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Introduction

In Linz Section 4.3, we saw that not all languages are regular. We examined
the Pumping Lemma for Regular Languages as a means to prove that a specific
language is not regular.

In Linz Example 4.6, we proved that

L = {anbn : n ≥ 0}

is not regular.

If we let a = “(” and b = “)”, then L becomes a language of nested parenthesis.

This language is in a larger family of languages called the context-free languages.

Context-free languages are very important because many practical aspects of
programming languages are in this family.
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In this chapter, we explore the context-free languages, beginning with context-free
grammars.

One key process we explore is parsing, which is the process of determining the
grammatical structure of a sentence generated from a grammar.

5.1 Context-Free Grammars

5.1.1 Definition of Context-Free Grammars

Remember the restrictions we placed on regular grammars in Linz Section 3.3:

• The left side consists of a single variable.
• The right side has a special form.

To create more powerful grammars (i.e., that describe larger families of languages),
we relax these restrictions.

For context-free grammars, we maintain the left-side restriction but relax the
restriction on the right side.

Linz Definition 5.1 (Context-Free Grammar): A grammarG = (V, T, S, P )
is context-free if all productions in P have the form

A→ x

where A ∈ V and x ∈ (V ∪ T )∗. A language L is context-free if and only if there
is a context-free grammar G such that L = L(G).

The family of regular languages is a subset of the family of context-free languages!

Thus, context-free grammars

• enable the right side of a production to be substituted for a variable on
the left side at any time in a sentential form

• with no dependencies on other symbols in the sentential form.

5.1.2 Linz Example 5.1

Consider the grammar G = ({S}, {a, b}, S, P ) with productions:

S → aSa
S → bSb
S → λ
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Note that this grammar satisfies the definition of context-free.

A possible derivation using this grammar is as follows:

S ⇒ aSa⇒ aaSaa⇒ aabSbaa⇒ aabbaa

From this derivation, we see that

L(G) = {wwR : w ∈ {a, b}∗}.

The language is context-free, but, as we demonstrated in Linz Example 4.8, it is
not regular.

This grammar is linear because it has at most one variable on the right.

5.1.3 Linz Example 5.2

Consider the grammar G with productions:

S → abB
A→ aaBb
B → bbAa
A→ λ

Note that this grammar also satisfies the definition of context free.

A possible derivation using this grammar is:

S ⇒ abB ⇒ abbbAa⇒ abbbaaBba⇒ abbbaabbAaba
⇒ abbbaabbaaBbaba⇒ abbbaabbaabbAababa⇒ abbbaabbaabbababa

We can see that:

L(G) = {ab(bbaa)nbba(ba)n : n ≥ 0}

This grammar is also linear (as defined in Linz Section 3.3). Although linear
grammars are context free, not all context free grammars are linear.

5.1.4 Linz Example 5.3

Consider the language

L = {anbm : n 6= m}.
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This language is context free. To show that this is the case, we must construct a
context-free grammar that generates the language

First, consider the n = m case. This can be generated by the productions:

S → aSb | λ

Now, consider the n > m case. We can modify the above to generate extra a’s
on the left.

S → AS1
S1 → aS1b | λ
A→ aA | a

Finally, consider the n < m case. We can further modify the grammar to
generate extra b’s on right.

S → AS1 | S1B
S1 → aS1b | λ
A→ aA | a
B → bB | b

This grammar is context free, but it is not linear because the productions with
S on the left are not in the required form.

Although this grammar is not linear, there exist other grammars for this language
that are linear.

5.1.5 Linz Example 5.4

Consider the grammar with productions:

S → aSb | SS | λ

This grammar is also context-free but not linear.

Example strings in L(G) include abaabb, aababb, and ababab. Note that:

• a and b are always generated in pairs.

• a precedes the matching b.

• A prefix of a string may contain several more a’s than b’s.

We can see that L(G) is
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{ w ∈ {a, b}∗ : na(w) = nb(w) and na(v) ≥ nb(v) for any prefix v of
w }.

What is a programming language connection for this language?

• Let a = “(” and b = “)”.

• This gives us a language of properly nested parentheses.

5.1.6 Leftmost and Rightmost Derivations

Consider grammar G = ({A,B, S}, {a, b}, S, P ) with productions:

S → AB
A→ aaA
A→ λ
B → Bb
B → λ

This grammar generates the language L(G) = {a2nbm : n ≥ 0,m ≥ 0}.

Now consider the two derivations:

S ⇒ AB ⇒ aaAB ⇒ aaB ⇒ aaBb⇒ aab

S ⇒ AB ⇒ ABb⇒ aaABb⇒ aaAb⇒ aab

These derivations yield the same sentence using exactly the same productions.
However, the productions are applied in different orders.

