
CSci 555: Functional Programming
Data Abstraction

H. Conrad Cunningham

14 February 2019

Contents
Data Abstraction 2

What is Abstraction? . 2
Kinds of abstraction . 2
Procedures and functions . 3

Concrete Data Structures . 4
Abstract Data Structures . 4
Abstract Data Types . 5
Defining ADTs . 6
Axiomatic Specification of an Unbounded Stack ADT 7

Name . 7
Sets . 7
Signatures . 8

Constructors . 8
Mutators . 8
Accessors . 9
Destructors . 9

Semantics (axiomatic approach) 9
Constructive Specification of a Bounded Stack ADT 11

Name . 11
Sets . 11
Signatures . 11

Constructors . 11
Mutators . 11
Accessors . 12
Destructors . 12

Semantics (constructive approach) 12
Constructor . 12
Mutators . 12
Accessors . 13
Destructor . 13

1

More formal semantics for bounded stack 14
Constructor . 14
Mutators . 15
Accessors . 15
Destructor . 16

Date (Day) ADT . 16
Constructor . 16
Mutators . 16
Accessors . 17
Destructor . 18

Client-Supplier Relationship . 18
Design Criteria for ADT Interfaces . 19
Conclusion . 20
Exercises . 20
Acknowledgements . 20
References . 21
Terms and Concepts . 21

Copyright (C) 2017, 2018, 2019, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
211 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-5358

Browser Advisory: The HTML version of this document may require use of
a browser that supports the display of MathML. A good choice as of February
2019 is a recent version of Firefox from Mozilla.

TODO: Update the programming language support to be more generic.

2

http://www.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

Data Abstraction

What is Abstraction?

As computing scientists and computer programmers, we should remember the
maxim:

Simplicity is good; complexity is bad.

The most effective weapon that we have in the fight against complexity is
abstraction. What is abstraction?

Abstraction is concentrating on the essentials and ignoring the details.

Sometimes abstraction is described as remembering the “what” and ignoring the
“how”.

Kinds of abstraction

Large complex systems can only be made understandable by decomposing them
into modules. When viewed from the outside, from the standpoints of users,
each module should be simple, with the complexity hidden inside.

We strive for modules that have simple interfaces that can be used without
knowing the implementations. Here we use interface to mean any information
about the module that other modules must assume to be able to do their work
correctly.

Two kinds of abstraction are of interest to computing scientists: procedural
abstraction and data abstraction.

Procedural abstraction: the separation of the logical properties of an action
from the details of how the action is implemented.

Data abstraction: the separation of the logical properties of data from the
details of how the data are represented.

When we develop an algorithm following the top-down approach, we are practicing
procedural abstraction. At a high level, we break the problem up into several
tasks. We give each task a name and state its requirements, but we do not worry
about how the task is to be accomplished until we expand it at a lower level of
our design.

When we code a task in a programming language, we will typically make each
task a subprogram (procedure, function, subroutine, method, etc.). Any other
program component that calls the subprogram needs to know its interface (name,
parameters, return value, assumptions, etc.) but does not need to know the
subprogram’s internal implementation details. The internal implementation can
be changed without affecting the caller.

3

In data abstraction, the focus is on the problem’s data rather than the tasks to
be carried out.

Procedures and functions

Generally we make the following distinctions among subprograms:

• A procedure is (in its pure form) a subprogram that takes zero or more
arguments but does not return a value. It is executed for its effects, such
as changing values in a data structure within the program, modifying its
reference or value-result arguments, or causing some effect outside the
program (e.g. displaying text on the screen or reading from a file).

• A function is (in its pure form) a subprogram that takes zero or more
arguments and returns a value but that does not have other effects.

• A method is a procedure or function often associated with an object or
class in an object-oriented program. Some object-oriented languages use
the metaphor of message-passing. A method is the feature of an object
that receives a message. In an implementation, a method is typically a
procedure or function associated with the (receiver) object; the object may
be an implicit parameter of the method.

Of course, the features of various programming languages and usual practices for
their use may not follow the above pure distinctions. For example, a language
may not distinguish between procedures and functions. One term or another
may be used for all subprograms. Procedures may return values. Functions may
have side effects. Functions may return multiple values. The same subprogram
can sometimes be called either as a function or procedure.

