
CSci 555: Functional Programming
Recursion Styles, Correctness, and Efficiency

— Scala Version —

H. Conrad Cunningham

7 February 2019

Contents
Recursion Styles, Correctness, and Efficiency 2

Introduction . 2
Linear and Nonlinear Recursion . 2

Linear recursion . 2
Termination of recursion . 3
Preconditions and postconditions 3
Time and space complexity . 3
Nonlinear recursion . 4

Backward and Forward Recursion . 4
Backward recursion . 5
Forward recursion . 5
Tail Recursion . 6

Logarithmic Recursive . 8
Exercises . 9
Acknowledgements . 14
References . 15
Terms and Concepts . 15

Copyright (C) 2016, 2019, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of February 2019 is a
recent version of Firefox from Mozilla.

1

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

Recursion Styles, Correctness, and Efficiency

Introduction

This set of notes introduces basic recursive programming styles and examines
issues of termination, correctness, and efficiency.

The goals of the chapter are to:

• explore several recursive programming styles—linear and nonlinear, back-
ward and forward, tail, and logarithmic—and their implementation using
Scala

• examine how to analyze Scala functions to determine under what conditions
they terminate with the correct result and how efficient they are

• explore methods for developing recursive Scala programs that terminate
with the correct result and are efficient in both time and space usage

Note: The source code for the functions in these notes are in the Scala file
RecursionStyles.scala.

Linear and Nonlinear Recursion

In this section, we examine the concepts of linear and nonlinear recursion. The
following two sections examine other styles.

Linear recursion

A function definition is linear recursive if at most one recursive application of
the function occurs in a leg of the definition (i.e. along a path from an entry to
a return). The various function clauses and branches of conditional expressions
(e.g. if and match) introduce paths.

The definition of the function factorial below is linear recursive because the
expression in the second leg of the definition (i.e. n * factorial(n-1)) involves
a single recursive application. The other leg is nonrecursive; it is the base case
of the recursive definition.

def factorial(n: Int): Int = n match {
case 0 => 1
case m if m > 0 => m * factorial(m-1) // linear rec.
case _ =>

sys.error(s"Factorial undefined for $n")
}

2

RecursionStyles.scala

Scala checks for pattern matches for the clauses in the order given in the function
definition. It executes the leg corresponding to the first successful match. If no
pattern matches, then the function aborts and displays an error message.

Termination of recursion

How do we know that function factorial terminates?

To show that evaluation of a recursive function terminates, we must show that
each recursive application always gets closer to a normal termination condition
represented by a base case.

For a call factorial(n) with n > 0, the argument of the recursive application
always decreases to n - 1. Because the argument always decreases in integer
steps, it must eventually reach 0 and, hence, terminate in the first leg of the
definition.

Preconditions and postconditions

The precondition of a function is what the caller (i.e. the client of the function)
must ensure holds when calling the function. A precondition may specify the
valid combinations of values of the arguments. It may also record any constraints
on the values of “global” data structures that the function accesses or modifies.
(By “global” we mean any entity that is not a parameter or local variable of the
function.)

If the precondition holds, the supplier (i.e. developer) of the function must
ensure that the function terminates with the postcondition satisfied. That is, the
function returns the required values and/or alters the “global” data structures
in the required manner.

The precondition of the factorial function requires that argument n be a
nonnegative integer value. We could use Scala’s predefined requires method to
ensure this precondition holds, but, in this version, if all pattern matches fail,
the function call aborts with a standard error message.

The postcondition of factorial is that the result returned is the correct math-
ematical value of n factorial. The function factorial neither accesses nor
modifies any global data structures.

Time and space complexity

How efficient is function factorial?

Function factorial recurses to a depth of n. It thus has time complexity O(n),
if we count either the recursive calls or the multiplication at each level.

3

The space complexity is also O(n) because a new runtime stack frame is needed
for each recursive call.

Nonlinear recursion

A nonlinear recursion is a recursive function in which the evaluation of some leg
requires more than one recursive application.

For example, the naive Fibonacci number function fib shown below has two
recursive applications in its third leg. When we apply this function to a non-
negative integer argument greater than 1, we generate a pattern of recursive
applications that has the “shape” of a binary tree. Some call this a tree recursion.

def fib(n: Int): Int = n match {
case 0 => 0
case 1 => 1
case m if m >= 2 => fib(m-1) + fib(m-2) // double rec.
case _ =>

sys.error(s"Fibonacci undefined for $n")
}

What are the precondition and postcondition for fib(n)?

