
CSci 555, Functional Programming
Notes on Scala for Java Programmers

Adapted by H. Conrad Cunningham

4 February 2016 (minor formatting udpate 3 August 2016)

Contents
A Scala Tutorial for Java Programmers 1

A First Example: Hello World . 1
Compiling the example . 2
Running the example . 2

Interaction with Java 2

Everything is an Object 4
Numbers are objects . 4
Functions are objects . 4

Anonymous functions . 5

Classes 6
Methods without arguments . 7
Inheritance and overriding . 7

Case Classes and Pattern Matching 8

Traits 12

Genericity 14

Conclusion 15

Acknowledgements: In February 2016, Conrad Cunningham created these
notes by adapting and expanding the web document “A Scala Tutorial for Java
Programmers” by Michel Schinz and Phillipp Haller to better meet the needs
of his Scala-based course. The original document can be found on the Scala
Language website at A Scala Tutorial for Java Programmer.

1

http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html

A Scala Tutorial for Java Programmers

This is an introduction to Scala for programmers who have completed the equiv-
alent of the Java-based Computer Science I-II-III (CSci 111-112-211) sequence
at the University of Mississippi.

A First Example: Hello World

A “Hello, world!” program is the obligatory first example to give when introducing
a new language. We can write a program HelloWorld as follows in Scala:

object HelloWorld {
def main(args: Array[String]) {

println("Hello, world!")
}

}

What Scala features do we use here in relation to Java?

• Keyword object declares a singleton object named HelloWorld. An object
is essentially a class with a single instance. The body of the object is
enclosed in braces following the name.

• The keyword def introduces a method definition.

• In a declaration, a colon (:) separates the name from its type.

• Method main takes the command line arguments as its parameter, which
is an array of strings.

• The main method is a procedure and, hence, has no return type declared.
The body of the method is enclosed in braces following the method header.

• The main method is not declared as static as in Java. Static members
do not exist in Scala. We can use singleton objects instead.

• The body of main has a single call to predefined method println.

Compiling the example

We can use the scalac command (similar to the javac command) to invoke the
Scala compiler. If the above Scala program is stored in file HelloWorld.scala,
we can compile it from the command line as follows:

scalac HelloWorld.scala

The above compiles the Scala source file and generates a few class files in the
current directory.

File HelloWorld.class contains a class that can be executed.

2

Running the example

We can use the scala command (similar to the java command) to execute the
main method. Execution of the program prints the “Hello, World” string to the
console.

> scala -classpath . HelloWorld

Hello, world!

Interaction with Java

Scala code can interact with Java code. Package java.lang is imported by
default and other packages can be imported explicitly.

Consider a program to obtain and format the current date according to the
conventions used in a specific country, say France.

import java.util.{Date, Locale}
import java.text.DateFormat
import java.text.DateFormat._

object FrenchDate {
def main(args: Array[String]) {

val now = new Date
val df = getDateInstance(LONG, Locale.FRANCE)
println(df format now)

}
}

Java’s class libraries such as Date and DateFormat can be called directly from
Scala code.

The Scala import statement is more powerful than Java’s. It can:

• Import multiple classes by enclosing names in braces.

The first line above imports the Data and Locale classes from Java package
java.util.

• Import everything in a package or class by using an underscore character
(_) instead of a Java’s asterisk (*).

The third line imports all members of the DateFormat class, making static
method getDateInstance and static field LONG visible.

The main method in the FrenchDate object:

• Creates an instance of Java’s Date class, thus getting the current date

3

• Uses the imported static method getDateInstance to format the date
appropriately for France using Locale.France

• Prints the current date formatted according to the localized DateFormat
instance

The main method declares two local “variables” in its body: now and df. Note
that:

• Both are declared with val. After initialization, Scala does not allow
further assignments to a val.

The alternative is var. Scala does allow assignments to a var; it is like an
ordinary variable in Java.

Although we cannot change the binding of a val to an object, Scala does
allow the internal state of the object to be changed.

• Although Scala is statically typed like Java, neither of these variables are
given explicit types. The types of the variables are inferred by the compiler
from the type of the initializing expression.

Scala methods taking one explicit argument can be written in infix syntax such
as

df format now

which is the same as the method call

df.format(now)

This feature has important consequences, as we discuss below.

It is also possible to inherit from Java classes and implement Java interfaces
directly in Scala.

Everything is an Object

Scala is a pure object-oriented language. Everything is an object, including
numbers and functions.