Nevertheless, it is good practice to maintain the distinction between functions
and procedures for most cases in software design and programming.

In Haskell, the primary unit of procedural abstraction is the pure function. Their
definitions may be nested within other functions. Haskell also groups functions
and other declarations into a program unit called a module. A module explicitly
exports selected functions and keep others hidden.

In Java, the primary unit of procedural abstraction is the method, which may be
a procedure, a pure function, or an impure (side-effecting) function. A method
must be part of a Java class, which is, in turn, part of a Java package.

Scala combines characteristics of Java and Haskell. It has Java-like methods,
which can be nested inside other methods. Scala also has class, object, trait,
and package constructs that include procedural abstractions.

4

Concrete Data Structures

In most languages (e.g. C), data structures are visible. A programmer can define
custom data types, yet their structure and values are known to other parts of
the program. These are concrete data structures.

As an example, consider a collection of records about the employees of a company.
Suppose we store these records in a global C array. The array and all its elements
are visible to all parts of the program. Any statement in the program can directly
access and modify the elements of the array.

The use of concrete data structures is convenient, but it does not scale well and
it is not robust with respect to change. As a program gets large, keeping track
of the design details of many concrete data structures becomes very difficult.
Also, any change in the design or implementation of a concrete data structures
may require change to all code that uses it.

Abstract Data Structures

An abstract data structure is a module consisting of data and operations. The
data are hidden within the module and can only be accessed by means of the
operations. The data structure is called abstract because its name and its
interface are known, but not its implementation. The operations are explicitly
given; the values are only defined implicitly by means of the operations.

An abstract data structure supports information hiding. Its implementation is
hidden behind an interface that remains unchanged, even if the implementation
changes. The implementation detail of the module is a design decision that is
kept as a secret from the other modules.

The concept of encapsulation is related to the concept of information hiding.
The data and the operations that manipulate the data are all combined in one
place. That is, they are encapsulated within a module.

An abstract data structure has a state that can be manipulated by the operations.
The state is a value, or collection of information, held by the abstract data
structure.

As an example, again consider the collection of records about the employees
of a company. Suppose we impose a discipline on our program, only allowing
the collection of records to be accessed through a small group of procedures
(and functions). Inside this group of procedures, the array of records can be
manipulated directly. However, all other parts of the program must use one of
the procedures in the group to manipulate the records in the collection. The fact
that the collection is implemented with an array is (according to the discipline
we imposed) hidden behind the interface provided by the group of procedures.
It is a secret of the module providing the procedures.

5

Now suppose we wish to modify our program and change the implementation
from an array to a linked list or maybe to move the collection to a disk file.
By approaching the design of the collection as an abstract data structure, we
have limited the parts of the program that must be changed to the small group
of procedures that used the array directly; other parts of the program are not
affected.

As another example of an abstract data structure, consider a stack. We provide
operations like push, pop, and empty to allow a user of the stack to access and
manipulate it. Except for the code implementing these operations, we disallow
direct access to the concrete data structure that implements the stack. The
implementation might use an array, a linked list, or some other concrete data
structure; the actual implementation is “hidden” from the user of the stack.

We, of course, can use the available features of a particular programming language
(e.g. module, package, class) to hide the implementation details of the data
structure and only expose the access procedures.

Abstract Data Types

There is only one instance of an abstract data structure. Often we need to create
multiple instances of an abstract data structure. For example, we might need
to have a collection of employee records for each different department within a
large company.

We need to go a step beyond the abstract data structure and define an abstract
data type (ADT).

What do we mean by type?

Type: a category of entities sharing common characteristics

Consider the built-in type int in C. By declaring a C variable to be of type int,
we are specifying that the variable has the characteristics of that type:

1. a value (state) drawn from some set (domain) of possible values—in the
case of int, a subset of the mathematical set of integers,

2. a set of operations that can be applied to those values—in the case of int,
addition, multiplication, comparison for equality, etc.

Suppose we declare a C variable to have type int. By that declaration, we are
creating a container in the program’s memory that, at any point in time, holds
a single value drawn from the int domain. The contents of this container can
be operated upon by the int operations. In a program, we can declare several
int variables: each variable may have a different value, yet all of them have the
same set of operations.

