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Advisory: The HTML version of this document uses MathML in a few locations.
For best results, use a browser that supports the display of MathML. A good
choice as of April 2016 seems to be a recent version of Firefox from Mozilla.

Strictness and Laziness

Introduction

The big idea we discuss in this chapter is how we can exploit nonstrict functions
to increase efficiency, increase code reuse, and improve modularity in functional
programs.

Motivation

In our discussion of Chapter 3 of Functional Programming in Scala, we examined
purely functional data structures–in particular, the immutable, singly linked list.

We also examined the design and use of several bulk operations–such as map,
filter, foldLeft, and foldRight. Each of these operations makes a pass over
the input list and often constructs a new list for its output.

Consider the Scala expression

List(10,20,30,40,50).map(_ / 10).filter(_ % 2 == 1).map(_ * 100)

that generates the result:

List(100, 300, 500)

The evaluation of the expression requires three passes through the list. However,
we could code a specialized function that does the same work in one pass.

def mfm(xs: List[Int]): List[Int] = xs match {
case Nil => Nil
case (y::ys) =>

val z = y / 10
if (z % 2 == 1) (z*100) :: mfm(ys) else mfm(ys)

}

It would be convenient if we could instead get a result similar to mfm by composing
simpler functions like map and filter.

Can we do this?

We can by taking advantage of nonstrict functions to build a lazy list structure.
We introduced the concepts of strict and nonstrict functions in Chapter 4 and
elaborate on them in this chapter.
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What is strictness and nonstrictness?

If the evaluation of an expression runs forever or throws an exception instead of
returning an explicit value, we say the expression does not terminate–or that it
evaluates to bottom (written symbolically as ⊥).

A function f is strict if f(x) evaluates to bottom for all x that themselves
evaluate to bottom. That is, f(⊥) == ⊥. A strict function’s argument must
always have a value for the function to have a value.

A function is nonstrict (sometimes called lenient) if it is not strict. That is,
f(⊥) != ⊥. The function can sometimes have value even if its argument does
not have a value.

For multiparameter functions, we sometimes apply these terms to individual
parameters. A strict parameter of a function must always be evaluated by the
function. A nonstrict parameter of a function may sometimes be evaluated by
the function and sometimes not.

Exploring nonstrictness

By default, Scala functions are strict.

However, some operations are nonstrict. For example, the “short-circuited” &&
operation is nonstrict; it does not evaluate its second operand when the first
operation is false. Similarly, || does not evaluate its second operand when its
first operand is true.

Consider the if expression as a ternary operator. When the condition operand
evaluates to true, the operator evaluates the second (i.e., then) operand but
not the third (i.e., else) operand. Similarly, when the condition is false, the
operator evaluates the third operand but not the second.

We could implement if as a function as follows:

def if2[A](cond: Boolean, onTrue: () => A, onFalse: () => A): A =
if (cond) onTrue() else onFalse()

Then we can call if2 as in the code fragment

val age = 21
if2(age >= 18, () => println("Can vote"),() => println("Cannot vote"))

and get the output

Can vote

The parameter type () => A means that the corresponding argument is passed as
a parameterless function that returns a value of type A. This function wraps the
expression, which is not evaluated before the call. This function is an explicitly
specified thunk.
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When the value is needed, then the called function must force the evaluation of
the thunk by calling it explicitly, for example by using onTrue()

To use the approach above, the caller must explicitly create the thunk. However,
as we saw in the previous chapter, Scala provides call-by-name parameter passing
that relieves the caller of this requirement in most circumstances. We can thus
rewrite if2 as follows:

def if2[A](cond: Boolean, onTrue: => A, onFalse: => A): A =
if (cond) onTrue else onFalse

The onTrue: => A notation makes the argument expression a by-name parame-
ter. Scala automatically creates the thunk for parameter onTrue and enables it
to be referenced within the function without explicitly forcing its evaluation, for
example by using onTrue.

An advantage of call-by-name parameter passing is that the evaluation of an
expression can be delayed until its value is referenced, which may be never. A
disadvantage is that the expression will be evaluated every time it is referenced.

To determine how to address this disadvantage, consider function

def maybeTwice(b: Boolean, i: => Int) = if (b) i + i else 0

which can be called as

println(maybeTwice(true, {println("hi"); 1 + 41}))

to generate output:

hi
hi
84

Note that the argument expression i is evaluated twice.