For fib(n), the precondition n >= 0 ensures that the function is defined. When
called with the precondition satisfied, the postcondition is:

fib(n) = Fibonacci(n)

How do we know that fib terminates?

For the recursive case n >= 2, the two recursive calls have arguments that are 1
or 2 less than n. Thus every call gets closer to one of the two base cases.

What are the time and space complexities of function fib?

Function fib is combinatorially explosive, having a time complexity O(fib(n)).

The space complexity is O(n) because a new runtime stack frame is needed for
each recursive call and the calls recurse to a depth of n.

An advantage of a linear recursion over a nonlinear one is that a linear recursion
can be compiled into a loop in a straightforward manner. Converting a nonlinear
recursion to a loop is, in general, difficult.

Backward and Forward Recursion

In this section, we examine the concepts of backward and forward recursion.

4

Backward recursion

A function definition is backward recursive if the recursive application is embedded
within another expression. During execution, the program must complete the
evaluation of the expression after the recursive call returns. Thus, the program
must preserve sufficient information from the outer call’s environment to complete
the evaluation.

The definition for the function factorial above is backward recursive because
the recursive application factorial(n-1) in the second leg is embedded within
the expression n * factorial(n-1). During execution, the multiplication must
be done after return. The program must “remember” (at least) the value of
parameter n for that call.

A compiler can translate a backward linear recursion into a loop, but the
translation may require the use of a stack to store the program’s state (i.e. the
values of the variables and execution location) needed to complete the evaluation
of the expression.

Often when we design an algorithm, the first functions we come up with are
backward recursive. They often correspond directly to a convenient recurrence
relation. It is often useful to convert the function into an equivalent one that
evaluates more efficiently.

Forward recursion

A function definition is forward recursive if the recursive application is not
embedded within another expression. That is, the outermost expression is the
recursive application and any other subexpressions appear in the argument lists.
During execution, significant work is done as the recursive calls are made (e.g. in
the argument list of the recursive call).

The definition for the auxiliary function factIter within the factorial2 defini-
tion below is forward recursive. The recursive application factIter(m-1,m*r)
in the second leg is on the outside of the expression evaluated for return. The
other legs are nonrecursive.

def factorial2(n: Int): Int = {

def factIter(n: Int, r: Int): Int = n match {
case 0 => r
case m if m > 0 => factIter(m-1,m*r)

}

if (n >= 0)
factIter(n,1)

else

5

sys.error(s"Factorial undefined for $n")
}

What are the precondition and postcondition for factIter(n,r)?

To avoid termination, factIter(n,r) requires n >= 0. Its postcondition is that:

factIter(n,r) = r * fact(n)

How do we know that factIter terminates?

Argument n of the recursive call is at least 1 and decreases by 1 on each recursive
call; it eventually reaches the base case.

What is the time complexity of function factorial2?

Function factIter(n,r) has a time complexity of O(n). But, because, tail call
optimization converts the factIter recursion to a loop, the time complexity’s
constant factor should be smaller than that of factorial(n).

As shown, factIter(n,r) seems to have a space complexity of O(n). But tail
call optimization converts the recursion to a loop. Thus the space complexity of
factIter(n,r) becomes O(1).

Tail Recursion

A function definition is tail recursive if it is both forward recursive and linear
recursive. In a tail recursion, the last action performed before the return is a
recursive call.

The definition of the function factIter above is tail recursive because it is both
forward recursive and linear recursive.

Tail recursive definitions are easy to compile into efficient loops. There is no need
to save the states of unevaluated expressions for higher level calls; the result of
a recursive call can be returned directly as the caller’s result. This is sometimes
called tail call optimization (or “tail call elimination” or “proper tail calls”).

In converting the backward recursive function factorial to a tail recursive
auxiliary function, we added the parameter r to factIter. This parameter is
sometimes called an accumulating parameter (or just an accumulator).

We typically use an accumulating parameter to “accumulate” the result of
the computation incrementally for return when the recursion terminates. In
factIter, this “state” passed from one “iteration” to the next enables us to
convert a backward recursive function to an “equivalent” tail recursive one.

