses, vegetables, and
condiments.

Because both the categories and the specific type of ingredient are important, we
choose to represent both in the type structures and define the following types. A
value of type Layer represents a single ingredient. Type Layer has five variants
(subtypes) Bread, Meat, Cheese, Vegetable, and Condiment. Each of these
variants itself has several variants. For example, Bread has variants (subtypes)
White, Wheat, and Rye.

sealed trait Layer

sealed trait Bread extends Layer
case object White extends Bread
case object Wheat extends Bread
case object Rye extends Bread

sealed trait Meat extends Layer

3

case object Turkey extends Meat
case object Chicken extends Meat
case object Ham extends Meat
case object RoastBeef extends Meat
case object Tofu extends Meat

sealed trait Cheese extends Layer
case object American extends Cheese
case object Swiss extends Cheese
case object Jack extends Cheese
case object Cheddar extends Cheese

sealed trait Vegetable extends Layer
case object Tomato extends Vegetable
case object Onion extends Vegetable
case object Lettuce extends Vegetable
case object BellPepper extends Vegetable

sealed trait Condiment extends Layer
case object Mayo extends Condiment
case object Mustard extends Condiment
case object Ketchup extends Condiment
case object Relish extends Condiment
case object Tabasco extends Condiment

We need to be able to compare ingredients for equality and convert them to
strings. Because the automatically generated definitions are appropriate, we do
not need to do anything further.

We will need to provide an appropriate definition of equality for Sandwich
because the default element-by-element equality of lists does not seem to be the
appropriate equality comparison for sandwiches.

To complete the model, we define type Platter to wrap a list of sandwiches.

case class Platter(platter: List[Sandwich])

We also define functions newPlatter to create a new Platter and addSandwich
to add a sandwich to the Platter. We leave the implementation of these
functions as exercises.

def newPlatter: Platter
def addSandwich(p: Platter)(s: Sandwich): Platter

Exercise Set A

Please put these functions in a Scala module SandwichDSL. You may use
functions defined earlier in the exercises to implement those later in the exercises.

4

1. Define and implement the Scala functions newSandwich, addLayer,
newPlatter, and addSandwich described above.

2. Define and implement the Scala query functions below that take an ingre-
dient (i.e. Layer) and return true if and only if the ingredient is in the
specified category.

def isBread(x: Layer): Boolean
def isMeat(x: Layer): Boolean
def isCheese(x: Layer): Boolean
def isVegetable(x: Layer): Boolean
def isCondiment(x: Layer): Boolean

3. Define and implement a Scala function noMeat that takes a sandwich and
returns true if and only if the sandwich contains no meats.

def noMeat(x: Sandwich): Boolean

4. According to a proposed City of Oxford ordinance, in the future it may be
necessary to assemble all sandwiches in Oxford Standard Order (OSO): a
slice of bread on the bottom, then zero or more meats layered above that,
then zero or more cheeses, then zero or more vegetables, then zero or more
condiments, and then a slice of bread on top. The top and bottom slices
of bread must be of the same type.

Define and implement a Scala function inOSO that takes a sandwich and
determines whether it is in OSO and another function intoOSO that takes
a sandwich and a default bread and returns the sandwich with the same
ingredients ordered in OSO.

def inOSO(s: Sandwich): Boolean
def intoOSO(s: Sandwich)(defaultbread: Bread): Sandwich

Hint: Remember library functions like dropWhile.

Note: It is impossible to rearrange the layers into OSO if the sandwich
does not include exactly two breads of the same type. If the sandwich does
not include any breads, then the default bread type (second argument)
should be specified for both. If there is at least one bread, then the bread
type nearest the bottom can be chosen for both top and bottom.