In the definition of a concrete data type, the values are the most prominent
features. The values and their representations are explicitly prescribed; the

6

operations on the values are often left implicit.

The opposite is the case in the definition of an abstract data type. The opera-
tions are explicitly prescribed; the values are defined implicitly in terms of the
operations. A number of representations of the values may be possible.

Conceptually, an abstract data type is a set of entities whose logical behavior
is defined by a domain of values and a set of operations on that domain. In
the terminology we used above, an ADT is set of abstract data structures all
of whom have the same domain of possible states and have the same set of
operations.

We will refer to a particular abstract data structure from an ADT as an instance
of the ADT.

The implementation of an ADT in a language like C is similar to that discussed
above for abstract data structures. In addition to providing operations to access
and manipulate the data, we need to provide operations to create and destroy
instances of the ADT. All operations (except create) must have as a parameter
an identifier (e.g. a pointer) for the particular instance to be operated upon.

While languages like C do not directly support ADTs, the class construct
provides a direct way to define ADTs in languages like C++, Java, and Scala.

Defining ADTs

The behavior of an ADT is defined by a set of operations that can be applied to
an instance of the ADT.

Each operation of an ADT can have inputs (i.e. parameters) and outputs
(i.e. results). The collection of information about the names of the operations
and their inputs and outputs is the interface of the ADT.

To specify an ADT, we need to give:

1. the name of the ADT
2. the sets (or domains) upon which the ADT is built. These include the

type being defined and the auxiliary types (e.g. primitive data types and
other ADTs) used as parameters or return values of the operations.

3. the signatures (syntax or structure) of the operations
• name
• input sets (i.e. the types, number, and order of the parameters)
• output set (i.e. the type of the return value)

4. the semantics (or meaning) of the operations

There are two primary approaches for specifying the semantics of the operations:

• The axiomatic (or algebraic) approach gives a set of logical rules (properties
or axioms) that relate the operations to one another. The meanings of the
operations are defined implicitly in terms of each other.

7

• The constructive (or abstract model) approach describes the meaning of
the operations explicitly in terms of operations on other abstract data
types. The underlying model may be any well-defined mathematical model
or a previously defined ADT.

In some ways, the axiomatic approach is the more elegant of the two approaches.
It is based in the well-established mathematical fields of abstract algebra and
category theory. Furthermore, it defines the new ADT independently of other
ADTs. To understand the definition of the new ADT it is only necessary to
understand its axioms, not the semantics of a model.

However, in practice, the axiomatic approach to specification becomes very
difficult to apply in complex situations. The constructive approach, which
builds a new ADT from existing ADTs, is the more useful methodology for most
practical software development situations.

To illustrate both approaches, let us look at a well-known ADT that we studied
in the introductory data structures course, the stack.

Axiomatic Specification of an Unbounded Stack ADT

In this section we give an axiomatic specification of an unbounded stack ADT.
By unbounded, we mean that there is no maximum capacity for the number of
items that can be pushed onto an instance of a stack.

Remember that an ADT specification consists of the name, sets, signatures, and
semantics.

Name

Stack (of Item)

In this specification, we are defining an ADT named Stack. The parameter
Item represents the arbitrary unspecified type for the entities stored in the stack.
Item is a formal generic parameter of the ADT specification. Stack is itself a
generic ADT; a different ADT is specified for each possible generic argument
that can be substituted for Item.

Sets

The sets (domains) involved in the Stack ADT are the following:

Stack: the set of all stack instances
(This is the set we are defining with the ADT.)

Item: the set of all items that can appear in a stack instance
boolean: the primitive Boolean type { False, True }

8

Signatures

To specify the signatures for the operations, we use the notation for mathematical
functions. By a tuple like (Stack, Item), we mean the Cartesian product of
sets Stack and Item, that is, the set of ordered pairs where the first component
is from Stack and the second is from Item. The set to the right of the -> is the
return type of the function.

We categorize the operations into one of four groups depending upon their
functionality:

• A constructor (sometimes called a creator, factory, or producer function)
constructs and initializes an instance of the ADT.

• A mutator (sometimes called a modifier, command, or “setter” function)
returns the instance with its state changed.

• An accessor (sometimes called an observer, query, or “getter” function)
returns information from the state of an instance without changing the
state.

