1. Formalize the following sentences. Suppose an array $X[0..N]$ is given, where $N \geq 1$.

 (a) Array X is increasing.
 (b) All values in X are distinct.
 (c) All values in X are equal.
 (d) X contains a 1, then X contains a 0 as well.
 (e) No two neighbors in X are equal.
 (f) The maximum of X occurs only once in X.
 (g) r is the length of a longest constant section of X.
 (h) All elements of X are prime numbers.
 (i) The number of odd-valued elements in X equals the number of even-valued elements.
 (j) r is the product of the positive elements of X.
 (k) r is the maximum of the sums of the sections of X.
 (l) X contains a square.

2. Specify a program that:

 (a) Determines the sum of the elements in a given integer array.
 (b) Given boolean array b contains a true, sets integer x to the smallest z such that $b.z$ holds.
 (c) Determines the number of distinct values in a given integer array.
 (d) Given that there is one, determines the second largest value in a given integer array.

3. Specify a program that:

 (a) Determines the length of the longest ascending section in a given integer array.
 (b) Determines the length of the longest section containing at most two distinct values in a given array.
 (c) Determines the length of the longest smooth section in a given integer array. A smooth section is a section in which no two elements differ in value by more than 1.