Scala does not distinguish primitive types (e.g., boolean and int) from reference
types (e.g., objects). It enables us to manipulate functions as first-class values.

Numbers are objects

Since numbers are objects, they also have methods. For example, the expression

1 + 2 * 3 / x

is equivalent to the expression

4

(1).+(((2).*(3))./(x))

which shows the method calls explicitly.

In Scala, the “operator” symbols (e.g., +, *, /) are valid identifiers. The paren-
theses around numbers are necessary because Scala’s lexical analyzer uses a
longest-match rule for tokens, breaking expression

1.+(2)

into the tokens 1., +, and 2. This results in 1. being interpreted as a Double.

Functions are objects

Because Scala functions are objects, we can:

• pass a function as an argument to or return a function as a result from
another function.

That is, Scala has higher-order functions.

• store a function in a variable or data structure.

That is, Scala’s functions are first-class values.

These are key features of functional programming.

Consider the Timer program below. It includes a timer function named
oncePerSecond that performs some action every second. The specific action
performed is encoded as a call-back function passed into oncePerSecond as an
argument.

object Timer {
def oncePerSecond(callback: () => Unit) {

while (true) { callback(); Thread sleep 1000 }
}
def timeFlies() {

println("time flies like an arrow...")
}
def main(args: Array[String]) {

oncePerSecond(timeFlies)
}

}

The type of the call-back function is () => Unit. This means it is a function
that takes no arguments and returns nothing. The type Unit is similar to void
in C/C++.

Function oncePerSecond calls the Thread.sleep method (from java.lang) and
uses an infinite while loop to repeat the call-back action every second.

5

The main function calls this timer function, passing a call-back function that
prints the string “time flies like an arrow. . . ” on the console. The program
endlessly prints this string every second.

The program uses the predefined Scala method println instead the like-named
Java method from System.out.

Anonymous functions

The Timer program in the subsection above can be refined by replacing the
function timeFlies by an anonymous function as shown below:

object TimerAnonymous {
def oncePerSecond(callback: () => Unit) {

while (true) { callback(); Thread sleep 1000 }
}
def main(args: Array[String]) {

oncePerSecond(() =>
println("time flies like an arrow..."))

}
}

In the anonymous function, a right arrow => separates the function’s argument
list from its body expression.

In this example, the argument list is empty, shown by the empty pair of paren-
theses on the left.

Classes

Like Java, Scala is a class-based language. However, Scala classes can have
parameters. Consider the following class Complex for representing complex
numbers:

class Complex(real: Double, imaginary: Double) {
def re() = real
def im() = imaginary

}

The Complex class takes two arguments, the real and imaginary parts of the
complex number. In the Complex class, these become val fields of the object
(i.e., class instance) that are only visible and accessible from inside the object.
(This visibiliy is private[this], a type of visibiliy that does not occur in Java.)

The default constructor is built into the class syntax. We pass values for these
arguments when we create an instance of class Complex, as follows:

6

new Complex(1.5, 2.3)

This causes all statements in the class definition to be executed.

The Complex class defines function methods re and im, which provide access
to the two parts of the complex number. That is, these are accessor, or getter,
methods.

We declare a function with an = between the function’s header (i.e., name and
parameter list) and its body. The body is an expression that is evaluated when
the function is called. If the body itself consists of a sequence of expressions, we
enclose it in braces. The value of last expression executed is the value of the
body.

In Complex, the compiler infers the return types for methods re() and im() by
examining the right-hand sides and deducing that both return a value of type
Double. The compiler gives an error message when it cannot infer the type of a
method or variable.

Some Scala programmers suggest that the types be omitted whenever possible
and only inserted when necessary.

However, your instructor considers it better software engineering practice to
explicitly specify the types of all public features of a class or package such as the
re() and im() methods.

But, for internal features of a class or method, it is convenient and safe to use
type inference. For example, we did not give explicit types for the now and df
values in the FrenchDate object shown in a previous section.

Methods without arguments

To call the methods re and im, we must put an empty pair of parentheses after
their names:

object ComplexNumbers {
def main(args: Array[String]) {

val c = new Complex(1.2, 3.4)
println("imaginary part: " + c.im())

}
}

We can eliminate the empty parameter list by defining re and im as meth-
ods without arguments instead of with zero arguments. We simply omit the
parentheses in the method definition, as shown below:

class Complex(real: Double, imaginary: Double) {
def re = real
def im = imaginary

}

7

Inheritance and overriding

All classes in Scala inherit from a superclass. If no super class is given explicitly,
then the superclass is scala.AnyRef by default.

