
CSci 555-01: Functional Programming
Assignment #3, Spring 2019

H. Conrad Cunningham

10 April 2019

Assignment #3: Mealy Machine Simulator

Super-Extended Deadline Thursday, 25 April 2019, 11:59 P.M.
(Originally due Monday, 8 April 2019)

Note: Students who turn in a “working” program by the “extended” deadline of
16 April will receive 5 points extra.

General Instructions

All homework and programming exercises must be prepared in accordance with
the instructions given in the Syllabus. Each assignment must be submitted to
your instructor by its stated deadline.

Citations: In accordance with expected scholarly and academic standards, if you
reference outside textbooks, reference books, articles, websites, etc., or discuss
an assignment with individuals inside or outside the class, you must document
these by including appropriate citations or comments at prominent places in
your submission such as in the header of the primary source file.

Identification: Put your name, course name, and assignment number as comments
in each file you submit.

Assignment Description

1. This is an individual assignment.

2. When complete, submit your Scala source code files to the course Black-
board site for Assignment #3.

1

../555syl_sp19.html


3. Be sure to document your source code appropriately using program com-
ments. Give attention to the general instructions given above and in the
Syllabus.

Consider the source code with a constructive semantics (e.g. use precondi-
tions, postconditions, and invariants with respect to an abstract model of
the Mealy Machine).

4. Develop solutions to Mealy Machine Exercises below. A student taking
the course for undergraduate credit may omit one exercise.

This project is also given in the Abstract Data Types in Scala document.

5. Test your program thoroughly with a program that imports the Mealy
Machine modules.

Mealy Machine Simulator Project

In this project, you are asked to design and implement Scala “modules” to
represent Mealy Machines and to simulate their execution.

Mealy Machine

A Mealy Machine is a useful abstraction for simple controllers that listen for input
events and respond by generating output events. For example in an automobile
application, the input might be an event such as “fuel level low” and the output
might be command to “display low-fuel warning message”.

In the theory of computation, a Mealy Machine is a finite-state automaton whose
output values are determined both by its current state and the current input. It
is a deterministic finite state transducer such that, for each state and input, at
most one transition is possible.

Appendix A of the Linz textbook [Linz 2017] defines a Mealy Machine mathe-
matically by a tuple

M = (Q,Σ,Γ, δ, θ, q0)

where

Q is a finite set of internal states
Σ is the input alphabet (a finite set of values)
Γ is the output alphabet (a finite set of values)
δ : Q× Σ −→ Q is the transition function
θ : Q× Σ −→ Γ is the output function
q0 is the initial state of M (an element of Q)

In an alternative formulation, the transition and output functions can be com-
bined into a single function:

2



δ : Q× Σ −→ Q× Γ

We often find it useful to picture a finite state machine as a transition graph
where the states are mapped to vertices and the transition function represented
by directed edges between vertices labelled with the input and output symbols.

Mealy Machine Exercises

1. Specify, design, and implement a general representation for a Mealy Ma-
chine as a set of Scala definitions implementing an abstract data type. It
should hide the representation of the machine behind an abstract interface
and should have, at least, the following public operations.

• Constructor MealyMachine(s) creates a new machine with initial
(and current) state s and no transitions.

• Mutator method addState(s) adds a new state s to this machine
and returns an Either wrapping the modified machine or an error
message.

• Mutator method addTransition(s1,in,out,s2) adds a new transi-
tion to this machine and returns an Either wrapping the modified
machine or an error message. From state s1 with input in, the
modified machine outputs out and transitions to state s2.

• Mutator method addResets adds all reset transitions to this machine
and returns the modified machine. This operation makes the transition
function a total function by adding any missing transitions from a
state back to the initial state.

• Mutator method setCurrent(s) sets the current state of this machine
to s and returns an Either wrapping the modified machine or an
error message.

• Accessor method getCurrent returns the current state of this ma-
chine.

• Accessor method getStates returns a list of the elements of the state
set of this machine.

• Accessor method getInputs returns a list of the input set of this
machine.

• Accessor method getOutputs returns a list of the output set of this
machine.

• Accessor method getTransitions returns a list of the transition set
of this machine. Tuple (s1,in,out,s2) occurs in the returned list if
and only if, from state s1 with input in, the machine outputs out
and moves to state s2.

3



• Accessor method getTransitionsFrom(s) returns an Either wrap-
ping a list of the set of transitions enabled from state s of this machine
or an error message.

Note: It is possible to use a Labelled Digraph ADT module in the im-
plementation of the Mealy Machine. A state is a vertex of the graph,
transition is an edge of the graph, and an (in,out) is a label for an edge.

2. Given the above implementation for a Mealy Machine ADT, design and
implement a separate Scala module that simulates the execution of a Mealy
Machine. It should have, at least, the following public operations.

• Mutator move(m,in) moves machine m from the current state given
input in and returns an Either wrapping a tuple (mm,out) or an
error message. The tuple gives the modified machine mm and the
output out.

• Mutator method simulate(m,ins) simulates execution of machine
m from its current state through a sequence of moves for the inputs
in list ins and returns an Either wrapping a tuple (mm,outs) or an
error message. The tuple gives the modified machine mm after the
sequence of moves and the output list outs.

References

[Linz 2017]: Peter Linz. Formal Languages and Automata, 6th Edition, Jones
& Bartlett, 2017.

4


	Assignment #3: Mealy Machine Simulator
	General Instructions
	Assignment Description
	Mealy Machine Simulator Project
	Mealy Machine
	Mealy Machine Exercises
	References