• A destructor destroys an instance of the ADT.

We will normally list the operations in that order.

For now, we assume that a mutator returns a distinct new instance of the ADT
with a state that is a modified version of the original instance’s state. That is,
we are taking an applicative (or functional or referentially transparent) approach
to ADT specifications.

Technically speaking, a destructor is not an operation of the ADT. We can
represent the other types of operations as functions on the sets in the specification.
However, we cannot define a destructor in that way. But destructors are of
pragmatic importance in the implementation of ADTs, particularly in languages
that do not have automatic storage reclamation (i.e. garbage collection).

The signatures of the Stack ADT operations are as follows.

Constructors

create: -> Stack

Mutators

push: (Stack, Item) -> Stack

pop: Stack -> Stack

9

Accessors

top: Stack -> Item

empty: Stack -> boolean

Destructors

destroy: Stack ->

The operation pop may not be the same as the “pop” operation you learned in
a data structures class. The traditional “pop” both removes the top element
from the stack and returns it. In this ADT, we have separated out the “return
top” functionality into accessor operation top and left operation pop as a pure
mutator operation that returns the modified stack.

The separation of the traditional “pop” into two functions has two advantages:

1. It results in an elegant, applicative stack specification whose operations fit
cleanly into the mutator/accessor categorization.

2. It results in a simpler, cleaner abstraction in which the set of operations
is “atomic”. No operation in the ADT’s interface can be decomposed into
other operations also in the interface.

Also note that operation destroy does not return a value. As we pointed out
above, the destroy operation is not really a part of the formal ADT specification.

Semantics (axiomatic approach)

We can specify the semantics of the Stack ADT with the following axioms. Each
axiom must hold for all instances s of type Stack and all entities x of type Item.

1. top(push(s,x)) = x
2. pop(push(s,x)) = s
3. empty(create()) = True
4. empty(push(s,x)) = False

The axioms are logical assertions that must always be true. Thus we can write
Axioms 3 and 4 more simply as:

3. empty(create())
4. not empty(push(s,x))

The first two axioms express the last-in-first-out (LIFO) property of stacks.
Axiom 1 tells us that the top element of the stack is the last element pushed.
Axiom 2 tells us that removal of the top element returns the stack to the state
it had before the last push.

10

Moreover, axioms 1 and 2 specify the LIFO property of stacks in purely mathe-
matical terms; there was no need to use the properties of any representation or
use any time-based (i.e. imperative) reasoning.

The last two axioms define when a stack is empty and when it not. Axiom 3
tells us that a newly created stack is empty. Axiom 4 tells us that pushing an
entity on a stack results in a nonempty stack.

But what about the sequences of operations top(create()) and pop(create())?

Clearly we do not want to allow either top or pop to be applied to an empty
stack. That is, top and pop are undefined when their arguments are empty
stacks.

Functions may be either total or partial.

• A total function A -> B is defined for all elements of A.

For example, the multiplication operation on the set of real numbers R is a
total function (R,R) -> R.

• A partial function A -> B is undefined for one or more elements of A.

For example, the division operation on the set of real numbers R is a partial
function because it is undefined when the divisor is 0.

In software development (and, hence, in specification of ADTs), partial functions
are common. To avoid errors in execution of such functions, we need to specify
the actual domain of the partial functions precisely.

In an axiomatic specification of an ADT, we restrict operations to their domains
by using preconditions. The precondition of an operation is a logical assertion
that specifies the assumptions about and the restrictions upon the values of the
arguments of the operation.

If the precondition of an operation is false, then the operation cannot be safely
applied. If any operation is called with its precondition false, then the program
is incorrect.

In the axiomatic specification of the stack, we introduce two preconditions as
follows.

Precondition of pop(Stack S): not empty(S)
Precondition of top(Stack S) not empty(S)

Note that we have not given the semantics of the destructor operation destroy.
This operation cannot be handled in the simple framework we have established.

Operation destroy is really an operation on the “environment” that contains
the stack. By introducing, the “environment” explicitly into our specification,
we could specify its behavior more precisely. Of course, the semantics of create
would also need to be extended to modify the environment and the other

11

operations would likely require preconditions to ensure that the stack has been
created in the environment.