Function factIter(n,r) defines a more general function than factorial. It
computes a factorial when we initialize the accumulator to 1, but it can compute
some multiple of the factorial if we initialize the accumulator to another value.

6

However, the application of factIter in factorial2 gives the initial value of 1
needed for factorial.

Consider auxiliary function fibIter used by function fib2 below. This function
adds two “accumulating parameters” to the backward nonlinear recursive function
fib to convert the nonlinear (tree) recursion into a tail recursion. This technique
works for Fibonacci numbers, but the same technique will not work in all cases.

def fib2(n: Int): Int = {

def fibIter(n: Int, p: Int, q: Int): Int = n match {
case 0 => p
case m => fibIter(m-1,q,p+q)

}

if (n >= 0)
fibIter(n,0,1)

else
sys.error(s"Fibonacci undefined for $n")

}

What are the precondition and postcondition for fibIter(n,p,q)?

To avoid abnormal termination, fibIter(n,p,q) requires n >= 0. When the
precondition holds, its postcondition is:

fibIter(n,p,q) = Fibonacci(n) + (p + q - 1)

How do we know that fibIter terminates?

The recursive leg of fibIter(n,p,q) is only evaluated when n1 > 0. On the
recursive call, that argument decreases by 1. So eventually the computation
reaches the base case.

What are the time and space complexities of fibIter?

Function fibIter has a time complexity of O(n) in contrast to O(fib(n)) for
fib. This algorithmic speedup results from the replacement of the very expen-
sive operation fib(n-1) + fib(n-2) at each level in fib by the inexpensive
operation p + q (i.e. addition of two numbers) in fib2.

Without tail call optimization, fibIter(n,p,q) has space complexity of O(n).
However, tail call optimization can convert the recursion to a loop, giving O(1)
space complexity.

When combined with tail-call optimization, a tail recursive function may be
more efficient than the equivalent backward recursive function. However, the
backward recursive function is often easier to understand and to reason about.

7

Logarithmic Recursive

We can define the exponentiation operator ^ in terms of multiplication as follows
for integers b and n >= 0:

bˆn =
∏i=n

i=1 b

The backward recursive exponentiation function expt1 below raises a number to
a nonnegative integer power. It has time complexity O(n) and space complexity
O(n).

def expt1(b: Double, n: Int): Double = n match {
case 0 => 1
case m if m > 0 => b * expt1(b,m-1)
case _ =>

sys.error(s"Cannot raise to a negative power $n")
}

Consider the following questions relative to expt1(b,n).

• What are the precondition and postcondition for expt1(b,n)?

• How do we know that expt1(b,n) terminates?

• What are the time and space complexities for expt1(b,n)?

We can define a tail recursive auxiliary function exptIter by adding a new
parameter p to accumulate the value of the exponentiation incrementally. We
can define exptIter within a function expt2, taking advantage of the fact that
the base b does not change. This is shown below.

def expt2(b: Double, n: Int): Double = {

def exptIter(n: Int, p: Double): Double =
n match {

case 0 => p
case m => exptIter(m-1,b*p)

}

if (n >= 0)
exptIter(n,1)

else
sys.error(s"Cannot raise to negative power $n")

}

Consider the following questions relative to expt1(b,n).

• What are the precondition and postcondition for exptIter(n,p)?

• How do we know that exptIter(n,p) terminates?

• What are the time and space complexities for exptIter(n,p)?

8

The exponentiation function can be made computationally more efficient by
squaring the intermediate values instead of iteratively multiplying. We observe
that:

b^n = b^(n/2)^2 if n is even
b^n = b * b^(n-1) if n is odd

Function expt3 below incorporates this observation in an improved algorithm.
Its time complexity is O(log(n)) and space complexity is O(log(n)).

def expt3(b: Double, n: Int): Double = {

def exptAux(n: Int): Double = n match {
case 0 => 1
case m if (m % 2 == 0) => // i.e. even

val exp = exptAux(m/2)
exp * exp // backward recursion

case m => // i.e. odd
b * exptAux(m-1) // backward recursion

}

if (n >= 0)
exptAux(n)

else
sys.error(s"Cannot raise to negative power $n")

}

Consider the following questions relative to expt3.

• What are the precondition and postcondition of expt3(b,n)?

• How do we know that exptAux(n) terminates?