5. Assuming that the price for a sandwich is the base price plus the sum of the
prices of the individual ingredients, define and implement a Scala function
priceSandwich that takes a price list, a base price, and a sandwich and
returns the price of the sandwich.

def priceSandwich(pl: List[(Layer,Int)], base: Int)(s: Sandwich): Int

Use the following price list as a part of your testing:

val prices = List(
(White,20),(Wheat,30),(Rye,30),

5

(Turkey,100),(Chicken,80),(Ham,120),(RoastBeef,140),(Tofu,50),
(American,50),(Swiss,60),(Jack,60),(Cheddar,60),
(Tomato,25),(Onion,20),(Lettuce,20),(BellPepper,25),
(Mayo,5),(Mustard,4),(Ketchup,4),(Relish,10),(Tabasco,5)

)

6. Define and implement a Scala function eqSandwich that compares two
sandwiches for equality.

What does equality mean for sandwiches? Although the definition of
equality could differ, you can use “bag equality”. That is, two sandwiches
are equal if they have the same number of layers (zero or more) of each
ingredient, regardless of the order of the layers.

def eqSandwich(sl: Sandwich)(sr: Sandwich): Boolean

Compiling the Program for the SueChef Controller

In this section, we look at compiling the Platter and Sandwich descriptions to
issue a sequence of commands for the SueChef’s controller.

The SueChef supports the special instructions that can be issued in sequence
to its controller. The algebraic data type SandwichOp below represents the
instructions.

sealed trait SandwichOp
case object StartSandwich extends SandwichOp
case object FinishSandwich extends SandwichOp
case class AddBread(bread: Bread) extends SandwichOp
case class AddMeat(meat: Meat) extends SandwichOp
case class AddCheese(cheese: Cheese) extends SandwichOp
case class AddVegetable(vegetable: Vegetable) extends SandwichOp
case class AddCondiment(condiment: Condiment) extends SandwichOp
case object StartPlatter extends SandwichOp
case object MoveToPlatter extends SandwichOp
case object FinishPlatter extends SandwichOp

Note: You may find the builtin Scala methods isInstanceOf and asInstanceOf
helpful for use of the above.

We also define the type Program to represent the sequence of commands resulting
from compilation of a Sandwich or Platter specification.

case class Program(program: List[SandwichOp])

The flow of a program is given by the following pseudocode:

StartPlatter
for each sandwich needed

StartSandwich

6

for each ingredient needed
Add ingredient on top
FinishSandwich
MoveToPlatter

FinishPlatter

Consider a sandwich defined as follows:

Sandwich(List(Rye,Mayo,Swiss,Ham,Rye))

The corresponding sequence of SueChef commands would be the following.

List(StartSandwich,AddBread(Rye),AddMeat(Ham),AddCheese(Swiss),
AddCondiment(Mayo),AddBread(Rye),FinishSandwich,MoveToPlatter)

Exercise Set B

1. Define and implement a Scala function compileSandwich to convert a
sandwich specification into the sequence of SueChef commands to assemble
the sandwich.

def compileSandwich(s: Sandwich): List[SandwichOp]

2. Define and implement a Scala function compile to convert a platter specifi-
cation into the sequence of SueChef commands to assemble the sandwiches
on the platter.

def compile(p: Platter): Program

Source Code

The Scala source code for this case study is in file SandwichDSL_base.scala.

Acknowledgements

I devised the first version of the Sandwich DSL problem for a question on a
take-exam in the Lua-based, Fall 2013 offering of CSci 658 (Software Language
Engineering). I subsequently developed a full Haskell-based case study for the
Fall 2014 offering of CSci 450 (Organization of Programming Languages). I then
converted the case study to use Scala for the Spring 2016 offering of CSci 555
(Functional Programming).

In Spring and Fall 2017, I converted case study document from HTML to Pandoc
Markdown and updated it for use in the Haskell-based, Fall 2017 offering of CSci
450. In Fall 2018, I updated the Haskell case study to be more compatible with
the ELIFP textbook materials.

7

SandwichDSL_base.scala

In Spring 2018, I recreated this separate Scala-based version of the case study
by combining aspects of Haskell-based version with the Scala-based version from
Spring 2016. In Spring 2019, I further updated the materials to use the current
approach to formatting.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed. The HTML version of this document
may require use of a browser that supports the display of MathML.

References

TODO

Concepts

TODO

8

	Sandwich DSL Case Study (Scala)
	Introduction
	Building the DSL
	Exercise Set A
	Compiling the Program for the SueChef Controller
	Exercise Set B
	Source Code
	Acknowledgements
	References
	Concepts