We can address this issue by defining a new variable and initializing it lazily to
have the same value as the by-name parameter. We do this by declaring the
temporary variable as a lazy val. The temporary variable will not be initialized
until it is referenced, but it caches the calculated value so that it can be used
without reevaluation on subsequent references.

We can rewrite maybeTwice as follows:

def maybeTwice2(b: Boolean, i: => Int) = {
lazy val j = i
if (b) j+j else 0

}

Now calling it as

println(maybeTwice2(true, {println("hi"); 1 + 41}))
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generates output:

hi
84

This technique of caching the result of the evaluation gives us call-by-need
parameter passing as it is called in Haskell and other lazily evaluated languages.

Lazy Lists

Now let’s return to the problem discussed in the Motivation subsection. How
can we use laziness to improve efficiency and modularity of our programs?

In this section, we answer this question by developing lazy lists or streams.
These allow us to carry out multiple operations on a list without always making
multiple passes over the elements.

Consider a simple algebraic data tupe Stream. A nonempty stream consists of a
head and a tail, both of which must be nonstrict.

For technical reasons, Scala does not allow by-name parameters in the construc-
tors for case classes. Thus these components must be explicitly defined thunks
whose evaluations are explicitly forced when their values are required.

import scala.{Stream => _, _}
import Stream._

sealed trait Stream[+A]
case object Empty extends Stream[Nothing]
case class Cons[+A](h: () => A, t: () => Stream[A]) extends Stream[A]

object Stream {
def cons[A](hd: => A, tl: => Stream[A]): Stream[A] = {

lazy val head = hd // cache values once computed
lazy val tail = tl
Cons(() => head, () => tail) // create thunks for Cons

}
def empty[A]: Stream[A] = Empty
def apply[A](as: A*): Stream[A] =

if (as.isEmpty) empty else cons(as.head, apply(as.tail: _*))
}

Memoizing streams

In the Stream data type, we define two smart constructors to create new streams.
By convention, these are functions defined in the companion object with the
same names as the corresponding type constructors except they begin with a
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lowercase letter. They construct a data type object, ensuring that the needed
integrity invariants are established. In the Stream type, these take care of the
routine work of creating the thunks, caching the values, and enabling transparent
use of the parameters.

Smart constructor function cons takes the head and tail of the new Stream as
by-name parameters, equates these to lazy variables to cache their values, and
then creates a Cons cell whose fields are two explicit thunks wrapping the head
and the tail.

Smart constructor function empty just creates an Empty Stream.

Both smart constructors have return type Stream[A]. In addition to establishing
the needed invariants, the use of the smart constructors helps Scala’s type
inference mechanism infer the Stream type (which is what we usually want)
instead of the subtypes associated with the case class/object constructors (which
is what often will be inferred in Scala’s object-oriented type system).

Convenience function apply takes a sequence of zero or more arguments and
creates the corresponding Stream.

If a function examines or traverses a Stream, it must explicitly force the thunks.
In general, we should encapsulate such accesses within functions defined as a
part of the Stream implementation. (That is, we should practice information
hiding, hide this design detail as a secret of the Stream implementation as we
discuss in the notes on Data Abstraction.)

An example of this is function headOption that optionally extracts the head of
the stream.

def headOption: Option[A] = this match {
case Empty => None
case Cons(h,t) => Some(h()) // force thunk

}

It explicitly forces the thunk and thus enables code that called it to work with
the values.

This technique for caching the value of the by-name argument is an example of
memoizing the function. In general, memoization is an implementation technique
in which a function stores the return value computed for certain arguments.
Instead of recomputing the value on a subsequent call, the function just returns
the cached values. This technique uses memory space to (potentially) save
computation time later.

