
Notes on Functional Programming with Haskell
(Chapters 1 and 2)

H. Conrad Cunningham
cunningham@cs.olemiss.edu

Multiparadigm Software Architecture Group
Department of Computer and Information Science

University of Mississippi
201 Weir Hall

University, Mississippi 38677 USA

Spring Semester 2015

Copyright c© 1994, 1995, 1997, 2003, 2007, 2010, 2014-15 by H. Conrad Cunningham

Permission to copy and use this document for educational or research purposes of
a non-commercial nature is hereby granted provided that this copyright notice is
retained on all copies. All other rights are reserved by the author.

H. Conrad Cunningham, D.Sc.
Professor and Chair
Department of Computer and Information Science
University of Mississippi
201 Weir Hall
University, Mississippi 38677
USA

cunningham@cs.olemiss.edu

Contents

1 INTRODUCTION 1

1.1 Course Overview . 1

1.2 Excerpts from Backus’ 1977 Turing Award Address 2

1.3 Programming Language Paradigms 5

1.4 Reasons for Studying Functional Programming 6

1.5 Objections Raised Against Functional Programming 11

2 FUNCTIONS AND THEIR DEFINITIONS 13

2.1 Mathematical Concepts and Terminology 13

2.2 Function Definitions . 15

2.3 Mathematical Induction over Natural Numbers 15

iii

iv

1 INTRODUCTION

1.1 Course Overview

This is a course on functional programming.

As a course on programming, it emphasizes the analysis and solution of problems, the
development of correct and efficient algorithms and data structures that embody the
solutions, and the expression of the algorithms and data structures in a form suitable
for processing by a computer. The focus is more on the human thought processes
than on the computer execution processes.

As a course on functional programming, it approaches programming as the construc-
tion of definitions for (mathematical) functions and data structures. Functional pro-
grams consist of expressions that use these definitions. The execution of a functional
program entails the evaluation of the expressions making up the program. Thus
the course’s focus is on problem solving techniques, algorithms, data structures, and
programming notations appropriate for the functional approach.

This is not a course on functional programming languages. In particular, the course
does not undertake an in-depth study of the techniques for implementing functional
languages on computers. The focus is on the concepts for programming, not on the
internal details of the technological artifact that executes the programs.

Of course, we want to be able to execute our functional programs on a computer and,
moreover, to execute them efficiently. Thus we must become familiar with some con-
crete programming language and use an implementation of that language to execute
our programs. To be able to analyze program efficiency, we must also become familiar
with the basic techniques that are used to evaluate expressions. To be specific, this
class will use a functional programming environment called GHC (Glasgow Haskell
Compiler). GHC is distributed in a “batteries included” bundle called the the Haskell
Platform . (That is, it bundles GHC with commonly used libraries and tools.) The
language accepted by GHC is the “lazy” functional programming language Haskell
2010. A program processed by GHC evaluates expressions according to an execution
model called graph reduction.

Being “practical” is not an overriding concern of this course. Although functional
languages are increasing in importance, their use has not yet spread much beyond
the academic and industrial research laboratories. While a student may take a course
on C++ programming and then go out into industry and find a job in which the
C++ knowledge and skills can be directly applied, this is not likely to occur with a
course on functional programming.

However, the fact that functional languages are not broadly used does not mean that
this course is impractical. A few industrial applications are being developed using
various functional languages. Many of the techniques of functional programming

1

can also be applied in more traditional programming and scripting languages. More
importantly, any time programmers learn new approaches to problem solving and
programming, they become better programmers. A course on functional programming
provides a novel, interesting, and, probably at times, frustrating opportunity to learn
more about the nature of the programming task. Enjoy the semester!

1.2 Excerpts from Backus’ 1977 Turing Award Address

This subsection contains excerpts from computing pioneer John Backus’ 1977 ACM
Turing Award Lecture published as article “Can Programming Be Liberated from
the von Neumann Style? A Functional Style and Its Algebra of Programs [1]” (Com-
munications of the ACM, Vol. 21, No. 8, pages 613–41, August 1978). Although
functional languages like Lisp go back to the late 1950’s, Backus’s address did much
to stimulate research community’s interest in functional programming languages and
functional programming.