Another simplification that we have made in this ADT specification is that we
did not impose a bound on the capacity of the stack instance. We could specify
this, but it would also complicate the axioms the specification.

Constructive Specification of a Bounded Stack ADT

In this section, we give a constructive specification of a bounded stack ADT. By
bounded, we mean that there is a maximum capacity for the number of items
that can be pushed onto an instance of a stack.

Name

StackB (of Item)

Sets

In this specification of bounded stacks, we have one additional set involved, the
set of integers.

StackB: the set of all stack instances
Item: set of all items that can appear in a stack instance
boolean: the primitive Boolean type
integer: the primitive integer type { ..., -2, -1, 0, 1, 2, ... }

Signatures

In this specification of unbounded stacks, we define the create operation to
take the maximum capacity as its parameter.

Constructors

create: integer -> StackB

Mutators

push: (StackB, Item) -> StackB

pop: StackB -> StackB

In this specification, we add operation full to detect whether or not the stack
instance has reached its maximum capacity.

12

Accessors

top: StackB -> Item

empty: StackB -> boolean

full: StackB -> boolean

Destructors

destroy: StackB ->

Semantics (constructive approach)

In the constructive approach, we give the semantics of each operation by associ-
ating both a precondition and a postcondition with the operation.

As before, the precondition is a logical assertion that specifies the required
characteristics of the values of the arguments.

A postcondition is a logical assertion that specifies the characteristics of the
result computed by the operation with respect to the values of the arguments.

In the specification in this subsection, we are a bit informal about the nature of
the underlying model. Although the presentation here is informal, we try to be
precise in the statement of the pre- and postconditions.

Note: We can formalize the model using an ordered pair of type (integer max,
sequence stkseq), in which max is the upper bound on the stack size and
stkseq is a sequence that represents the current sequence elements of elements
in the stack. This, more formal alternative, is presented in the next subsection.

Constructor

create(integer size) -> StackB S'

• Precondition: size >= 0

• Postcondition: S' is a valid new instance of StackB &&
S' has the capacity to store size items &&
empty(S')

Mutators

push(StackB S, Item I) -> StackB S'

• Precondition: S is a valid StackB instance &&
not full(S)

13

• Postcondition: S' is a valid StackB instance &&
S' = S with I added as the new top.

pop(StackB S) -> StackB S'

• Precondition: S is a valid StackB instance &&
not empty(S)

• Postcondition: S' is a valid StackB instance &&
S' = S with the top item deleted

Accessors

top(StackB S) -> Item I

• Precondition: S is a valid StackB instance &&
not empty(S)

• Postcondition: I = the top item on S
(S is not modified by this operation.)

empty(StackB S) -> boolean e

• Precondition: S is a valid StackB instance

• Postcondition: e is true if and only if S contains no elements (i.e. is
empty)
(S is not modified by this operation.)

full(StackB S) -> boolean f

• Precondition: S is a valid StackB instance

• Postcondition: f is true if and only if S contains no space for additional
items (i.e. is full)
(S is not modified by this operation.)

Destructor

destroy(StackB S) ->

• Precondition: S is a valid StackB instance

• Postcondition: StackB S no longer exists

Note that each operation except the constructor (create) has a StackB instance
as an input; the constructor and each of the mutators also has a StackB instance
as an output. This parameter identifies the particular instance that the operation
is manipulating.

Also note that all of these StackB instances are required to be “valid” in all
preconditions and postconditions, except the precondition of the constructor
and the postcondition of the destructor. By valid we mean that the state

14

of the instance is within the acceptable domain of values; it has not become
corrupted or inconsistent. What is specifically mean by “valid” will differ from
one implementation of a stack to another.

Suppose we implement the mutator operations as imperative commands rather
then applicative functions. That is, we implement mutators so that they directly
modify the state of an instance instead of returning a modified copy. (S and S'
are implemented as different states of the same physical instance.)

Then, in some sense, the above “validity” property is invariant for an instance
of the ADT; the constructor makes the property true, all mutators and accessors
preserve its truth, and the destructor makes it false.

An invariant property must hold between operations on the instance; it might
not hold during the execution of an operation. (For this discussion, we assume
that only one thread has access to the ADT implementation.)

Aside: An invariant on an ADT instance is similar in concept to an invariant for
a while-loop. A loop invariant holds before and after each execution of the loop.