To eliminate such incidental factors, we often require that the variables be
replaced in a specific order.

Linz Definition 5.2 (Leftmost and Rightmost Derivations): A derivation
is leftmost if, in each step, the leftmost variable in the sentential form is replaced.
If, in each step, the rightmost variable is replaced, then the derivation is rightmost.

5.1.7 Linz Example 5.5

Consider the grammar with productions:

S → aAB
A→ bBb
B → A | λ
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A leftmost derivation of the string abbbb is:

S ⇒ aAB ⇒ abBbB ⇒ abAbB ⇒ abbBbbB ⇒ abbbbB ⇒ abbbb

Similarly, a rightmost derivation of the string abbbb is:

S ⇒ aAB ⇒ aA⇒ abBb⇒ abAb⇒ abbBbb⇒ abbbb

5.1.8 Derivation Trees

We can also use a derivation tree to show derivations in a manner that is
independent of the order in which productions are applied.

A derivation tree is an ordered tree in which we label the nodes with the left
sides of productions and the children of a node represent its corresponding right
sides.

The production

A→ abABc

is shown as a derivation tree in Linz Figure 5.1.

Linz Fig. 5.1: Derivation Tree for Production A→ abABc

Linz Definition 5.3 (Derivation Tree): Let G = (V, T, S, P ) be a context-
free grammar. An ordered tree is a derivation tree for G if and only if it has the
following properties:

1. The root is labeled S.

2. Every leaf has a label from T ∪ {λ}.

3. Every interior vertex (i.e., a vertex that is not a leaf) has a label from V .
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4. If a vertex has a label A ∈ V , and its children are labeled (from left
to right) a1, a2, · · · , an, then P must contain a production of the form
A→ a1a2 · · · an.

5. A leaf labeled λ has no siblings, that is, a vertex with a child labeled λ
can have no other children.

If properties 3, 4, and 5 and modified property 2 (below) hold for a tree, then it
is a partial derivation tree.

2. (modified) Every leaf has a label from V ∪ T ∪ {λ}

If we read the leaves of a tree from left to right, omitting any λ’s encountered,
we obtain a string called the yield of the tree.

The descriptive term from left to right means that we traverse the tree in a
depth-first manner, always exploring the leftmost unexplored branch first. The
yield is the string of terminals encountered in this traversal.

5.1.9 Linz Example 5.6

Consider the grammar G with productions:

S → aAB
A→ bBb
B → A | λ

Linz Figure 5.2 shows a partial derivation tree for G with the yield abBbB. This
is a sentential form of the grammar G.

Linz Fig. 5.2: Partial Derivation Tree

Linz Figure 5.3 shows a derivation tree for G with the yield abbbb. This is a
sentence of L(G).
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Linz Fig. 5.3: Derivation Tree

5.1.10 Relation Between Sentential Forms and Derivation Trees

Derivation trees give explicit (and visualizable) descriptions of derivations. They
enable us to reason about context-free languages much as transition graphs
enable use to reason about regular languages.

Linz Theorem 5.1 (Connection between Derivations and Derivation
Trees): Let G = (V, T, S, P ) be a context-free grammar. Then the following
properties hold:

• For every w ∈ L(G), there exists a derivation tree of G whose yield is w.

• The yield of any derivation tree of G is in L(G).

• If tG is any partial derivation tree for G whose root is labeled S, then the
yield of tG is a sentential form of G.

Proof: See the proof in the Linz textbook.

Derivation trees:

• show which productions are used to generate a sentence

• abstract out the order in which individual productions are applied

• enable the construction of eiher a leftmost or rightmost derivation
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5.2 Parsing and Ambiguity

5.2.1 Generation versus Parsing

The previous section concerns the generative aspects of grammars–using a
grammar to generate strings in the language.

This section concerns the analytical aspects of grammars–processing strings from
the language to determine their derivations. This process is called parsing.

For example, a compiler for a programming language must parse a program (i.e.,
a sentence in the language) to determine the derivation tree for the program.

• This verifies that the program is indeed in the language (syntactically).

• Construction of the derivation tree is needed to execute the program (e.g.,
to generate the machine-level code corresponding to the program).

5.2.2 Exhaustive Search Parsing

Given some w ∈ L(G), we can parse w with respect to grammar G by:

• systematically constructing all derivations

• determining whether any derivation matches w

This is called exhaustive search parsing or brute force parsing. A more complete
description of the algorithm is below.

