
CSci 311, Models of Computation
Chapter 12

Limits of Algorithmic Computation

H. Conrad Cunningham

29 December 2015

Contents

Introduction . 1

12.1 Some Problems That Cannot Be Solved with Turing Machines . 2

12.1.1 Computability . 2

12.1.2 Decidability . 2

12.1.3 The Turing Machine Halting Problem 2

12.1.4 Reducing One Undecidable Problem to Another 5

12.2 Undecidable Problems for Recursively Enumerable Languages . . 5

12.3 The Post Correspondence Problem 6

12.4 Undecidable Problems for Context-Free Languages 6

12.5 A Question of Efficiency . 6

Copyright (C) 2015, H. Conrad Cunningham

Acknowledgements: These lecture notes are for use with Chapter 12 of the
textbook: Peter Linz. Introduction to Formal Languages and Automata, Fifth
Edition, Jones and Bartlett Learning, 2012.The terminology and notation used
in these notes are similar to those used in the Linz textbook.This document uses
several figures from the Linz textbook.

Advisory: The HTML version of this document requires use of a browser that
supports the display of MathML. A good choice as of December 2015 seems to
be a recent version of Firefox from Mozilla.

1

Introduction

In Linz Chapter 9, we studied the Turing thesis, which concerned what Turing
machines can do.

This chapter we study: What Turing machines cannot do.

This chapter considers the concepts:

• computability
• decidability

12.1 Some Problems That Cannot Be Solved with Turing
Machines

12.1.1 Computability

Recall the following definition from Chapter 9.

Linz Definition 9.4 (Turing Computable): A function f with domain D is
said to be Turing-computable, or just computable, if there exists some Turing
machine M = (Q,Σ,Γ, δ, q0,�, F) such that

q0w `∗M qff(w), qf ∈ F ,

for all w ∈ D.

Note:

• A function f can be computable only if it is defined on the entire domain
D.

• Otherwise, f is uncomputable.
• So the domain of f is crucial to the issue of computability.

12.1.2 Decidability

Here we work in a simplified setting: the result of a computation is either “yes” or
“no”. In this context, the problem is considered either decidable or undecidable.

Problem: We have a set of related statements, each either true or false.

This problem is decidable if and only if there exists a Turing machine that gives
the correct answer for every statement in the domain. Otherwise, the problem is
undecidable.

Example problem statement: For a context-free grammar G, the language L(G)
is ambiguous. This is a true statement for some G and false for others.

2

If we can answer this question, with either the result true or false, for every
context-free grammar, then the problem is decidable. If we cannot answer the
question for some context-free grammar (i.e., the Turing machine does not halt),
then the problem is undecidable.

(In Linz Theorem 12.8, we see that this question is actually undecidable.)

12.1.3 The Turing Machine Halting Problem

Given the description of a Turing machine M and input string w, does M , when
started in the initial configuration q0w, perform a computation that eventually
halts?

What is the domain D?

• all Turing machines and all strings w on the Turing machine’s alphabet

We cannot solve this problem by simulating M . That is an infinite computation
if the Turing machine does not halt.

We must analyze the Turing machine description to get an answer for any
machine M and string w. But no such algorithm exists!

Linz Definition 12.1 (Halting Problem): Let wM be a string that describes
a Turing machineM = (Q,Σ,Γ, δ, q0,�, F) and let w be a string inM ’s alphabet.
Assume that wM and w are encoded as strings of 0’s and 1’s (as suggested in
Linz Section 10.4). A solution to the halting problem is a Turing machine H,
which for any wM and w, performs the computation

q0wMw `∗ x1qyx2

if M is applied to w halts, and

q0wMw `∗ y1qny2,

if M is applied to w does not halt. Here qy and qn are both final states of H.

Linz Theorem 12.1 (Halting Problem is Undecidable): There does not
exist any Turing machine H that behaves as required by Linz Definition 12.1.
Thus the halting problem is undecidable.

Proof: Assume there exists such a Turing machine H that solves the halting
problem.

The input to H is wMw, where wM is a description of Turing machine M . H
must halt with a “yes” or “no” answer as indicated in Linz Figure 12.1.

3

Linz Fig. 12.1: Turing Machine H

Linz Fig. 12.2: Turing Machine H ′

We next modify H to produce a Turing machine H ′ with the structure shown in
Linz Figure 12.2.

When H ′ reaches a state where H halts, it enters an infinite loop.

From H ′ we construct Turing machine Ĥ, which takes an input wM and copies
it, ending in initial state q0 of H ′. After that, it behaves the same as H ′.

The behavior of Ĥ is

q0wM `∗
Ĥ

q0wMwM `∗
Ĥ

∞

if M applied to wM halts, and

q0wM `∗
Ĥ

q0wMwM `∗
Ĥ

y1qny2

if M applied to wM does not halt.

Now Ĥ is itself a Turing machine, which can be also be encoded as a string ŵ.

So, let’s apply Ĥ to its own description ŵ. The behavior is

q0ŵ `∗
Ĥ

∞

if Ĥ applied to ŵ halts, and

4

q0ŵ `∗
Ĥ

y1qny2

if M applied to ŵ does not halt.

In the first case, Ĥ goes into an infinite loop (i.e., does not halt) if Ĥ halts. In
the second case, Ĥ halts if Ĥ does not halt. This is clearly impossible!

Thus we have a contradiction. Therefore, there exists no Turing machine H.
The halting problem is undecidable. QED.

It may be possible to determine whether a Turing machine halts in specific cases
by analyzing the machine and its input.

However, this theorem says that there exists no algorithm to solve the halting
problem for all Turing machines and all possible inputs.

Linz Theorem 12.2: If the halting problem were decidable, then every re-
cursively enumerated language would be recursive. Consequently, the halting
problem is undecidable.

Proof: Let L be a recursively enumerable language on Σ, M be a Turing
machine that accepts L, and wM be an encoding of M as a string.

Assume the halting problem is decidable and let H be a Turing machine that
solves it.

Consider the following procedure.

1. Apply H to wMw.
2. If H says “no”, then w /∈ L.
3. If H says “yes”, then apply M to w, which will eventually tell us whether
w ∈ L or w /∈ L.

The above is thus a membership algorithm, so L must be recursive. But we
know that there are recursively enumerable languages that are not recursive. So
this is a contradiction.

Therefore, H cannot exist and the halting problem is undecidable. QED.

12.1.4 Reducing One Undecidable Problem to Another

In the above, the halting problem is reduced to a membership algorithm for
recursively enumerable languages.

A problem A is reduced to problem B if the decidability of B implies the
decidability of A. We transform a new problem A into a problem B whose
decidability is already known.

Note: The Linz textbook gives three example reductions in Section 12.1

5

12.2 Undecidable Problems for Recursively Enumerable
Languages

Linz Theorem 12.3 (Empty Unrestricted Grammars Undecidable):
Let G be an unrestricted grammar. Then the problem of determining whether
or not

L(G) = ∅

is undecidable.

Proof: See Linz Section 12.2 for the details of this reduction argument. The
decidability of membership problem for recursively enumerated languages implies
the problem in this theorem.

Linz Theorem 12.4 (Finiteness of Turing Machine Languages is Un-
decided): Let M be a Turing Machine. Then the question of whether or not
L(M) is finite is undecidable.

Proof: See Linz Section 12.2 for the details of this proof.

Rice’s theorem, a generalization of the above, states that any nontrivial property
of a recursively enumerable language is undecidable. The adjective “nontrivial”
refers to a property possessed by some but not all recursively enumerated
languages.

12.3 The Post Correspondence Problem

This section is not covered in this course.

12.4 Undecidable Problems for Context-Free Languages

Linz Theorem 12.8: There exists no algorithm for deciding whether any given
context-free grammar is ambiguous.

Proof: See Linz Section 12.4 for the details of this proof.

Linz Theorem 12.9: There exists no algorithm for deciding whether or not

L(G1) ∩ L(G2) = ∅

for arbitrary context-free grammars G1 and G2.

Proof: See Linz Section 12.4 for the details of this proof.

Keep in mind that the above and other such decidability results do not eliminate
the possibility that there may be specific cases–perhaps even many interesting
and important cases–for which there exist decision algorithms.

6

However, these theorems do say that there are no general algorithms to decide
these problems. There are always some cases in which specific algorithms will
fail to work.

12.5 A Question of Efficiency

This section is not covered in this course.

7

	Introduction
	Some Problems That Cannot Be Solved with Turing Machines
	Computability
	Decidability
	The Turing Machine Halting Problem
	Reducing One Undecidable Problem to Another

	Undecidable Problems for Recursively Enumerable Languages
	The Post Correspondence Problem
	Undecidable Problems for Context-Free Languages
	A Question of Efficiency