As a convenience in specification we will sometimes state the invariants of the
ADT separately from the pre- and postconditions of the methods. We sometimes
will divide the invariants into two groups.

interface invariants: invariants stated in terms of publicly accessible features
and abstract properties of the ADT instance.

implementation (representation) invariants: detailed invariants giv-
ing the required relationships among the internal data fields of the
implementation.

The interface invariants are part of the public interface of the ADT. They only
deal with the state of an instance in terms of the abstract model for the ADT.

The implementation invariants are part of the hidden state of an instance; in
some cases, they define the meaning of the abstract properties stated in the
interface invariants in terms of hidden values in the implementation.

More formal semantics for bounded stack

Let the bounded stack StackB be represented by an ordered pair of type (integer
max, sequence stkseq), in which max is the upper bound on the stack size and
stkseq is a sequence that represents the current sequence elements of elements
in the stack.

Constructor

create(integer size) -> StackB S'

• Precondition: size >= 0

15

• Postcondition: S' == (size,[])

Here [] represents an empty sequence. The value of a variable occurring in
the postcondition is the same as that variable’s value in the precondition.

Mutators

push(StackB S, Item I) -> StackB S'

• Precondition: S == (m,ss) && m >= 0 && length(ss) < m

• Postcondition: S' == (m,[I]++ss)

Above ++ denotes the concatenation of its left and right operand sequences.
The result sequence has all the values from the left operand sequence, in
the same order, followed by all the values from the right operand sequence,
in the same order. Also the notation [I] represents a sequence consisting
a single element with the value I.

pop(StackB S) -> StackB S'

• Precondition: S == (m,ss) && m >= 0 && length(ss) > 0

• Postcondition: S' == (m,tail(ss))

Above tail is a function that returns the sequence remaining after removing
the first element of its nonempty sequence argument. Similarly, the function
head (used below) returns the first element of its nonempty sequence
argument.

Accessors

top(StackB S) -> Item I

• Precondition: S == (m,ss) && m >= 0 && length(ss) > 0

• Postcondition: I = head(ss) && S' == S

empty(StackB S) -> boolean e

• Precondition: S == (m,ss) && m >= 0 && length(ss) <= m

• Postcondition: e == (length(ss) == 0) && S' == S

full(StackB S) -> boolean f

• Precondition: S == (m,ss) && m >= 0 && length(ss) <= m

• Postcondition: f == (length(ss) == m) && S' == S

16

Destructor

destroy(StackB S) ->

• Precondition: S == (m,ss) && m >= 0 && length(ss) <= m

• Postcondition: StackB S no longer exists

Using this abstract model, we can state an interface invariant:

For a StackB S, there exists an integer m and sequence of Item
elements l such that S == (m,ss) && m >= 0 && length(ss) <=
m

For discussion of implementing ADTs as Java classes, see the supplementary
notes. A Java implementation of the StackB ADT appears in those notes.

Date (Day) ADT

Consider an ADT for storing and manipulating calendar dates. We call the ADT
Day to avoid confusion with the Date class in the Java API. This ADT is based
on the Day class defined in Chapter 4 of the book [Horstmann 1999].

Logically, a calendar date consists of three pieces of information: a year designa-
tor, a month designator, and a day of the month designator. A secondary piece
of information is the day of the week. In this ADT interface definition, we use
integers (e.g. Java int) to designate these pieces of information.

Caveat: The discussion of Java in these notes does not use generic type parame-
ters.

Constructor

create(integer y, integer m, integer d) -> Day D'

• Precondition: y != 0 && 1 <= m <= 12 && 1 <= d <= #days in month m &&
(y,m,d) does not fall in the gap formed by the change to the modern
(Gregorian) calendar

• Postcondition: D' is a valid new instance of Day with year y, month m,
and day d

Mutators

setDay(Day D, integer y, integer m, integer d) -> Day D'

• Precondition: D is a valid instance of Day && y != 0 && 1 <= m <=
12 && 1 <= d <= #days in month &&

17

DataAbstraction_Java_ADTs.html
DataAbstraction_Java_ADTs.html
DataAbstraction_Java_ADTs.html#java-implementation-of-bounded-stack

(y,m,d) does not fall in the gap formed by the change to the modern
(Gregorian) calendar

• Postcondition: D' is a valid instance of Day &&
D'= D except with year y, month m, and day d

Question: Should we include setDay, setMonth, and setYear operations?
What problems might arise?

advance(Day D, integer n) -> Day D'

• Precondition: D is a valid instance of Day

• Postcondition: D' is a valid instance of Day &&
D' = D with the date moved n days later (Negative n moves to an
earlier date.)

