
CSci 555, Functional Programming
Recursion Concepts and Terminology:

Scala Version

H. Conrad Cunningham

10 February 2016 (minor formatting updates 3 August 2016)

Contents
Recursion Concepts and Terminology 1

Linear and Nonlinear Recursion . 1
Linear recursion . 1
Time and space complexity . 2
Termination of recursion . 2
Preconditions and postconditions 2
Nonlinear recursion . 3

Backward and Forward Recursion . 3
Backward recursion . 3
Forward recursion . 4
Tail Recursion . 4

Logarithmic Recursive Algorithms . 5

Copyright (C) 2016, H. Conrad Cunningham

Acknowledgements: I adapted the factorial, Fibonacci number, and exponen-
tiation functions used below from the Scala functional programming examples
developed for this class based on similar Elixir programs, which, in turn, were
adapted from similar Lua programs, which, in turn, were adapted from the
Scheme programs in Abelson and Sussman’s classic SICP textbook. This set of
notes was also adapted from a version using Elixir examples.

1

http://mitpress.mit.edu/sicp/

Recursion Concepts and Terminology

Linear and Nonlinear Recursion

Linear recursion

A function definition is linear recursive if at most one recursive application of
the function occurs in a leg of the definition (i.e., along a path from an entry to a
return). The various function clauses and branches of the conditional expressions
if and match introduce a path.

The definition of the function factorial below is linear recursive because the
expression in the second leg of the definition (i.e., n * factorial(n-1)) involves
a single recursive application. The other leg is nonrecursive; it is the base case
of the recursive definition.

def factorial(n: Int): Int = n match {
case 0 => 1
case m if m > 0 => m * factorial(m-1)

}

Scala checks for pattern matches for the clauses in the order given in the function
definition. It executes the leg corresponding to the first successful match. If no
pattern matches, then the function aborts and displays an error message.

Time and space complexity

How efficient is function factorial?

Function factorial recurses to a depth of n. It thus has time complexity O(n),
if we count either the recursive calls or the multiplication at each level. The
space complexity is also O(n) because a new runtime stack frame is needed for
each recursive call.

Termination of recursion

How do we know that function factorial terminates?

To show that evaluation of a recursive function terminates, we must show
that each recursive application always gets closer to a termination condition
represented by a base case. For a call factorial(n) with n > 0, the argument
of the recursive application always decreases to n - 1. Because the argument
always decreases in integer steps, it must eventually reach 0 and, hence, terminate
in the first leg of the definition.

2

Preconditions and postconditions

The precondition of a function is what the caller (i.e., the client of the function)
must ensure holds when calling the function. A precondition may specify the
valid combinations of values of the arguments. It may also record any constraints
on the values of “global” data structures that the function access or modifies.

If the precondition holds, the supplier (i.e., developer) of the function must
ensure that the function terminates with the postcondition satisfied. That is, the
function returns the required values and/or alters the “global” data structures
in the required manner.

The precondition of the factorial function requires that argument n be a
nonnegative integer value. We could use Scala’s predefined requires method to
ensure this precondition holds, but, in this version, if all pattern matches fail,
then the function call aborts with a standard error message.

The postcondition of factorial is that the result returned is the correct math-
ematical value of n factorial. The function factorial neither accesses nor
modifies any global data structures.

Nonlinear recursion

A nonlinear recursion is a recursive function in which the evaluation of some leg
requires more than one recursive application. For example, the naive Fibonacci
number function fib shown below has two recursive applications in its third leg.
When we apply this function to a nonnegative integer argument greater than 1,
we generate a pattern of recursive applications that has the “shape” of a binary
tree. Some call this a tree recursion.

def fib(n: Int): Int = n match {
case 0 => 0
case 1 => 1
case m if m >= 2 => fib(m-1) + fib(m-2) // double (tree) recursion

}

Termination: How do we know that fib terminates?

Complexity: Function fib is combinatorially explosive, having a time complexity
O(fib n). The space complexity is O(n) because a new runtime stack frame is
needed for each recursive call and the calls recurse to a depth of n.

An advantage of a linear recursion over a nonlinear one is that a linear recursion
can be compiled into a loop in a straightforward manner. Converting a nonlinear
recursion to a loop is, in general, difficult.

3

Backward and Forward Recursion

Backward recursion

A function definition is backward recursive if the recursive application is embedded
within another expression. During execution, the program must complete the
evaluation of the expression after the recursive call returns. Thus, the program
must preserve sufficient information from the outer call’s environment to complete
the evaluation.

The definition for the function factorial above is backward recursive because
the recursive application factorial(n-1) in the second leg is embedded within
the expression n * factorial(n-1). During execution, the multiplication must
be done after return. The program must “remember” (at least) the value of
parameter n for that call.

A compiler can translate a backward linear recursion into a loop, but the
translation may require the use of a stack to store the program’s state (i.e., the
values of the variables and execution location) needed to complete the evaluation
of the expression.

Forward recursion

A function definition is forward recursive if the recursive application is not
embedded within another expression. That is, the outermost expression is the
recursive application and any other subexpressions appear in the argument lists.
During execution, significant work is done as the recursive calls are made (e.g.,
in the argument list of the recursive call).