——

Programming languages appear to be in trouble. Each successive language incorpo-
rates, with little cleaning up, all the features of its predecessors plus a few more.
Some languages have manuals exceeding 500 pages; others cram a complex descrip-
tion into shorter manuals by using dense formalisms. . . . Each new language claims
new and fashionable features, such as strong typing or structured control statements,
but the plain fact is that few languages make programming sufficiently cheaper or
more reliable to justify the cost of producing and learning to use them.

Since large increases in size bring only small increases in power, smaller, more elegant
languages such as Pascal continue to be popular. But there is a desperate need for a
powerful methodology to help us think about programs, and no conventional language
even begins to meet that need. In fact, conventional languages create unnecessary
confusion in the way we think about programs. . . .

In order to understand the problems of conventional programming languages, we
must first examine their intellectual parent, the von Neumann computer. What is a
von Neumann computer? When von Neumann and others conceived of it . . . [in the
1940’s], it was an elegant, practical, and unifying idea that simplified a number of
engineering and programming problems that existed then. Although the conditions
that produced its architecture have changed radically, we nevertheless still identify
the notion of “computer” with this . . . concept.

In its simplest form a von Neumann computer has three parts: a central process-
ing unit (or CPU), a store, and a connecting tube that can transmit a single word
between the CPU and the store (and send an address to the store). I propose to
call this tube the von Neumann bottleneck. The task of a program is to change the

2

contents of the store in some major way; when one considers that this task must
be accomplished entirely by pumping single words back and forth through the von
Neumann bottleneck, the reason for its name becomes clear.

Ironically, a large part of the traffic in the bottleneck is not useful data but merely
names of data, as well as operations and data used only to compute such names.
Before a word can be sent through the tube its address must be in the CPU; hence
it must either be sent through the tube from the store or be generated by some CPU
operation. If the address is sent form the store, then its address must either have
been sent from the store or generated in the CPU, and so on. If, on the other hand,
the address is generated in the CPU, it must either be generated by a fixed rule (e.g.,
“add 1 to the program counter”) or by an instruction that was sent through the tube,
in which case its address must have been sent, and so on.

Surely there must be a less primitive way of making big changes in the store than by
pushing vast numbers of words back and forth through the von Neumann bottleneck.
Not only is this tube a literal bottleneck for the data traffic of a problem, but, more
importantly, it is an intellectual bottleneck that has kept us tied to word-at-a-time
thinking instead of encouraging us to think in terms of the larger conceptual units of
the task at hand. . . .

Conventional programming languages are basically high level, complex versions of the
von Neumann computer. Our . . . old belief that there is only one kind of computer
is the basis our our belief that there is only one kind of programming language, the
conventional—von Neumann—language. The differences between Fortran and Algol
68, although considerable, are less significant than the fact that both are based on the
programming style of the von Neumann computer. Although I refer to conventional
languages as “von Neumann languages” to take note of their origin and style, I do
not, of course, blame the great mathematician for their complexity. In fact, some
might say that I bear some responsibility for that problem. [Note: Backus was one
of the designers of Fortran and of Algol-60.]

Von Neumann programming languages use variables to imitate the computer’s storage
cells; control statements elaborate its jump and test instructions; and assignment
statements imitate its fetching, storing, and arithmetic. The assignment statement
is the von Neumann bottleneck of programming languages and keeps us thinking in
word-at-at-time terms in much the same way the computer’s bottleneck does.

Consider a typical program; at its center are a number of assignment statements
containing some subscripted variables. Each assignment statement produces a one-
word result. The program must cause these statements to be executed many times,
while altering subscript values, in order to make the desired overall change in the
store, since it must be done one word at a time. The programmer is thus concerned
with the flow of words through the assignment bottleneck as he designs the nest of
control statements to cause the necessary repetitions.

3

Moreover, the assignment statement splits programming into two worlds. The first
world comprises the right sides of assignment statements. This is an orderly world of
expressions, a world that has useful algebraic properties (except that those properties
are often destroyed by side effects). It is the world in which most useful computation
takes place.

The second world of conventional programming languages is the world of statements.
The primary statement in that world is the assignment statement itself. All the other
statements in the language exist in order to make it possible to perform a computation
that must be based on this primitive construct: the assignment statement.

This world of statements is a disorderly one, with few useful mathematical properties.
Structured programming can be seen as a modest effort to introduce some order into
this chaotic world, but it accomplishes little in attacking the fundamental problems
created by the word-at-a-time von Neumann style of programming, with its primitive
use of loops, subscripts, and branching flow of control.