• What are the time and space complexities of exptAux(n)?

Exercises

TODO: I adapted many of these exercise descriptions from similar Haskell
exercises in ELIFP [Cunningham 2018] Chapters 5 and 9. They should be
reconsidered, refined, and tested better for use in a Scala-based functional
programming course. The order may also need to be modified and some exercises
are probably better placed with different notes.

1. Answer the questions (precondition, postcondition, termination, time
complexity, space complexity) in the discussion of expt1.

2. Answer the questions in the discussion of expt2 and exptIter.

3. Answer the questions in the discussion of expt3 and exptAux.

9

4. Develop a Scala function sumSqBig that takes three Double arguments
and returns the sum of the squares of the two larger numbers.

For example, sumSqBig(2.0,1.0,3.0) yields 13.0.

5. Develop a Scala function prodSqSmall that takes three Double arguments
and returns the product of the squares of the two smaller numbers.

For example, prodSqSmall(2.0,4.0,3.0) yields 36.0.

6. Develop a Scala function xor that takes two Boolean arguments and returns
the “exclusive-or” of the two values. An exclusive-or operation returns true
when exactly one of its arguments is true and returns false otherwise.

7. Develop a Scala function implies that takes two Boolean arguments p and
q and returns the Boolean result p ⇒ q (i.e. logical implication). That is,
if p is true and q is false, then the result is false; otherwise, the result
is true.

Note: This function is sometimes called nand.

8. Develop a Scala function div23n5 that takes an Int and returns the
Boolean true if and only if the integer is divisible by 2 or divisible by 3,
but is not divisible by 5.

For example, div23n5(4), div23n5(6), and div23n5(9) yield true and
div23n5(5), div23n5(7_, div23n5(10), div23n5(15), div23n5(30)
yield false.

9. Develop a Scala function notDiv such that notDiv(n,d) returns true if
and only if integer n is not divisible by integer d.

For example, notDiv(10,5) yields false and notDiv(11,5) yields true.

10. Develop a Scala function ccArea that takes the diameters of two concentric
circles (i.e. with the same center point) as Double values and returns the
area of the space between the circles. That is, compute the area of the
larger circle minus the area of the smaller circle.

For example, ccArea(2.0,4.0) yields approximately 9.42477796.

11. Develop a Scala function addTax that takes two Double values such that
addTax(c,p) returns c with a sales tax of p percent added. For example,
addTax(2.0,9.0) returns 2.18.

Also develop a function subTax that is the inverse of addTax.
That is, subTax((addTax(c,p)), p) yields c. For example,
subTax(2.18,9.0) = 2.0.

12. Develop a backward recursive Scala function sumTo such that sumTo(n)
computes the sum of the integers from 1 to n for n > 0.

13. Develop a Scala function sumTo2 such that sumTo2(n) computes the sum of
the integers from 1 to n for n > 0. Use a tail recursive auxilliary function.

10

14. Develop a backward recursive Scala function sumFromTo such that
sumFromTo(m,n) computes the sum of the integers from m to n for n >= m.

15. Develop a Scala function sumFromTo2 such that sumFromTo2(m,n) com-
putes the sum of the integers from m to n n >= m. Use a tail recursive
auxilliary function.

16. Suppose we have Scala functions succ (successor) and pred (predecessor)
defined as follows:

def succ(n: Int): Int = n + 1
def pred(n: Int): Int = n - 1

Develop a recursive Scala function add such that add(m,n) computes m + n
for two integers m and n. Function add cannot use addition or subtraction
operators but can use unary negation, comparisons between integers, and
the succ and pred functions defined above.

17. Develop a recursive Scala function mult such that mult(m,n) computes
m * n for two integers m and n. The function cannot use the multiplication
(*) or division (/) operators but can use unary negation, comparisons
between integers, and the succ, pred, and add function from the previous
exercise.