Helper functions

Now let’s define a few functions that help us manipulate streams. We implement
these as methods on the Stream trait.
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First, let’s define a function toList that takes a Stream (as its implicit argument)
and constructs the corresponding Scala List. A standard backward recursive
method can be defined as follows:

def toListRecursive: List[A] = this match {
case Cons(h,t) => h() :: t().toListRecursive // force thunks
case _ => List()

}

Of course, this method may suffer from stack overflow for large streams. We can
remedy this by using a tail recursive auxiliary function that uses an accumulator
to build up the list in reverse order and then reverses the constructed list.

def toList: List[A] = {
@annotation.tailrec
def go(s: Stream[A], acc: List[A]): List[A] = s match {

case Cons(h,t) => go(t(), h() :: acc) // force thunks
case _ => acc

}
go(this, List()).reverse

}

To avoid the reverse, we could instead build up the list in a mutable ListBuffer
using a loop and then, when finished, convert the buffer to an immutable List.
We preserve the purity of the toList function by encapsulating use of the
mutable buffer inside the function.

def toListFast: List[A] = {
val buf = new collection.mutable.ListBuffer[A]
@annotation.tailrec
def go(s: Stream[A]): List[A] = s match {

case Cons(h,t) =>
buf += h() // force head thunk, add to end of buffer
go(t()) // force tail thunk, process recursively

case _ => buf.toList // convert buffer to immutable list
}
go(this)

}

Next, let’s define function take to return the first n elements from a Stream and
function drop to skip the first n elements.

We can define method take using a standard backward recursive form that
matches on the structure of the implicit argument. However, we must be careful
not to evaluate either the head or the tail thunks unnecessarily (e.g., by treating
the n == 1 and n == 0 cases specially).

def take(n: Int): Stream[A] = this match {
case Cons(h, t) if n > 1 => cons(h(), t().take(n - 1))
case Cons(h, _) if n == 1 => cons(h(), empty)
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< case _ => empty // stream empty or n < 1 }

We can define method drop to recursively calling drop on the forced tail. This
yields the following tail recursive function.

@annotation.tailrec
final def drop(n: Int): Stream[A] = this match {

case Cons(_, t) if n > 0 => t().drop(n - 1)
case _ => this

}

Finally, let’s also define method takeWhile to return all starting elements of the
Stream that satisfy the given predicate.

def takeWhile(p: A => Boolean): Stream[A] = this match {
case Cons(h,t) if p(h()) => cons(h(), t() takeWhile p)
case _ => empty

}

In the first case, we apply method takeWhile as an infix operator.

Separating Program Description from Evaluation

One of the fundamental design concepts in software engineering and programming
is separation of concerns. A concern is some set of information that affects a
software system. We identify the key concerns in a software design and try to
keep them separate and independent from each other. The goal is to implement
the parts independently and then combine the parts to form a complete solution.

We apply separation of concerns in modular programming and abstract data
types as information hiding. We hide the secrets of how a module is implemented
(e.g., what algorithms and data structures are used, what specific operating
system or hardware devices are used, etc.) from the external users of the module
or data type. We encapsulate the secrets behind an abstract interface.

We also apply separation of concerns in software architecture for computing
applications. For example, we try to keep the business logic (i.e., specific knowl-
edge about the application area), the user interface, and the data representation
for an application separate from each other using an approach such as the
Model-View-Controller (MVC) architectural design pattern.

In functional programming, we also apply separation of concerns by seeking to
keep the description of computations separate from their evaluation (execution).
Examples include:

• first-class functions that express computations in their bodies but which
must be supplied arguments before they execute

• use of Option or Either to express that an error has occurred but deferring
the handling of the error to other parts of the program
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• use of Stream operators to assemble a computation that generates a
sequence without actually running the computation until later when its
result in needed

Laziness promotes reuse

In general, lazy evaluation enables us to separate the description of an expression
from the evaluation of the expression. It enables us to to describe a “larger”
expression than we need and then to only evaluate the portion that we actually
need. This offers us the potential for greater code reuse.

Consider a method exists on Stream that checks whether an element matching
a Boolean function p occurs in the stream. We can define this using an explicit
tail recursion as follows:

def exists(p: A => Boolean): Boolean = this match {
case Cons(h,t) => p(h()) || t().exists(p)
case _ => false

}

Given that || is nonstrict in its second argument, this function terminates and
returns true as soon as it finds the first element that makes p true. Because
the stream holds the tail in a lazy val, it is only evaluated when needed. So
exists does not evaluate the stream past the first occurrence.