This is a form of top-down parsing in which a derivation tree is constructed from
the root downward.

Note: An alternative approach is bottom-up parsing in which the derivation tree
is constructed from leaves upward. Bottom-up parsing techniques often have
limitations in terms of the grammars supported but often give more efficient
algorithms.

Exhaustive Search Parsing Algorithm

– Add root and 1st level of all derivation trees
F ← {x : s→ x in P of G}
while F 6= ∅ and w /∈ F do

F ′ ← ∅
– Add next level of all derivation trees
for all x ∈ F do

if x can generate w then
V ← leftmost variable of x
for all productions V → y in G do
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F ′ ← F ′ ∪ {x′} where x′ = x with V ← y
F ← F ′

Note: The above algorithm determines whether a string w is in L(G). It can be
modified to build the actual derivation or derivation tree.

5.2.3 Linz Example 5.7

Note: The presentation here uses the algorithm above, rather than the approach
in the Linz textbook.

Consider the grammar G with productions:

S → SS | aSb | bSa | λ

Parse the string w = aabb.

After initialization: F = {SS, aSb, bSa, λ} (from the righthand sides of the
grammar’s four productions with S on the left).

First iteration: The loop test is true because F is nonempty and w is not
present.

The algorithm does not need to consider the sentential forms bSa and λ in F
because neither can generate w.

The inner loop thus adds {SSS, aSbS, bSaS, S} from the leftmost derivations
from sentential form SS and also adds {aSSb, aaSbb, abSab, ab} from the leftmost
derivations from sentential form aSb.

Thus F = {SSS, aSbS, bSaS, S, aSSb, aaSbb, abSab, ab} at the end of the first
iteration.

Second iteration: The algorithm enters the loop a second time because F is
nonempty and does not contain w.

The algorithm does not need to consider any sentential form beginning with b or
ab, thus eliminating {bSaS, abSab, ab} and leaving {SSS, aSbS, S, aSSb, aaSbb}
of interest.

This iteration generates 20 new sentential forms from applying each of the 4
productions to each of the 5 remaining sentential forms.

In particular, note that that sentential form aaSbb yields the target string aabb
when production S → λ is applied.

Third iteration: The loop terminates because w is present in F .

Thus we can conclude w ∈ L(G).
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5.2.4 Flaws in Exhaustive Search Parsing

Exhaustive search parsing has serious flaws:

• It is tedious and inefficient.

• It might not terminate when w /∈ L(G).

For example, if we choose w = abb in the previous example, the algorithm goes
into an infinite loop.

The fix for nontermination is to ensure sentential forms increase in length for
each production. That is, we eliminate productions of forms:

A→ λ
A→ B

Chapter 6 of the Linz textbook (which we will not cover this semester) shows
that this does not reduce the power of the grammar.

5.2.5 Linz Example 5.8

Consider the grammar with productions:

S → SS | aSb | bSA | ab | ba

This grammar generates the same language as the one in Linz Example 5.7
above, but it satisfies the restrictions given in the previous subsection.

Given any nonempty string w, exhaustive search will terminate in no more than
|w| rounds for such grammars.

5.2.6 Toward Better Parsing Algorithms

Linz Theorem 5.2 (Exhaustive Search Parsing): Suppose that G =
(V, T, S, P ) is a context-free grammar that does not have any rules of one of the
forms

A→ λ
A→ B
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where A,B ∈ V . Then the exhaustive search parsing method can be formulated
as an algorithm which, for any w ∈ T∗, either parses w or tells us that parsing
is impossible.

Proof outline

• Each production must increase either the length or number of terminals.

• The maximum length of a sentential form is |w|, which is the maximum
number of terminal symbols.

• Thus for some w, the number of loop iterations is at most 2|w|.

But exhaustive search is still inefficient. The number of sentential forms to be
generated is

∑2|w|
i=1 |P |i.

That is, it grows exponentially with the length of the string.

Linz Theorem 5.3 (Efficient Parsing): For every context-free grammar there
exists an algorithm that parses any w ∈ L(G) in a number of steps proportional
to |w|3.

• Construction of more efficient context-free parsing methods is left to
compiler courses.

• |w|3 is still inefficient.

• We would prefer linear (|w|) parsing.

• Again we must restrict the grammar in our search for more efficient parsing.
The next subsection illustrates on such grammar.

5.2.7 Simple Grammar Definition

Linz Definition 5.4 (Simple Grammar): A context-free grammar G =
(V, T, S, P ) is said to be a simple grammar or s-grammar if all its productions
are of the form

A→ ax

where A ∈ V, a ∈ T, x ∈ V ∗, and any pair (A, a) occurs at most once in P .
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5.2.8 Linz Example 5.9

The grammar

S → aS | bSS | c

is an s-grammar.