The definition for the auxiliary function factIter within the factorial2 defini-
tion below is forward recursive. The recursive application factIter(n-1,n*r)
in the second leg is on the outside of the expression evaluated for return. The
other legs are nonrecursive.

def factorial2(n: Int): Int = {

def factIter(n1: Int, r: Int): Int = n1 match {
case 0 => r
case m if m > 0 => factIter(m-1,m*r)

}

factIter(n,1)
}

Termination: How do we know that factIter terminates?

4

Complexity: Function factorial2 has a time complexity O(n). But, because,
tail call optimization converts the factIter recursion to a loop, the time com-
plexity’s constant factor should be smaller than that of factorial and the space
complexity of factIter is O(1).

Tail Recursion

A function definition is tail recursive if it is both forward recursive and linear
recursive. In a tail recursion, the last action performed before the return is a
recursive call.

The definition of the function factIter above is tail recursive because it is both
forward recursive and linear recursive.

Tail recursive definitions are easy to compile into efficient loops. There is no need
to save the states of unevaluated expressions for higher level calls; the result of
a recursive call can be returned directly as the caller’s result. This is sometimes
called tail call optimization (or “tail call elimination” or “proper tail calls”).

In converting the backward recursive function factorial to a tail recursive
auxiliary function, we added the parameter r to factIter. This parameter is
sometimes called an accumulating parameter (or just an accumulator).

We typically use an accumulating parameter to “accumulate” the result of
the computation incrementally for return when the recursion terminates. In
factIter, this “state” passed from one “iteration” to the next enables us to
convert a backward recursive function to an “equivalent” tail recursive one.

Function factIter defines a more general function than factorial. It computes
a factorial when we initialize the accumulator to 1, but it can compute some
multiple of the factorial if we initialize the accumulator to another value. However,
the application of factIter in factorial2 gives the initial value of 1 needed
for factorial.

Consider auxiliary function fibIter used by function fib2 below. This function
adds two “accumulating parameters” to the backward nonlinear recursive function
fib to convert the nonlinear (tree) recursion into a tail recursion. This technique
works for Fibonacci numbers, but the same technique will not work in all cases.

def fib2(n: Int): Int = {

def fibIter(a: Int, b: Int, n1: Int): Int = n1 match {
case 0 => b
case m => fibIter(a+b,a,m-1)

}

if (n >= 0)
fibIter(1,0,n)

5

else
sys.error("Fibonacci undefined for negative value " + n)

}

Termination: How do we know that fibIter terminates?

Complexity: Function fib2 has a time complexity of O(n) in contrast to
O(fib(n)) for fib. This algorithmic speedup results from the replacement
of the very expensive operation fib(n-1) + fib(n-2) at each level in fib by
the inexpensive operation a + b (i.e., addition of two numbers) in fib2. Be-
cause tail call optimization converts the fibIter recursion to a loop, the space
complexity of fib2 is O(1).

Logarithmic Recursive Algorithms

The backward recursive exponentiation function expt1 below raises a number to
a nonnegative integer power. It has time complexity O(n) and space complexity
O(n).

def expt1(b: Double, n: Int): Double = n match {
case 0 => 1
case m if m > 0 => b * expt1(b,m-1)
case _ =>

sys.error("Cannot raise to a negative power " + n)
}

Termination: How do we know that expt1 terminates?

Consider the tail recursive function exptIter called within function expt2 below.
This function has time complexity O(n) and space complexity O(1), assuming
tail call optimization.

def expt2(b: Double, n: Int): Double = {

def exptIter(b1: Double, n1: Int, p: Double): Double = n1 match {
case 0 => p
case m => exptIter(b1,m-1,b1*p)

}

if (n >= 0)
exptIter(b,n,1)

else
sys.error("Cannot raise to negative power " + n)

}

Termination: How do we know that exptIter terminates?

The exponentiation function can be made computationally more efficient by
squaring the intermediate values instead of iteratively multiplying. We observe

6

that:

b^n = b^(n/2)^2 if n is even
b^n = b * b^(n-1) if n is odd

Function expt3 below incorporates this observation in an improved algorithm.
Its time complexity is O(log(n)) and space complexity is O(log(n)).

def expt3(b: Double, n: Int): Double = {

def exptIter(b1: Double, n1: Int): Double = n1 match {
case 0 => 1
case m if (m % 2 == 0) => // i.e. even

val exp = exptIter(b1, m/2)
exp * exp // backward recursion

case m => // i.e. odd
b1 * exptIter(b1,m-1) // backward recursion

}

if (n >= 0)
exptIter(b,n)

else
sys.error("Cannot raise to negative power " + n)

}

Termination: How do we know that exptIter terminates?

7

	Recursion Concepts and Terminology
	Linear and Nonlinear Recursion
	Linear recursion
	Time and space complexity
	Termination of recursion
	Preconditions and postconditions
	Nonlinear recursion

	Backward and Forward Recursion
	Backward recursion
	Forward recursion
	Tail Recursion

	Logarithmic Recursive Algorithms

