CSci 550: Program Semantics & Derivation Spring Semester 2006, Assignment #2 Due Thursday, 16 February, 8:00 A.M.

Do the following exercises.

- 1. Prove Theorem 62 from the Logic handout
- 2. Prove $X \equiv (X \not\equiv Y) \equiv \neg Y$
- 3. Prove $(X \Rightarrow Z) \lor (Y \Rightarrow Z) \equiv X \land Y \Rightarrow Z$
- 4. Prove $Y \lor (X \Rightarrow Y) \equiv X \Rightarrow Y$
- 5. Proive Theorem 78 from the Logic handout.
- 6. Prove Theorem 94 from the Logic handout.
- 7. Given the validity of
 - (a) $x = (\Sigma i : R.i : f.i)$
 - (b) $R.i \not\equiv i = N$ for any i

calculate a quantifier-free expression equivalent to

$$(\Sigma i : R.i \lor i = N : f.i).$$

The solution should take the form of our proofs with hints.

- 8. Given the validity of
 - (a) $x = (\mathbf{MAX} \ i, j : R.i.j \land j < N+1 : f.i.j)$
 - (b) $y = (\mathbf{MAX} \ i : R.i.(N+1) : f.i.(N+1))$

calculate a quantifier-free expression equivalent to

$$(MAX \ i.j : R.i.j \land (j < N + 1 \lor j = N + 1) : f.i.j).$$

- 9. Given the validity of
 - (a) $x = (MAX \ i : R.i.N : f.i.N)$
 - (b) $R.y.(z+1) \equiv R.y.z \lor y = z+1$ for any y and z
 - (c) f.y.y = 0 for any y
 - (d) f.y.(z+1) = f.y.z + g.z for any y and z
 - (e) $R.y.z \not\equiv false$ for any y and z

calculate a quantifier-free expression equivalent to

$$(MAX i : R.i.(N+1) : f.i.(N+1)).$$