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In a 1976 article [4] Parnas observes, “Variations in application demands, variations in hardware 

configurations, and the ever-present opportunity to improve a program means that software will inevitably

exist in many versions.”  He argues that the design of a program should be approached as the design of a 

family of related programs. He defines a program family as a set of programs “whose common properties 

are so extensive that it is advantageous to study the common properties of the programs before analyzing 

individual members.” If programmers can identify and exploit these “common aspects and predicted 

variabilities” [6], the resulting software can be constructed to reuse code for the common parts and to 

enable convenient adaptation of the variable parts for specific applications.  A quarter-century after his 

original article, Parnas notes that there is “growing academic interest and some evidence of real industrial 

success in applying this idea,” yet “the majority of industrial programmers seem to ignore it in their rush to 

produce code” [5].  If software families are to become pervasive, students need to learn to design and 

construct them effectively. 

Software families are difficult to teach in a college course because their design may require 

extensive knowledge of an application’s domain and the use of special-purpose languages and tools [6]. 

However, the form of software family called a software framework is more accessible because the 

framework techniques build upon standard object-oriented concepts that students learn in undergraduate 

courses.  A framework is essentially the reusable skeleton of a family implemented entirely in an object-

oriented programming language.  The common aspects are expressed by a set of abstract and concrete 

“classes that cooperate closely with each other and together embody a reusable solution” [1] to problems in 

the application domain.  The framework can be customized to a specific member of the family by 

“plugging in” appropriate subclasses at the supported points of variability. 

This tutorial is based, in part, on article [2].  The tutorial introduces the technical concepts and 

techniques for the design and use of software frameworks in Java, giving attention to the teaching of 

framework concepts in the classroom. It uses function generalization [2,3] and other systematic approaches 

to framework design. It illustrates these techniques using two case studies. The first is the family of 

programs that use the well-known divide and conquer algorithmic strategy.  The second is the family of 



programs that carry out traversals of binary trees.  Because students study these classic data structures and 

algorithms in a typical computing science curriculum, the example frameworks can be used in the 

classroom without requiring much time for domain analysis.  
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