Our fixation on von Neumann languages has continued the primacy of the von Neu-
mann computer, and our dependency on it has made non-von Neumann languages
uneconomical and has limited their development. The absence of full scale, effective
programming styles founded on non-von Neumann principles has deprived designers
of an intellectual foundation for new computer architectures. . . .

——

Note: In his Turing Award Address, Backus went on to describe FP, his proposal
for a functional programming language. He argued that languages like FP would
allow programmers to break out of the von Neumann bottleneck and find new ways
of thinking about programming. Although languages like Lisp had been in existence
since the late 1950’s, the widespread attention given to Backus’ address and paper
stimulated new interest in functional programming to develop by researchers around
the world.

Aside: Above Backus states that “the world of statements is a disorderly one, with
few mathematical properties”. Even in 1977 this was a bit overstated since Dijkstra’s
work on the weakest precondition calculus and other work on axiomatic semantics
had already appeared. However, because of the referential transparency (discussed
later) property of purely functional languages, reasoning can often be done in an
equational manner within the context of the language itself. In contrast, the wp-
calculus and other axiomatic semantic approaches must project the problem from
the world of programming language statements into the world of predicate calculus,
which is much more orderly.

4

1.3 Programming Language Paradigms

Reference: The next two subsections are based, in part, on Hudak’s article “Concep-
tion, Evolution, and Application of Functional Programming Languages [4]” (ACM
Computing Surveys, Vol. 21, No. 3, pages 359–411, September 1989).

Programming languages are often classified according to one of two different paradigms:
imperative and declarative.

Imperative languages

A program in an imperative language has an implicit state (i.e., values of vari-
ables, program counters, etc.) that is modified (i.e., side-effected) by constructs
(i.e., commands) in the source language.

As a result, such languages generally have an explicit notion of sequencing (of
the commands) to permit precise and deterministic control of the state changes.

Imperative programs thus express how something is to be computed.

These are the “conventional” or “von Neumann languages” discussed by Backus.
They are well suited to traditional computer architectures.

Most of the languages in existence today are in this category: Fortran, Algol,
Cobol, Pascal, Ada, C, C++, Java, etc.

Declarative languages

A program in a declarative language has no implicit state. Any needed state
information must be handled explicitly.

A program is made up of expressions (or terms) rather than commands.

Repetitive execution is accomplished by recursion rather than by sequencing.

Declarative programs express what is to be computed (rather than how it is to
be computed).

Declarative programs are often divided into two types:

Functional (or applicative) languages

The underlying model of computation is the mathematical concept of a
function.

In a computation a function is applied to zero or more arguments to com-
pute a single result, i.e., the result is deterministic (or predictable).

Purely functional: FP, Haskell, Miranda, Hope, Orwell
Hybrid languages: Lisp, Scheme, SML

(Scheme & SML have powerful declarative subsets)
Dataflow languages: Id, Sisal

5

Relational (or logic) languages

The underlying model of computation is the mathematical concept of a
relation (or a predicate).

A computation is the (nondeterministic) association of a group of values—
with backtracking to resolve additional values.

Examples: Prolog (pure), Parlog, KL1

Note: Most Prolog implementations have imperative features such as the
cut and the ability to assert and retract clauses.

1.4 Reasons for Studying Functional Programming

1. Functional programs are easier to manipulate mathematically than
imperative programs.

The primary reason for this is the property of referential transparency, probably
the most important property of modern functional programming languages.

Referential transparency means that, within some well-defined context, a vari-
able (or other symbol) always represents the same value. Since a variable always
has the same value, we can replace the variable in an expression by its value or
vice versa. Similarly, if two subexpressions have equal values, we can replace
one subexpression by the other. That is, “equals can be replaced by equals”.

Functional programming languages thus use the same concept of a variable that
mathematics uses.

On the other hand, in most imperative languages a variable represents an ad-
dress or “container” in which values may be stored; a program may change the
value stored in a variable by executing an assignment statement.

Because of referential transparency, we can construct, reason about, and manip-
ulate functional programs in much the same way we can any other mathematical
expressions [2, 3]. Many of the familiar “laws” from high school algebra still
hold; new “laws” can be defined and proved for less familiar primitives and
even user-defined operators. This enables a relatively natural equational style
of reasoning.