As with the List data type in Chapter 3, we can define a more general method
foldRight on Stream to represent the pattern of computation exhibited by
exists.

def foldRight[B](z: => B)(f: (A, => B) => B): B = this match {
case Cons(h,t) => f(h(), t().foldRight(z)(f))
case _ => z

}

The notation => B means that combining function f takes its second argument
by-name and, hence, may not evaluate it in all circumstances. If f does not
evaluate its second argument, then the recursion terminates. Thus the overall
foldRight computation can terminate before it completes the complete traversal
through the stream.

We can now redefine exists to use the more general function as follows:

def exists2(p: A => Boolean): Boolean =
foldRight(false)((a, b) => p(a) || b)

Here parameter b represents the unevaluated recursive step that folds the tail of
the stream. If p(a) returns true, then b is not evaluated and the computation
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terminates early.

Caveat: The second version of exists illustrates how we can use a general
function to represent a variety of more specific computations. But, for a large
stream in which all elements evaluate to false, this version is not stack safe.

Because the foldRight method on Stream can terminate its traversal early,
we can use it to implement exists efficiently. Unfortunately, we cannot im-
plement the List version of exists efficiently in terms of the List version of
foldRight. We must implement a specialized recursive version of exists to get
early termination.

Laziness thus enhances our ability to reuse code.

Incremental computations

Now, let’s flesh out the Stream trait and implement the basic map, filter,
append, and flatMap methods using the general function foldRight, as follows:

def map[B](f: A => B): Stream[B] =
foldRight(empty[B])((h,t) => cons(f(h), t))

def filter(p: A => Boolean): Stream[A] =
foldRight(empty[A])((h,t) => if (p(h)) cons(h, t) else t)

def append[B >: A](s: => Stream[B]): Stream[B] =
foldRight(s)((h,t) => cons(h,t))

def flatMap[B](f: A => Stream[B]): Stream[B] =
foldRight(empty[B])((h,t) => f(h) append t)

These implementations are incremental. They do not fully generate all their
answers. No computation takes place until some other computation examines
the elements of the output Stream and then only enough elements are generated
to give the requested result.

Because of their incremental nature, we can call these functions one after another
without fully generating the intermediate results.

We can now address the problem raised by the problem in the Introduction to
these notes. There we asked the question of how can we compute the result of
the expression

List(10,20,30,40,50).map(_ / 10).filter(_ % 2 == 1).map(_ * 100)

without producing two unneeded intermediate lists.

The Stream expression

Stream(10,20,30,40,50).map(_ / 10).filter(_ % 2 == 1).map(_ * 100).toList

10



generates the result

List(100, 300, 500)

which is the same as the List expression. The expression looks the same except
that we create a Stream initially instead of a List and we call toList to force
evaluation of stream at the end.

When executed, the lazy evaluation interleaves two map, the filter, and the
toList transformations. The computation does not fully instantiate any in-
termediate streams. It is a similar interleaving to what we did in the special
purpose function mfm in the introduction.

(For a more detailed discussion of this interleaving, see Listing 5.3 in the Func-
tional Programming in Scala book.)

Because stream computations do not generate intermediate streams in full, we
are free to use stream operations in ways that might seem counterintuitive at
first. For example, we can use filter (which seems to process the entire stream)
to implement find, a function to return the first occurrence of an element in a
stream that satisfies a given predicate, as follows:

def find(p: A => Boolean): Option[A] = filter(p).headOption

The incremental nature of these computations can sometimes save memory. The
computation may only need a small amount of working memory; the garbage
collector can quickly recover working memory that the current step does not
need.

Of course, some computations may require more intermediate elements and each
element may itself require a large amount of memory, so not all computations
are as well-behaved as the examples in this section.

For comprehensions on streams

Given that we have defined map, filter, and flatMap, we can now use sequence
comprehensions on our Stream data. For example, the code fragment

val seq = for (x <- Stream(1,2,3,4) if x > 2; y <- Stream(1,2)) yield x
println(seq.toList)

causes the following to print on the console:

List(3, 3, 4, 4)

Note: During compilation, the Scala compiler issues a deprecation warning
that filter is used instead of withFilter. In a future release of Scala, this
substitution may no longer work. Because filter is lazy for streams, we could
define withFilter as an alias for withFilter with the following:

def withFilter = filter _
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However, filter does generate a new Stream where withFilter normally does
not generate a new collection. Although this gets rid of the warning, it would
be better to implement a proper withFilter function.