Like Java, a Scala class inherits all methods from its superclass by default.

Like Java, a Scala class may override individual methods by giving new definitions.

Unlike Java, a Scala method that overrides a superclass method must be explicitly
declared with the override modifier. This is to reduce the possibility of class
overriding a superclass method by accident.

For example, theComplex class can redefine the toString method inherited from
AnyRef.

class Complex(real: Double, imaginary: Double) {
def re = real
def im = imaginary
override def toString() =

"" + re + (if (im < 0) "" else "+") + im + "i"
}

The new definition of toString() overrides the definition for Complex objects.
However, in doing so, it uses the default definitions of toString() for Double
by its references to re and im in the string concatenation.

Case Classes and Pattern Matching

In programming, we often use trees and other hierarchical data structures.

We can illustrate how to implement a tree in Scala using a small calculator
program for simple arithmetic expressions composed of sums, integer constants,
and variables. Examples of such expressions are 1+2 and (x+x)+(7+y).

We can represent expressions naturally with a tree, where nodes are operations
(e.g., addition) and leaves are values (e.g., constants or variables).

In Java, we can represent such a tree using an abstract superclass for the trees
and a concrete subclass for each kind of internal and leaf node. The abstract
class defines the common interface to the tree and the concrete subclasses define
the specific features of a node.

In functional programming languages such as Haskell, we can define an algebraic
data type for the same purpose. These types often enable us to express programs
concisely by using pattern matching constructs.

Scala combines the concepts of classes and algebraic data types into its case
classes. Consider the example:

8

abstract class Tree
case class Sum(l: Tree, r: Tree) extends Tree
case class Var(n: String) extends Tree
case class Const(v: Int) extends Tree

Here, we define Sum, Var and Const as case classes. These differ from from
standard classes in several ways:

• We can create an instance without using the keyword new keyword, for
example, we can write Const(5) instead of new Const(5).

• The compiler automatically generates getter functions for the constructor
parameters. That is, it is possible to get the value of the v constructor
parameter of some instance c of class Const just by writing c.v.

• The compiler supplies default definitions for the methods equals and
hashCode. These work on the structure of the instances and not on their
identities.

• The compiler provides a default definition for method toString, which
prints the value in a “source” form. For example, the tree for expression
x+1 prints as Sum(Var(x),Const(1)).

• Instances of these classes can be decomposed through pattern matching as
we see below.

These features enable us to use Scala case classes much like we would use algebraic
data types in a functional language.

To explore the use of case classes, consider a function to evaluate an expression
in some environment. The purpose of an environment is to associate values with
variables.

For example, the expression x+1 evaluated in an environment that associates
the value 5 with the variable x, written { x -> 5 }, gives 6 as result.

An environment is just a function that associates a value with a (variable) name.
The environment { x -> 5 } given above can be written as a Scala function as
follows:

{ case "x" => 5 }

This notation defines a function that, when given the string "x" as argument,
returns the integer 5, and, otherwise, fails and throws an exception.

An environment is a function of type String => Int. To simplify our evaluation
program, we define the name Environment to be an alias for this type using the
following declaration:

type Environment = String => Int

We can now define the evaluation function in Scala as follows:

9

def eval(t: Tree, env: Environment): Int = t match {
case Sum(l, r) => eval(l, env) + eval(r, env)
case Var(n) => env(n)
case Const(v) => v

}

This evaluation function performs pattern matching on the tree t (i.e., using the
match operator).

1. The pattern match first checks whether the tree t is a Sum object (i.e., an
instance of the Sum case class).

If the tree is a Sum, the pattern match binds the left subtree to a new
variable l and the right subtree to a new variable r, then evaluates the
expression following the arrow =>.

This expression uses the values of the variables bound by the pattern
match, i.e., l and r in the Sum case.

2. If the first check does not succeed, that is, the tree is not a Sum object, the
pattern match then checks whether t is a Var object.

If the tree is a Var, the pattern match binds the name contained in the Var
node to a new variable n and then evaluates the right-hand-side expression.

3. If the second check also fails, that is, if t is neither a Sum nor a Var, the
pattern match then checks whether the expression is a Const object.

If the tree is a Const, the pattern match binds the value contained in the
Const node to a new variable v and then evaluates the right-hand-side
expression.

4. Finally, if all checks fail, the pattern match expression raises an exception
to signal failure. In this version of eval, failure occurs only when there are
additional subclasses of Tree that we have declared but not yet defined in
the eval pattern match.