For example, we may want to prove that a program meets its specification
or that two programs are equivalent (in the sense that both yield the same
“outputs” given the same “inputs”).

We can also construct and prove algebraic “laws” for functional programming.
For example, we might prove that some operation (i.e., two-argument function)
is commutative or associative or perhaps that one operation distributes over
another.

Such algebraic laws enable one program to be transformed into another equiv-
alent program either by hand or by machine. For example, we might use the

6

laws to transform one program into an equivalent program that can be executed
more efficiently.

2. Functional programming languages have powerful abstraction mech-
anisms.

Speaking operationally, a function is an abstraction of a pattern of behavior.

For example, if we recognize that a C or Pascal program needs to repeat the
same operations for each member of a set of similar data structures, then we
usually encapsulate the operations in a function or procedure. The function or
procedure is an abstraction of the application of the operation to data structures
of the given type.

Now suppose instead that we recognize that our program needs to perform simi-
lar, but different, operations for each member of a set of similar data structures.
Can we create an abstraction of the application of the similar operations to data
structures of the given type?

For instance, suppose we want to compute either the sum or the product of
the elements of an array of integers. Addition and multiplication are similar
operations; they are both associative binary arithmetic operations with identity
elements.

Clearly, C or Pascal programs implementing sums and products can go through
the same pattern of operations on the array: initialize a variable to the identity
element and then loop through the array adding or multiplying each element by
the result to that point. Instead of having separate functions for each operation,
why not just have one function and supply the operation as an argument?

A function that can take functions as arguments or return functions as results is
called a higher-order function. Most imperative languages do not fully support
higher-order functions.

However, in most functional programming languages functions are treated as
first class values. That is, functions can be stored in data structures, passed as
arguments to functions, and returned as the results of functions.

Typically, functions in imperative languages are not treated as first-class values.

The higher-order functions in functional programming languages enable very
regular and powerful abstractions and operations to be constructed. By taking
advantage of a library of higher-order functions that capture common patterns
of computation, we can quickly construct concise, yet powerful, programs.

A programmer needs to write fewer “lines of code” in a concise programming no-
tation than in a verbose one. Thus the programmer should be able to complete
the task in less time. Since, in general, a short program is easier to compre-
hend than a long one, a programmer is less likely to make an error in a short
program than in a long one. Consequently, functional programming can lead to
both increased programmer productivity and increased program reliability.

7

Caveat: Excessive concern for conciseness can lead to cryptic, difficult to under-
stand programs and, hence, low productivity and reliability. Conciseness should
not be an end in itself. The understandability and correctness of a program are
more important goals.

Higher-order functions also increase the modularity of programs by enabling
simple program fragments to be “glued together” readily into more complex
programs [5].

3. Functional programming enables new algorithmic approaches.

This is especially true for languages (like Haskell) that use what is called lazy
evaluation.

In a lazy evaluation scheme, the evaluation of an expression is deferred until the
value of the expression is actually needed elsewhere in the computation. That
is, the expression is evaluated on demand. This contrasts with what is called
eager evaluation in which an expression is evaluated as soon as its inputs are
available.

For example, if eager evaluation is used, an argument (which may be an arbi-
trary expression) of a function call is evaluated before the body of the function.
If lazy evaluation is used, the argument is not evaluated until the value is actu-
ally needed during the evaluation of the function body. If an argument’s value
is never needed, then the argument is expression is never evaluated.

Why should we care? Well, this facility allows programmers to construct and
use data structures that are conceptually unbounded or infinite in size. As
long as a program never actually needs to inspect the entire structure, then a
terminating computation is still possible.

For example, we might define the list of natural numbers as a list beginning
with 0, followed by the list formed by adding one to each element of the list of
natural numbers.

Lazy evaluation thus allows programmers to separate the data from the control.
They can define a data structure without having to worry about how it is
processed and they can define functions that manipulate the data structure
without having to worry about its size or how it is created. This ability to
separate the data from the control of processing enables programs to be highly
modular [5].

For example, we can define the list of even naturals by applying a function
that filters out odd integers to the infinite list of naturals defined above. This
definition has no operational control within it and can thus be combined with
other functions in a modular way.