Infinite Streams snd Corecursion

Because the streams are incremental, the functions we have defined also work
for infinite streams.

Consider the following definition for an infinite sequence of ones:

lazy val ones: Stream[Int] = cons(1, ones)

Note: The book Functional Programming in Scala does not add the lazy
annotation, but that version gives a compilation error. Adding lazy seemed to
fix the problem, but this issue should be investigated further.

Although ones is infinite, the Stream functions only reference the finite prefix
of the stream needed to compute the needed result.

For example:

• ones.take(5).toList yields List(1,1,1,1,1)

• ones.map(_+2).take(5).toList yields List(3,3,3,3,3)

• What about ones.map(_+2).toList?

We can generalize ones to a constant function as follows:

def constant[A](a: A): Stream[A] = {
lazy val tail: Stream[A] = Cons(() => a, () => tail)
tail

}

An alternative would be just to make the body cons(a, constant(a)). But
the above is more efficient because it is just one object referencing itself.

We can also define an increasing Stream of all integers beginning with n as
follows:

def from(n: Int): Stream[Int] =
cons(n, from(n+1))

The (second-order) Fibonacci sequence begins with the elements 0 and 1; each
subsequent element is the sum of the two previous elements. We can define the
Fibonacci sequence as a stream fibs with the following definition:

val fibs = {
def go(f0: Int, f1: Int): Stream[Int] =

cons(f0, go(f1, f0+f1))
go(0, 1)
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}

Prime numbers: Sieve of Erastosthenes

A positive integer greater than 1 is prime if it is divisible only by itself and 1.
The Sieve of Eratosthenes algorithm works by removing multiples of numbers
once they are identified as prime.

• We begin the increasing stream of integers starting with 2, a prime number.

• The head is 2, so we remove all the multiples of 2 from the stream.

• The head of the tail is 3, so it is prime because it was not removed as a
multiple of 2 and it is the smallest integer remaining.

• Continue the process recursively on the tail.

We can define this calculation with the following Stream functions.

def sieve(ints: Stream[Int]): Stream[Int] = ints.headOption match {
case None => sys.error("Should not occur: No head on infinite stream.")
case Some(x) => cons(x,sieve(ints drop 1 filter (_ % x > 0)))

}

val primes: Stream[Int] = sieve(from(2))

We can then use primes to define a function isPrime to test whether an integer
is prime.

def isPrime(c: Int): Boolean =
(primes filter (_ >= c) map (_ == c)).headOption getOrElse

sys.error("Should not occur: No head on infinite list.")

Function unfold

Now let’s consider unfold, a more general stream-building function. Function
unfold takes an initial state and a function that produces both the next state
and the next value in the stream. We can define it as follows:

def unfold[A, S](z: S)(f: S => Option[(A, S)]): Stream[A] =
f(z) match {

case Some((h,s)) => cons(h, unfold(s)(f))
case None => empty

}

This function applies f to the current state z to generate the next state s and the
next element h of the stream. We use Option so f can signal when to terminate
the Stream.

Function unfold is an example of a corecursive function.

13



A recursive function consumes data. The input of each successive call is “smaller”
than the previous one. Eventually the recursion terminates when input size
reaches the minimum.

A corecursive function produces data. Corecursive functions need not terminate
as long as they remain productive. By productive, we mean that the function
can continue to evaluate more of the result in a finite amount of time.

The unfold function remains productive as long as its argument function f
terminates. Function f must terminate for the unfold computation to reach its
next state.

Some writers in the functional programming community use the term guarded re-
cursion instead of corecursion and the term cotermination instead of productivity.
See the Wikipedia articles on corecursion and coinduction for more information
and links.

The function unfold is very general. For example, we can now define ones,
constant, from, and fibs with unfold.

val onesViaUnfold = unfold(1)(_ => Some((1,1)))

def constantViaUnfold[A](a: A) =
unfold(a)(_ => Some((a,a)))

def fromViaUnfold(n: Int) =
unfold(n)(n => Some((n,n+1)))

val fibsViaUnfold =
unfold((0,1)) { case (f0,f1) => Some((f0,(f1,f0+f1))) }

Summary

The big idea in this chapter is that we can exploit nonstrict functions to in-
crease efficiency, increase code reuse, and improve the modularity in functional
programs.
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