Pattern matching attempts to match a value to a series of patterns. As soon as
a pattern matches (moving top to bottom, left to right in the source code), the
program extracts and names various parts of the value and then evaluates the
associated expression using the values of these named parts.

An object-oriented programmer might ask why we did not define eval as a
method of class Tree and its subclasses.

We could do that, because Scala allows method definitions in case classes just as
in normal classes.

Deciding whether to use pattern matching or methods is partly a matter of taste.
But the choice also affects the extensibility the program.

10

• Using methods, we can easily add a new kind of node by defining a new
subclass of Tree. But adding a new operation to manipulate the tree is
tedious because it requires us to modify every subclass of Tree.

• Using pattern matching, the situation is reversed: adding a new kind of
node requires us to modify all functions that do pattern matching on the
tree, to take the new node into account. But adding a new operation is
easy, we just define it as an independent function.

To explore pattern matching further, consider another operation on arithmetic
expressions: symbolic derivation. Looking back at our calculus class, we see the
following rules for differentiation:

1. The derivative of a sum is the sum of the derivatives.

2. The derivative of some variable v is 1 if v is the variable relative to which
the derivation takes place, and is 0 otherwise.

3. The derivative of a constant is 0.

We can directly translate these rules into a Scala function that uses the above
case classes and pattern matching, as follows:

def derive(t: Tree, v: String): Tree = t match {
case Sum(l, r) => Sum(derive(l, v), derive(r, v))
case Var(n) if (v == n) => Const(1)
case _ => Const(0)

}

Function derive introduces two new concepts related to pattern matching.

1. The case expression for variables has a guard, an expression following the
if keyword. This guard prevents pattern matching from succeeding unless
its expression is true.

Here the guard ensures that the function returns the constant 1 only if the
name of the variable being derived is the same as the derivation variable v.

2. A pattern can include a wildcard, written _, that matches any value,
without giving it a name.

Consider an example with a simple main function that performs several operations
on the expression (x+x)+(7+y).

It first computes its value in the environment { x -> 5, y -> 7 } and then
computes its derivative relative to x and then to y.

def main(args: Array[String]) {
val exp: Tree = Sum(Sum(Var("x"),Var("x")),Sum(Const(7),Var("y")))
val env: Environment = { case "x" => 5 case "y" => 7 }
println("Expression: " + exp)
println("Evaluation with x=5, y=7: " + eval(exp, env))
println("Derivative relative to x:\n " + derive(exp, "x"))

11

println("Derivative relative to y:\n " + derive(exp, "y"))
}

Executing this program, we get the expected output:

Expression: Sum(Sum(Var(x),Var(x)),Sum(Const(7),Var(y)))
Evaluation with x=5, y=7: 24
Derivative relative to x:
Sum(Sum(Const(1),Const(1)),Sum(Const(0),Const(0)))
Derivative relative to y:
Sum(Sum(Const(0),Const(0)),Sum(Const(0),Const(1)))

The result of the derivative is complex. It should be simplified before printing.
Defining a basic simplification function using pattern matching is an interesting
(but surprisingly tricky) problem, left as an exercise for the reader.

Traits

In addition to inheriting code from a superclass, a Scala class can also reuse
code from one or several traits.

From a Java perpective, traits can be viewed as interfaces that can also contain
code. In Scala, when a class inherits from a trait, it implements that trait’s
interface, and inherits all the code contained in the trait.

Note: In older Java implementations, an interface consisted of just method
signatures and constants. In Java 8, interfaces can now include default definitions
of methods, somewhat similar to Scala traits.

To see the usefulness of traits, consider a classic example: ordered objects. We
want to compare objects of a given class among themselves. For example, we
need to compare objects according to some total order to sort them.

In Java, objects that can be compared implement the Comparable interface.

In Scala, we can do better by defining the equivalent of Comparable as a trait,
which we call Ord.

When comparing objects, six different comparison operations are useful: smaller,
smaller or equal, equal, not equal, greater or equal, and greater.

But it is tedious to define all of these for every class whose instances we wish to
compare.

We observe that we can define four of the six in terms of the other two. For
example, given the equal and smaller comparison operators, we can define the
other four comparison operators.

In Scala, we can capture this observation in the following trait declaration:

12

trait Ord {
def < (that: Any): Boolean
def <=(that: Any): Boolean = (this < that) || (this == that)
def > (that: Any): Boolean = !(this <= that)
def >=(that: Any): Boolean = !(this < that)

}

This definition both creates a new type called Ord, which plays the same role
as Java’s Comparable interface, and generates default implementations of three
comparison operators in terms of a fourth, abstract operator. All classes inherit
the equality and inequality operators and, thus, those operators do not need to
be defined in Ord.