18. Develop a recursive Scala function acker to compute Ackermann’s function,
which is a function A defined as follows for integers m and n:

A(m, n) = n + 1, if m = 0
A(m, n) = A(m− 1, 1), if m > 0 and n = 0
A(m, n) = A(m− 1, A(m, m− 1)), if m > 0 and n > 0

19. Develop a recursive Scala function hailstone to implement the following
function:

hailstone(n) = 1, if n = 1
hailstone(n) = hailstone(n/2), if n > 1, even n
hailstone(n) = hailstone(3 ∗ n + 1), if n > 1, odd n

Note that an application of the hailstone function to the argument 3
would result in the following “sequence” of “calls” and would ultimately
return the result 1.

hailstone(3)
hailstone(10)
hailstone(5)
hailstone(16)
hailstone(8)

11

hailstone(4)
hailstone(2)
hailstone(1)

What is the domain of the hailstone function? How do we know the
function terminates?

20. Develop a Scala exponentiation function expt4 that is similar to expt3
but is tail recursive as well as logarithmic recursive.

21. Develop the following group of recursive Scala functions:

• test such that test(a,b,c) is true if and only if a <= b and no
integer is the range from a to b inclusive is divisible by c.

• prime such that prime(n) is true if and only if n is a prime integer.

• nextPrime such that nextPrime(n) returns the next prime integer
greater than n

22. Develop a recursive Scala function binom to compute binomial coefficients.
That is, binom(n,k) returns

(
n
k

)
for integers n >= 0 and 0 <= k <= n.

23. The time of day can be represented in Scala by the definitions

sealed trait APM
case object AM extends APM
case object PM extends APM
case class Time12(hours: Int, minutes: Int, apm: APM)

where hours and minutes are integers such that 1 <= hours <= 12 and
0 <= minutes <= 59.

Develop a Boolean Scala function comesBefore that takes two Time12
objects and determines whether the first is an earlier time than the second.

TODO: Perhaps modify the exercise above to use the Ord trait as in the
exercise below.

24. A date on the proleptic Gregorian calendar (see note below) can be repre-
sented in Scala by the definition

case class PGDate(year: Int, month: Int, day: Int)

with the following constraints on valid objects:

• year is any integer
• 1 <= month <= 12
• 1 <= day <= days_in_month(year,month)

Here days_in_month(year,month) represents the number of days in the
the given month (i.e. 28, 29, 30, or 31) for the given year. Remember that
the number of days in February varies between regular and leap years.

12

For the items below, write your own Scala functions. Do not use a date
library.

a. Extend class PGdate to implement trait Ord as defined below (and in
the Notes on Scala for Java Programmers):

trait Ord {
def < (that: Any): Boolean
def <=(that: Any): Boolean =

(this < that) || (this == that)
def > (that: Any): Boolean = !(this <= that)
def >=(that: Any): Boolean = !(this < that)

}

If needed, redefine the method equals.

The interpretation of d1 < d2 is that d1 is an earlier date than d2.

b. Redefine method toString appropriately for PGDate.

c. Develop a Scala function validPGDate(d) that takes a PGDate object
d and returns true if and only if d satisfies the constraints given
above.

For example:

• validPGDate(PGDate(2019,2,1)) == true
• validPGDate(PGDate(2016,2,29)) == true
• validPGDate(PGDate(2017,2,29)) == false
• validPGDate(PGDate(0,0,0)) == false

You may need to develop one or more other functions to implement
the validPGDate function.

d. For any PGDate beginning with (i.e. >=) PGDate(-4712,1,1), develop
Scala functions:

• daysBetween(d1,d2) that takes two valid PGDate objects d1 and
d2 and returns the number of days between them. The difference
value is positive if d1 < d2 and negative if d1 > d2.

• addDays(d,days) takes a PGDate object d and an integer number
of days and returns a valid PGDate object that is offset by that
number of days. A positive offset results in a later date.

Note: The Gregorian calendar [Wikipedia 2019] was introduced by Pope
Gregory of the Roman Catholic Church in October 1582. It replaced the
Julian calendar system, which had been instituted in the Roman Empire
by Julius Caesar in 46 BC. The goal of the change was to align the calendar
year with the astronomical year.

Some countries adopted the Gregorian calendar at that time. Other
countries adopted it later. Some countries may never have adopted it

13

../ScalaForJava/ScalaForJava.html

officially.

However, the Gregorian calendar system became the common calendar
used worldwide for most civil matters. The proleptic Gregorian calendar
[Wikipedia 2019] extends the calendar backward in time from 1582. The
year 1 BC becomes year 0, 2 BC becomes year -1, etc. The proleptic
Gregorian calendar underlies the ISO 8601 standard used for dates and
times in software systems [Wikipedia 2019].