8

4. Functional programming enables new approaches to program devel-
opment.

As we discussed above, it is generally easier to reason about functional programs
than imperative programs. It is possible to prove algebraic “laws” of functional
programs that give the relationships among various operators in the language.
We can use these laws to transform one program to another equivalent one.

These mathematical properties also open up new ways to write programs.

Suppose we want a program to break up a string of text characters into lines.
Section 4.3 of the Bird and Wadler textbook [2] and Section ?? of these notes
shows a novel way to construct this program.

First, Bird and Wadler construct a program to do the opposite of what we
want—to combine lines into a string of text. This function is very easy to
write.

Next, taking advantage of the fact that this function is the inverse of the desired
function, they use the “laws” to manipulate this simple program to find its
inverse. The result is the program we want!

5. Functional programming languages encourage (massively) parallel ex-
ecution.

To exploit a parallel processor, it must be possible to decompose a program
into components that can be executed in parallel, assign these components to
processors, coordinate their execution by communicating data as needed among
the processors, and reassemble the results of the computation.

Compared to traditional imperative programming languages, it is quite easy to
execute components of a functional program in parallel [6]. Because of the ref-
erential transparency property and the lack of sequencing, there are no time de-
pendencies in the evaluation of expressions; the final value is the same regardless
of which expression is evaluated first. The nesting of expressions within other
expressions defines the data communication that must occur during execution.

Thus executing a functional program in parallel does not require the availability
of a highly sophisticated compiler for the language.

However, a more sophisticated compiler can take advantage of the algebraic
laws of the language to transform a program to an equivalent program that can
more efficiently be executed in parallel.

In addition, frequently used operations in the functional programming library
can be be optimized for highly efficient parallel execution.

Of course, compilers can also be used to decompose traditional imperative lan-
guages for parallel execution. But it is not easy to find all the potential par-
allelism. A “smart” compiler must be used to identify unnecessary sequencing
and find a safe way to remove it.

9

In addition to the traditional imperative programming languages, imperative
languages have also been developed especially for execution on a parallel com-
puter. These languages shift some of the work of decomposition, coordination,
and communication to the programmer.

A potential advantage of functional languages over parallel imperative languages
is that the functional programmer does not, in general, need to be concerned
with the specification and control of the parallelism.

In fact, functional languages probably have the problem of too much potential
parallelism. It is easy to figure out what can be executed in parallel, but it is
sometimes difficult to determine what components should actually be executed
in parallel and how to allocate them to the available processors. Functional
languages may be better suited to the massively parallel processors of the future
than most present day parallel machines.

6. Functional programming is important in some application areas of
computer science.

The artificial intelligence (AI) research community has used languages such as
Lisp and Scheme since the 1960’s. Some AI applications have been commercial-
ized during the past two decades.

Also a number of the specification, modeling, and rapid-prototyping languages
that are appearing in the software engineering community have features that
are similar to functional languages.

7. Functional programming is related to computing science theory.

The study of functional programming and functional programming languages
provides a good opportunity to learn concepts related to programming language
semantics, type systems, complexity theory, and other issues of importance in
the theory of computing science.

8. Functional programming is an interesting and mind-expanding activ-
ity for students of computer science!?

Functional programming requires the student to develop a different perspective
on programming.

10

1.5 Objections Raised Against Functional Programming

1. Functional programming languages are inefficient toys!

This was definitely true in the early days of functional programming. Functional
languages tended to execute slowly, require large amounts of memory, and have
limited capabilities.

However, research on implementation techniques has resulted in more efficient
and powerful implementations today.

Although functional language implementations will probably continue to in-
crease in efficiency, they likely will never become as efficient as the implemen-
tations of imperative “von Neumann” languages are on traditional “von Neu-
mann” architectures.

However, new computer architectures may allow functional programs to ex-
ecute competitively with the imperative languages on today’s architectures.
For example, computers based on the dataflow and graph reduction models of
computation are more suited to execute functional languages than imperative
languages.

Also the ready availability of parallel computers may make functional languages
more competitive because they more readily support parallelism than traditional
imperative languages.

Moreover, processor time and memory usage just aren’t as important concerns
as they once were. Both fast processors and large memories have become rel-
atively inexpensive and readily available. Now it is common to dedicate one
or more processors and several megabytes of memory to individual users of
workstations and personal computers.