The type Any used above, is the supertype of all other types in Scala. It is
essentially a more general version of Java’s Object type that is also a supertype
of basic types like Int, Float, etc.

To make objects of a class comparable, it is sufficient to define equality and
inferiority operators and then “mix in” the Ord trait.

For example, consider a Date class representing dates in the Gregorian calendar.
Such dates are composed of a day, a month, and a year, each of which we can
represent with an integer. We can start the definition of the Date class as follows:

class Date(y: Int, m: Int, d: Int) extends Ord {
def year = y
def month = m
def day = d
override def toString(): String = year + "-" + month + "-" + day
// ... two methods defined below

}

The extends Ord declaration specifies that the Date class inherits from the Ord
trait (in addition to the default superclass).

To make the comparisons work correctly, we redefine the equals method, inher-
ited from Java’s Object class, to compare dates by comparing their individual
fields. The default implementation of equals does not work because it compares
objects physically. In Scala, the comparison becomes:

override def equals(that: Any): Boolean =
that.isInstanceOf[Date] && {

val o = that.asInstanceOf[Date]
o.day == day && o.month == month && o.year == year

}

This method uses the predefined methods isInstanceOf and asInstanceOf.

• isInstanceOf corresponds to the Java instanceof operator. It returns
true if and only if the object to which it is applied is an instance of the
given type.

13

• asInstanceOf corresponds to the Java cast operator: if the object is an
instance of the given type, it is viewed as such, otherwise it throws a
ClassCastException.

To complete our implementation, we need to define the < operator. It uses
the predefined Scala method error to throw an exception with the given error
message.

def <(that: Any): Boolean = {
if (!that.isInstanceOf[Date])

error("cannot compare " + that + " and a Date")

val o = that.asInstanceOf[Date]
(year < o.year) ||
(year == o.year && (month < o.month ||

(month == o.month && day < o.day)))
}

This completes the definition of the Date class.

Instances of the Date class can be seen either as dates or as comparable objects.
They define all six comparison operators:

• equals and < because they appear directly in the definition of the Date
class

• the other four because they are inherited from the Ord trait

Traits are useful in many other situations, as you will see as you program more
in Scala.

Genericity

Scala supports generics. Java did not support generics until Java 5.

Genericity is the ability to write code parameterized by types.

For example, suppose we are writing a library for linked lists. What type do we
give the elements of the list?

• If we choose a specific concrete type such as Int, we severely limit the use-
fulness of the library. It is impractical to include different implementation
for every possible concrete type.

• If follow choose a default supertype like Any, then users of our library
would need to their lace code with many type checks and type casts. (In
Java, there was also the problem that basic types do not inherit from
Object.)

14

Scala supports generic classes and methods to solve this problem. As an example,
consider the simplest possible container class: a reference, which can either be
empty or point to an object of some type.

class Reference[T] {
private var contents: T = _
def set(value: T) { contents = value }
def get: T = contents

}

This example parameterizes the class Reference with a type T, which is the
type of its element. The body of the class declares the contents variable, the
argument of the set method, and the return type of the get method to have
type ‘T’.

This is our first example to use mutable variables declare with var. In this
example, we initialize the contents variable to have the value _, which represents
the default value for the type. This default value is 0 for numeric types, false
for the Boolean type, () for the Unit type, and null for all object types.

To use this Reference class, we need to specify what type to use for the type
parameter T, that is, the type of the element contained in the cell. For example,
to create and use a cell holding an integer, one could write the following:

object IntegerReference {
def main(args: Array[String]) {

val cell = new Reference[Int]
cell.set(13)
println("Reference contains the half of " + (cell.get * 2))

}
}

This example does not need to cast the value returned by the get method before
using it as an integer. It is also not possible to store anything but an integer in
that particular cell, because it was declared as holding an integer.

Conclusion

This document has provided a quick overview of Scala for programmers familiar
with Java. To learn more, see the course textbooks and other tutorials, manuals,
and books.

15

	A Scala Tutorial for Java Programmers
	A First Example: Hello World
	Compiling the example
	Running the example

	Interaction with Java
	Everything is an Object
	Numbers are objects
	Functions are objects
	Anonymous functions

	Classes
	Methods without arguments
	Inheritance and overriding

	Case Classes and Pattern Matching
	Traits
	Genericity
	Conclusion