Arithmetic on calendar dates is often done by converting a date to the
Julian Day Number (JDN), doing the arithmetic on those values, and then
converting back to the calendar date [Wikipedia 2019].

25. Develop a Scala function roman that takes an Int) in the range from 0
to 3999 (inclusive) and returns the corresponding Roman numeral as a
string (using capital letters). The function should halt with an appropriate
sys.error messages if the argument is below or above the range. Roman
numbers use the following symbols and are combined by addition or
subtraction of symbols.

I 1
V 5
X 10
L 50
C 100
D 500
M 1000

For the purposes of this exercise, we represent the Roman numeral for 0
as the empty string. The Roman numbers for integers 1-20 are I, II, III,
IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, XVI, XVII, XVII, XIX,
and XX. Integers 40, 90, 400, and 900 are XL, XC, CD, and CM.

26. Develop a Scala function

def minf(g: (Int => Int)): Int

that takes a function g and returns the smallest integer m such that
0 <= m <= 10000000 and g(m) == 0. It should throw a sys.error if
there is no such integer.

Acknowledgements

I wrote the first version of these notes in Fall 2013 to accompany my lectures
on recursion concepts and programming techniques for a Lua-based course. I
adapted some aspects of my earlier notes on functional programming using
Haskell [Cunningham 2014].

14

I adapted the factorial, Fibonacci number, and exponentiation functions from
similar Scheme functions in the classic textbook SICP [Abelson 1996].

I subsequently adapted these notes for use in functional or multiparadigm
programming classes using Elixir (Spring 2015), Scala (Spring 2016), and Haskell
(Summer 2016) [Cunningham 2016].

In Summer 2016, I also incorporated the Haskell version in what is now Chapter
9 of my Haskell-based textbook Exploring Languages using Interpreters and
Functional Programming (ELIFP) [Cunningham 2018].

In Spring 2019, I merged parts of ELIFP Chapter 9 and the earlier Scala version
of the notes to create the current document. I also included some exercises from
ELIFP Chapter 5.

References

[Abelson 1996]: Harold Abelson and Gerald Jay Sussman. Structure and
Interpretation of Computer Programs (SICP), Second Edition, MIT Press,
1996.

[Bird 1988]: Richard Bird and Philip Wadler. Introduction to Functional
Programming, First Edition, Prentice Hall, 1988.

[Cunningham 2014]: H. Conrad Cunningham. Notes on Functional Program-
ming with Haskell, 1993-2014.

[Cunningham 2016]: H. Conrad Cunningham. Recursion Concepts and Ter-
minology, 2013-2016.

[Cunningham 2018]: H. Conrad Cunningham. Exploring Languages with
Interpreters ‘and Functional Programming, 2018. Available at https://
john.cs.olemiss.edu/~hcc/csci450/ELIFP/ExploringLanguages.html.

[Wikipedia 2019]: Wikipedia, articles on “Gregorian Calendar”, “Proleptic
Gregorian Calendar”, “Julian Day”, and “ISO 8601”, accessed on 31 Jan-
uary 2019.

Terms and Concepts

Recursion styles (linear vs. nonlinear, backward vs. forward, tail, and logarithmic),
correctness (precondition, postcondition, and termination), efficiency estimation
(time and space complexity), transformations to improve efficiency (auxiliary
function, accumulator).

15

http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
https://usi-pl.github.io/lc/sp-2015/doc/Bird_Wadler.%20Introduction%20to%20Functional%20Programming.1ed.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci555/notes/RecursionConcepts/RecursionConceptsScala.html
https://john.cs.olemiss.edu/~hcc/csci555/notes/RecursionConcepts/RecursionConceptsScala.html
https://john.cs.olemiss.edu/~hcc/csci450/ELIFP/ExploringLanguages.html
https://john.cs.olemiss.edu/~hcc/csci450/ELIFP/ExploringLanguages.html

	Recursion Styles, Correctness, and Efficiency
	Introduction
	Linear and Nonlinear Recursion
	Linear recursion
	Termination of recursion
	Preconditions and postconditions
	Time and space complexity
	Nonlinear recursion

	Backward and Forward Recursion
	Backward recursion
	Forward recursion
	Tail Recursion

	Logarithmic Recursive
	Exercises
	Acknowledgements
	References
	Terms and Concepts