The grammar

S → aS | bSS | aSS | c

is not an s-grammar because (S, a) occurs twice.

5.2.9 Parsing Simple Grammars

Although s-grammars are quite restrictive, many features of programming lan-
guages can be described with s-grammars (e.g., grammars for arithmetic expres-
sions).

If G is s-grammar, then w ∈ L(G) can be parsed in linear time.

To see this, consider string w = a1a2 · · · an and use the exhaustive search parsing
algorithm.

1. The s-grammar has at most one rule with a1 on left: S → a1A1A2 · · ·.
Choose it!

2. Then the s-grammar has at most one rule with a2 on left: A1 → a2B1B2 · · ·.
Choose it!

3. And so forth up to the nth terminal.

The number of steps is proportional to |w| because each step consumes one
symbol of w.

5.2.10 Ambiguity in Grammars and Languages

A derivation tree for some string generated by a context-free grammar may not
be unique.

Linz Definition 5.5 (Ambiguity): A context-free grammar G is said to be
ambiguous if there exists some w ∈ L(G) that has at least two distinct derivation
trees. Alternatively, ambiguity implies the existence of two or more leftmost or
rightmost derivations.
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5.2.11 Linz Example 5.10

Again consider the grammar in Linz Example 5.4. Its productions are

S → aSb | SS | λ.

The string w = aabb has two derivation trees as shown in Linz Figure 5.4

Linz Fig. 5.4: Two Derivation Trees for aabb

The left tree corresponds to the leftmost derivation S ⇒ aSb⇒ aaSbb⇒ aabb.

The right tree corresponds to the leftmost derivation S ⇒ SS ⇒ λS ⇒ aSb⇒
aaSbb⇒ aabb.

Thus the grammar is ambiguous.

5.2.12 Linz Example 5.11

Consider the grammar G = (V, T,E, P ) with

V = {E, I}
T = {a, b, c,+, ∗, (, )}

and P including the productions:

E → I
E → E + E
E → E ∗ E
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E → (E)
I → a | b | c

This grammar generates a subset of the arithmetic expressions for a language
like C or Java. It contains strings such as (a+ b) ∗ c and a ∗ b+ c.
Linz Figure 5.5 shows two derivation trees for the string a + b ∗ c. Thus this
grammar is ambiguous.

Linz Fig. 5.5: Two Derivation Trees for a+ b ∗ c

Why is ambiguity a problem?
Remember that the semantics (meaning) of the expression is also associated
with the structure of the expression. The structure determines how the (machine
language) code is generated to carry out the computation.
How do real programming languages resolve this ambiguity?
Often, they add precedence rules that give priority to “∗” over “+”. That is, the
multiplication operator binds more tightly than addition.
This solution is totally outside the world of the context-free grammar. It is, in
some sense, a hack.
A better solution is to rewrite the grammar (or sometimes redesign te language)
to eliminate the ambiguity.

5.2.13 Linz Example 5.12

To rewrite the grammar in Linz Example 5.11, we introduce new variables,
making V the set {E, T, F, I}, and replacing the productions with the following:
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E → T
T → F
F → I
E → E + T
T → T ∗ F
F → (E)
I → a | b | c

Linz Figure 5.6 shows the only derivation tree for string a+ b ∗ c in this revised
grammar for arithmetic expressions.

Linz Fig. 5.6: Derivation Tree for a+ b ∗ c in Revised Grammar

5.2.14 Inherently Ambiguous

Linz Definition 5.6: If L is a context-free language for which there exists an
unambiguous grammar, then L is said to be unambiguous. If every grammar
that generates L is ambiguous, then language is called inherently ambiguous.

It is difficult to demonstrate that a grammar is inherently ambiguous. Often the
best we can do is to give examples and argue informally that all grammars must
be ambiguous.
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5.2.15 Linz Example 5.13

The language

L = {anbncm} ∪ {anbmcm},

with n and m non-negative, is an inherently ambiguous context-free language.

Note that L = L1 ∪ L2.

We can generate L1 with the context-free grammar:

S1 = S1c | A
A→ aAb | λ

Similarly, we can generate L2 with the context-free grammar:

S2 = aS2 | B
B → bBc | λ

We can thus construct the union of these two sublanguages by adding a new
production:

S → S1 | S2

Thus this is a context-free language.

But consider a string of the form anbncn (i.e., n = m). It has two derivations,
one starting with

S ