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Introduction

Chapter 4 examines the closure properties of the family of regular languages,
algorithms for determining various properties of regular languages, and methods
for proving languages are not regular (e.g., the Pumping Lemma).

Chapter 8 examines similar aspects of the family of context-free languages.

8.1 Two Pumping Lemmas

Because of insufficient time and extensive coverage of the Pumping Lemma for
regular languages, we will not cover the Pumping Lemmas for Context-Free
Languages in this course. See section 8.1 of the Linz textbook if you are interested
in this topic.

8.1.1 Context-Free Languages

Linz Section 8.1 includes the following language examples. The
results of these are used in the remainder of this chapter.

1. Linz Example 8.1 shows L = {anbncn : n ≥ 0} is not context free.

2. Linz Example 8.2 shows L = {ww : w ∈ {a, b}∗} is not context free.

3. Linz Example 8.3 shows L = {an! : n ≥ 0} is not context free.

4. Linz Example 8.4 shows L = {anbj : n = j2} is not context free.

8.1.2 Linear Languages

Linz Section 8.1 includes the following definitions. (The definition of linear
grammar is actually from Chapter 3.)

Definition (Linear Grammar): A linear grammar is a grammar in which at
most one variable can appear on the right side of any production.

A linear context-free grammar is thus a context-free grammar that is also a linear
grammar.

Linz Definition 8.5 (Linear Language): A context-free language L is linear
if there exists a linear context-free grammar G such that L = L(G).

Linz Section 8.1 also includes the following language examples.

5. Linz Example 8.5 shows L = {anbn : n ≥ 0} is a linear language.

6. Linz Example 8.6 shows L = {w : na(w) = nb(w)} is not linear.
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8.2 Closure Properties and Decision Algorithms for
Context-Free Languages

In most cases, the proofs and algorithms for the properties of regular languages
rely upon manipulation of transition graphs for finite automata. Hence, they
are relatively straightforward.

When we consider similar properties for context-free languages, we encounter
more difficulties.

• Some properties do not hold.
• Other properties require more complex arguments.
• Some intuitively simple questions cannot be answered.

Let’s consider closure under the simple set operations as we did for regular
languages in Linz Theorem 4.1.

8.2.1 Closure under Union, Concatenation, and Star-Closure

Linz Theorem 8.3 (Closure under Union, Concatenation, and Star-
Closure): The family of context-free languages is closed under (a) union, (b)
concatenation, and (c) star-closure.

(8.3a) Proof of Closure under Union:

Let L1 and L2 be context-free languages with the corresponding context-free
grammars G1 = (V1, T1, S1, P1) and G2 = (V2, T2, S2, P2).

Assume V1 and V2 are disjoint. (If not, we can make them so by renaming.)

Consider L(G3) where

G3 = (V1 ∪ V2 ∪ {S3}, T1 ∪ T2, S3, P3)

with:

S3 /∈ V1 ∪ V2 – i.e, S3 is a fresh variable

P3 = P1 ∪ P2 ∪ { S3 → S1 | S2 }

Clearly, G3 is a context-free grammar. So L(G3) is a context-free language.

Now, we need to show that L(G3) = L1 ∪ L2.

For w ∈ L1, there is a derivation in G3:

(1) S3 ⇒ S1
∗⇒ w
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Similarly, for w ∈ L2, there is a derivation in G3:

(2) S3 ⇒ S2
∗⇒ w

Also, for w ∈ L(G3), the first step of the derivation must be either (1) S3 ⇒ S1
or (2) S3 ⇒ S2.
For choice 1, the sentential forms derived from S1 only have variables from V1.
But V1 is disjoint from V2. Thus the derivation

S1
∗⇒ w

can only involve productions from from P1. Hence, for choice 1, w ∈ L1.
Using a similar argument for choice 2, we conclude w ∈ L2.
Therefore, L(G3) = L1 ∪ L2.
QED.
(8.3b) Proof of Closure under Concatenation:

Consider L(G4) where

G4 = (V1 ∪ V2 ∪ {S4}, T1 ∪ T2, S4, P4)

with:

S4 /∈ V1 ∪ V2
P4 = P1 ∪ P2 ∪ { S4 → S1S2 }

Then L(G4) = L1L2 follows from a similar argument to the one in part (a).
QED.
(8.3c) Proof of Closure under Star-Closure:

Consider L(G5) where

G5 = (V1 ∪ {S5}, T1, S5, P5)

with:

S5 /∈ V1

P5 = P1 ∪ { S5 → S1S5 | λ }

Then L(G5) = L∗
1 follows from a similar argument to the one in part (a).

QED.
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8.2.2 Non-Closure under Intersection and Complementation

Linz Theorem 8.4 (Non-closure under Intersection and Complemen-
tation): The family of context-free languages is not closed under (a) intersection
and (b) complementation.
(8.4b) Proof of Non-closure under Intersection:
Assume the family of context-free languages is closed under intersection. Show
that this leads to a contradiction.
It is sufficient to find two context-free languages whose intersection is not context-
free.
Consider languages L1 and L2 defined as follows:

L1 = {anbncm : n ≥ 0,m ≥ 0}
L2 = {anbmcm : n ≥ 0,m ≥ 0}

One way to show that a language is context-free is to find a context-free grammar
that generates it. The following context-free grammar generates L1:

S → S1S2
S1 → aS1b | λ
S2 → cS2 | λ

Alternatively, we could observe that L1 is the concatenation of two context-free
languages and, hence, context-free by Linz Theorem 8.3 above.
Similarly, we can show that L2 is context free.
From the assumption, we thus have that L1 ∩ L2 is context free.
But

L1 ∩ L2 = {anbncn : n ≥ 0},

which is not context free. Linz proves this in Linz Example 8.1 (which is in the
part of this chapter we did not cover in this course).
Thus we have a contradiction. Therefore, the family of context-free languages is
not closed under intersection.
QED.
(8.4b) Proof of Non-closure under Complementation:
Assume the family of context-free languages is closed under complementation.
Show that this leads to a contradiction.
Consider arbitrary context-free languages L1 and L2.
From set theory, we know that
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L1 ∩ L2 = L̄1 ∪ L̄2.

From Linz Theorem 8.3 and the assumption that context-free languages are
closed under complementation, we deduce that the right side (L̄1 ∪ L̄2) is a
context-free language for all L1 and L2.

However, we know from part (a) that the left side (L1 ∩ L2) is not necessarily a
context-free language for all L1 and L2.

Thus we have a contradiction. Therefore, the family of context-free languages is
not closed under complementation.

QED.

8.2.3 Closure under Regular Intersection

Although context-free languages are not, in general, closed under intersection,
there is a useful special case that is closed.

Linz Theorem 8.5 (Closure Under Regular Intersection): Let L1 be a
context-free language and L2 be a regular language. Then L1 ∩ L2 is context
free.

Proof:

Let M1 = (Q,Σ,Γ, δ1, q0, z, F1) be an npda that accepts context-free language
L1.

Let M2 = (P,Σ, δ2, p0, F2) be a dfa that accepts regular language L2.

We construct an npda

M̂ = (Q̂,Σ,Γ, δ̂, q̂0, F̂ )

that simulates M1 and M2 operating simultaneously (i.e., executes the moves of
both machines for each input symbol).

We choose pairs of states from M1 and M2 to represent the states of M̂ as
follows:

Q̂ = Q× P
q̂0 = (q0, p0)
F̂ = F1 × F2

We specify δ̂ such that the moves of M̂ correspond to simultaneous moves of M1
and M2. That is,

((qk, pl), x) ∈ δ̂((qi, pj), a, b)
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if and only if

(qk, x) ∈ δ1(qi, a, b)

and

δ2(pj , a) = pl.

For moves (qi, λ, b) in δ1, we extend δ2 so that δ2(pl, λ) = pl for all l.
By induction on the length of the derivations, we can prove that

((q0, p0), w, z) `∗
M̂

((qr, ps), λ, x),

with qr ∈ F1 and ps ∈ F2 if and only if

(q0, w, z) `∗
M1

(qr, λ, x)

and

δ∗(p0, w) = ps.

Therefore, a string is accepted by M̂ if and only if it is accepted by both M1
and M2. That is, the string is in L(M1) ∩ L(M2) = L1 ∩ L2.
QED.

8.2.4 Linz Example 8.7

Show that the language

L = {anbn : n ≥ 0, n 6= 100}

is context free.
We can construct an npda or context-free grammar for L, but this is tedious.
Instead, we use closure of regular intersection (Linz Theorem 8.5).
Let L1 = {a100b100}.
L1 is finite, and thus also regular. Hence, L̄1 is regular because regular languages
are closed under complementation.
From previous results, we know that L = {anbn : n ≥ 0} is context free.
Clearly, L = {anbn : n ≥ 0} ∩ L̄1.
By the closure of context-free languages under regular intersection, L is a
context-free language.
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8.2.5 Linz Example 8.8

Show that

L = {w ∈ {a, b, c}∗ : na(w) = nb(w) = nc(w)}

is not context free.

Although we could use the Pumping Lemma for Context-Free Languages, we
again use closure of regular intersection (Linz Theorem 8.5).

Assume that L is context free. Show that this leads to a contradiction.

Thus

L ∩ L(a∗b∗c∗) = {anbncn : n ≥ 0}

is also context free. But we have previously proved that this language is not
context free.

Thus we have a contradiction. Therefore, L is not context free.

8.2.6 Some Decidable Properties of Context Free Languages

There exist algorithms for determine whether a context-free language is empty
or nonempty and finite or infinite.

These algorithms process the context-free grammars for the languages. They
assume that the grammars are first transformed using various algorithms from
Linz Chapter 6 (which we did not cover in this course).

The algorithms from Chapter 6 include the removal of

• useless symbols and productions (i.e., variables and productions that can
never generate a sentence)

• λ-productions (i.e., productions with λ on the right side)

• unit productions (i.e., productions of the form A→ B)

Linz Theorem 8.6 (Determining Empty Context-Free Languages):
Given a context-free grammar G = (V, T, S, P ), then there exists an algorithm
for determining whether or not L(G) is empty.

Basic idea of algorithm: Assuming λ /∈ L, remove the useless productions. If the
start symbol is useless, then L is empty. Otherwise, L is nonempty.
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Linz Theorem 8.7 (Determining Infinite Context-Free Languages):
Given a context-free grammar G = (V, T, S, P ), then there exists an algorithm
for determining whether or not L(G) is infinite.

Basic idea of algorithm: Remove useless symbols, λ-productions, and unit
productions. If there are variables A that repeat as in

A
∗⇒ xAy

then the language is infinite. Otherwise, the language is finite. To determine
repeated variables, we can build a graph of the dependencies of the variables on
each other. If this graph has a cycle, then the variable at the base of the cycle is
repeated.

Unfortunately, other simple properties are not as easy as the above.

For example, there is no algorithm to determine whether two context-free gram-
mars generate the same language.
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