As a result, the community can now afford to dedicate considerable computer
resources to improving programmer productivity and program reliability; these
are issues that functional programming may address better than imperative
languages.

2. Functional programming languages are not (and cannot be) used in
the real world!

It is still true that functional programming languages are not used very widely
in industry. But, as we have argued above, the functional style is becoming more
important—especially as commercial AI applications have begun to appear.

If new architectures like the dataflow machines emerge into the marketplace,
functional programming languages will become more important.

Although the functional programming community has solved many of the dif-
ficulties in implementation and use of functional languages, more research is
needed on several issues of importance to the real world: on facilities for in-
put/output, nondeterministic, realtime, parallel, and database programming.

11

More research is also needed in the development of algorithms for the functional
paradigm. The functional programming community has developed functional
versions of many algorithms that are as efficient, in terms of big-O complexity,
as the imperative versions. But there are a few algorithms for which efficient
functional versions have not yet been found.

3. Functional programming is awkward and unnatural!

Maybe. It might be the case that functional programming somehow runs
counter to the way that normal human minds work—that only mental deviants
can ever become effective functional programmers. Of course, some people
might say that about programming and programmers in general.

However, it seems more likely that the awkwardness arises from the lack of
education and experience. If we spend many years studying and doing pro-
gramming in the imperative style, then any significantly different approach will
seem unnatural.

Let’s give the functional approach a fair chance.

12

2 FUNCTIONS AND THEIR DEFINITIONS

2.1 Mathematical Concepts and Terminology

In mathematics, a function is a mapping from a set A into a set B such that each
element of A is mapped into a unique element of B. The set A (on which f is defined)
is called the domain of f . The set of all elements of B mapped to elements of A by
f is called the range (or codomain) of f , and is denoted by f(A).

If f is a function from A into B, then we write:

f : A→ B

We also write the equation f(a) = b to mean that the value (or result) from applying
function f to an element a ∈ A is an element b ∈ B.

A function f : A → B is one-to-one (or injective) if and only if distinct elements of
A are mapped to distinct elements of B. That is, f(a) = f(a′) if and only if a = a′.

A function f : A → B is onto (or surjective) if and only if, for every element b ∈ B,
there is some element a ∈ A such that f(a) = b.

A function f : A→ B is a one-to-one correspondence (or bijection) if and only if f is
one-to-one and onto.

Given functions f : A→ B and g : B → C, the composition of f and g, written g ◦ f ,
is a function from A into C such that

(g ◦ f)(a) = g(f(a)).

A function f−1 : B → A is an inverse of f : A → B if and only if, for every a ∈ A,
f−1(f(a)) = a.

An inverse exists for any one-to-one function.

If function f : A → B is a one-to-one correspondence, then there exists an inverse
function f−1 : B → A such that, for every a ∈ A, f−1(f(a)) = a and that, for every
b ∈ B, f(f−1(b)) = b. Hence, functions that are one-to-one correspondences are also
said to be invertible.

If a function f : A → B and A ⊆ A′, then we say that f is a partial function from
A′ to B and a total function from A to B. That is, there are some elements of A′ on
which f may be undefined.

13

A function ⊕ : (A × A) → A is called a binary operation on A. We usually write
binary operations in infix form: a⊕a′. (In computing science, we often call a function
⊕ : (A×B)→ C a binary operation as well.)

Let ⊕ be a binary operation on some set A and x, y, and z be elements of A.

• Operation ⊕ is associative if and only if (x⊕ y)⊕ z = x⊕ (y ⊕ z) for any x, y,
and z.

• Operation ⊕ is commutative (also called symmetric) if and only if x⊕y = y⊕x
for any x and y.

• An element e of set A is a left identity of ⊕ if and only if e⊕ x = x for any x, a
right identity if and only if x⊕ e = x, and an identity if and only if it is both a
left and a right identity. An identity of an operation is sometimes called a unit
of the operation.

• An element z of set A is a left zero of ⊕ if and only if z ⊕ x = z for any x, a
right zero if and only if x ⊕ z = z, and a zero if and only if it is both a right
and a left zero.

• If e is the identity of ⊕ and x⊕ y = e for some x and y, then x is a left inverse
of y and y is a right inverse of x. Elements x and y are inverses of each other
if x⊕ y = e = y ⊕ x.

• If ⊕ is an associative operation, then ⊕ and A are said to form a semigroup.