Accessors

getDay(Day D) -> integer d

• Precondition: D is a valid instance of Day

• Postcondition: d is day of the month from D, where 1 <= d <= #days
in month getMonth(D)
(D is unchanged.)

getMonth(Day D) -> integer m

• Precondition: D is a valid instance of Day

• Postcondition: m is the month from D, where 1 <= m <= 12
(D is unchanged.)

getYear(Day D) -> integer y

• Precondition: : D is a valid instance of Day

• Postcondition: y is the year from D, where y != 0
(D is unchanged.)

getWeekday(Day D) -> integer wd

• Precondition: D is a valid instance of Day

• Postcondition: wd is the day of the week upon which D falls: 0 = Sunday,
1 = Monday, . . . , 6 = Saturday
(D is unchanged.)

equals(Day D, Day D1) -> boolean eq

• Precondition: D and D' are valid instances of Day

18

• Postcondition: eq is true if and only if D and D' denote the same calendar
date
(D and D' are unchanged.)

daysBetween(Day D, Day D1) -> integer d

• Precondition: D and D' are valid instances of Day

• Postcondition: d is the number of calendar days from D1 to D, i.e.
equals(D,advance(D1,d)) would be true
(D is unchanged.)

toString(Day D) -> String s

• Precondition: D is a valid instance of Day

• Postcondition: s is the date D expressed in the format “Day[getYear(D),getMonth(D),getDay(D)]”.
(D is unchanged.)

Note: This method is a “standard” method that should be defined for most Java
classes so that they fit well into the Java language framework.

Destructor

destroy(Day D) ->

• Precondition: D is a valid instance of Day

• Postcondition: D no longer exists

A Java implementation of the Day ADT appears in the supplementary notes.

Client-Supplier Relationship

The design and implementation of ADTs (i.e. classes) must be approached from
two points of view simultaneously:

supplier the developers of the ADT — the providers of the services
client the users of the ADT — the users of the services (e.g. the designers of

other ADTs)

The client-supplier relationship is as represented in the following diagram:

________________ ________________
Client	===USES===>	Supplier
________________		________________

(ADT user) (ADT)

The supplier’s concerns include:

19

DataAbstraction_Java_ADTs.html#java-class-implementation-for-day-1

• efficient and reliable algorithms and data structures,
• convenient implementation,
• easy maintenance.

The clients’ concerns include:

• accomplishing their own tasks,
• using the supplier ADT without effort to understand its internal details,
• having a sufficient, but not overwhelming, set of operations.

As we have noted previously, the interface of an ADT is the set of features
(i.e. public operations) provided by a supplier to clients.

A precise description of a supplier’s interface forms a contract between clients
and supplier.

The client-supplier contract:

1. gives the responsibilities of the client. These are the conditions under
which the supplier must deliver results — when the preconditions of the
operations are satisfied (i.e. the operations are called correctly).

2. gives the responsibilities of the supplier. These are the benefits the supplier
must deliver — make the postconditions hold at the end of the operation
(i.e. the operations deliver the correct results).

The contract

• protects the client by specifying how much must be done by the supplier.

• protects the supplier by specifying how little is acceptable to the client.

If we are both the clients and suppliers in a design situation, we should consciously
attempt to separate the two different areas of concern, switching back and forth
between our supplier and client “hats”.

Design Criteria for ADT Interfaces

We can use the following design criteria for evaluating ADT interfaces. Of course,
some of these criteria conflict with one another; a designer must carefully balance
the criteria to achieve a good interface design.

In object-oriented languages, these criteria also apply to class interfaces.

• Cohesion: All operations must logically fit together to support a single,
coherent purpose. The ADT should describe a single abstraction.

• Simplicity: Avoid needless features. The smaller the interface the easier
it is to use the ADT (class).

• No redundancy: Avoid offering the same service in more than one way;
eliminate redundant features.

20

• Atomicity: Do not combine several operations if they are needed indi-
vidually. Keep independent features separate. All operations should be
primitive, that is, not be decomposable into other operations also in the
public interface.

• Completeness: All primitive operations that make sense for the abstrac-
tion should be supported by the ADT (class).

• Consistency: Provide a set of operations that are internally consistent in

– naming convention (e.g. in use of prefixes like “set” or “get”, in
capitalization, in use of verbs/nouns/adjectives),

– use of arguments and return values (e.g. order and type of arguments),
– behavior (i.e. make operations work similarly).

Avoid surprises and misunderstandings. Consistent interfaces make it easier
to understand the rest of a system if part of it is already known.

• Reusability: Do not customize ADTs (classes) to specific clients, but
make them general enough to be reusable in other contexts.

• Robustness with respect to modifications: Design the interface of
an ADT (class) so that it remains stable even if the implementation of the
ADT changes.

• Convenience: Where appropriate, provide additional operations (e.g. be-
yond the complete primitive set) for the convenience of users of the ADT
(class). Add convenience operations only for frequently used combinations
after careful study.

Conclusion

TODO

Exercises

TODO

Acknowledgements

In Spring 2017 I adapted these lecture notes from my previous notes on this
topic. The material here is based, in part, on the presentations in the books
[Dale 1996], [Horstmann 1995], [Horstmann 1999], [Meyer 1997], [Mossenbock
1995], and [Thomas 1995].

I wrote the first version of these lecture notes to use in the first Java-based
version of CSci 211 (then titled File Systems) during Fall 1996. I revised the

21

notes incrementally over the next decade for use in my Java-based courses on
object-orientation and software architecture. I partially revised the notes for use
in my Scala-based classes beginning in Fall 2008.

In Fall 2013 I updated these notes to better support classes using non-JVM
languages such as Lua, Elixir, and Haskell. I moved the extensive Java-based
content to a separate document and developed separate case studies for the other
languages.

In Summer 2017, I adapted the notes to use Pandoc. I continued to revise the
structure and text in minor ways in 2017, 2018, and 2019.

I incorporated quite a bit of this material in Chapters 2, 6, and 7 of the 2018
draft of the textbook Exploring Languages with Interpreters and Functional
Programming.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

References

[Dale 1996]: Nell Dale and Henry M. Walker. Abstract Data Types: Specifica-
tions, Implementations, and Applications, D. C. Heath, 1996.

[Horstmann 1995]: Cay S. Horstmann. Mastering Object-Oriented Design in
C++, Wiley, 1995.

[Horstmann 1999]: Cay S. Horstmann and Gary Cornell, Core Java 1.2: Vol-
ume I – Fundamentals, Fourth Edition, Sun Microsystems Press/Prentice
Hall, 1999.

[Meyer 1997]: Bertrand Meyer. Object-Oriented Program Construction, Sec-
ond Edition, Prentice Hall, 1997.

[Mossenbock 1995]: Hanspeter Mossenbock. Object-Oriented Programming
in Oberon-2, Springer-Verlag, 1995.

[Thomas 1995]: Pete Thomas and Ray Weedom. Object-Oriented Program-
ming in Eiffel, Addison-Wesley, 1995.

Terms and Concepts

TODO

22

	Data Abstraction
	What is Abstraction?
	Kinds of abstraction
	Procedures and functions

	Concrete Data Structures
	Abstract Data Structures
	Abstract Data Types
	Defining ADTs
	Axiomatic Specification of an Unbounded Stack ADT
	Name
	Sets
	Signatures
	Constructors
	Mutators
	Accessors
	Destructors

	Semantics (axiomatic approach)

	Constructive Specification of a Bounded Stack ADT
	Name
	Sets
	Signatures
	Constructors
	Mutators
	Accessors
	Destructors

	Semantics (constructive approach)
	Constructor
	Mutators
	Accessors
	Destructor

	More formal semantics for bounded stack
	Constructor
	Mutators
	Accessors
	Destructor

	Date (Day) ADT
	Constructor
	Mutators
	Accessors
	Destructor

	Client-Supplier Relationship
	Design Criteria for ADT Interfaces
	Conclusion
	Exercises
	Acknowledgements
	References
	Terms and Concepts