• A semigroup that also has an identity element is called a monoid.

• If every element of a monoid has an inverse then the monoid is called a group.

• If a monoid or group is also commutative, then it is said to be Abelian.

14

2.2 Function Definitions

Note: Mathematicians usually refer to the positive integers as the natural numbers.
Computing scientists usually include 0 in the set of natural numbers.

Consider the factorial function fact. This function can be defined in several ways.
For any natural number, we might define fact with the equation

fact(n) = 1× 2× 3× · · · × n

or, more formally, using the product operator as

fact(n) =
i=n∏
i=1

i

or, in the notation that the instructor prefers, as

fact(n) = (Π i : 1 ≤ i ≤ n : i).

We note that fact(0) = 1, the identity element of the multiplication operation.

We can also define the factorial function with a recursive definition (or recurrence
relation) as follows:

fact ′(n) =

{
1, if n = 0
n× fact ′(n− 1), if n ≥ 1

It is, of course, easy to see that the recurrence relation definition is equivalent to the
previous definitions. But how can we prove it?

To prove that the above definitions of the factorial function are equivalent, we can
use mathematical induction over the natural numbers.

2.3 Mathematical Induction over Natural Numbers

To prove a proposition P (n) holds for any natural number n, one must show two
things:

Base case n = 0. That P (0) holds.

Inductive case n = m+1. That, if P (m) holds for some natural number m, then
P (m+1) also holds. (The P (m) assumption is called the induction hypothesis.)

15

Now let’s prove that the two definitions fact and fact ′ are equivalent, that is, for all
natural numbers n,

fact(n) = fact ′(n).

Base case n = 0.

fact(0)
= { definition of fact (left to right) }

(Π i : 1 ≤ i ≤ 0 : i)
= { empty range for Π, 1 is the identity element of × }

1
= { definition of fact ′ (first leg, right to left) }

fact ′(0)

Inductive case n = m+1.
Given fact(m) = fact ′(m), prove fact(m+1) = fact ′(m+1).

fact(m+1)
= { definition of fact (left to right) }

(Π i : 1 ≤ i ≤ m+1 : i)
= { m+1 > 0, so m+1 term exists, split it out }

(m+1)× (Π i : 1 ≤ i ≤ m : i)
= { definition of fact (right to left) }

(m+1)× fact(m)
= { induction hypothesis }

(m+1)× fact ′(m)
= { m+1 > 0, definition of fact ′ (second leg, right to left) }

fact ′(m+1)

Therefore, we have proved fact(n) = fact ′(n) for all natural numbers n. QED

Note the equational style of reasoning we used. We proved that one expression was
equal to another by beginning with one of the expressions and repeatedly “substitut-
ing equals for equals” until we got the other expression.

Each transformational step was justified by a definition, a known property of arith-
metic, or the induction hypothesis.

Note that the structure of the inductive argument closely matches the structure of
the recursive definition of fact ′.

What does this have to do with functional programming? Many of the functions we
will define in this course have a recursive structure similar to fact ′. The proofs and
program derivations that we do will resemble the inductive argument above.

Recursion, induction, and iteration are all manifestations of the same phenomenon.

16

References

[1] J. Backus. Can programming languages be liberated from the von Neumann
style? A functional style and its algebra of programs. Communications of the
ACM, 21(8):613–641, August 1978.

[2] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall
International, New York, 1988.

[3] R. S. Bird. Algebraic identities for program calculation. The Computer Journal,
32(2):122–126, 1989.

[4] P. Hudak, S. Peyton Jones, and P. Wadler. Report on the programming language
Haskell: A non-strict, purely functional language. ACM SIGPLAN NOTICES,
27(5), May 1992.

[5] J. Hughes. Why functional programming matters. The Computer Journal,
32(2):98–107, 1989.

[6] P. Kelly. Functional Programming for Loosely-coupled Multiprocessors. MIT Press,
Cambridge, Massachusetts, 1989.

17

	INTRODUCTION
	Course Overview
	Excerpts from Backus' 1977 Turing Award Address
	Programming Language Paradigms
	Reasons for Studying Functional Programming
	Objections Raised Against Functional Programming

	FUNCTIONS AND THEIR DEFINITIONS
	Mathematical Concepts and Terminology
	Function Definitions
	Mathematical Induction over Natural Numbers

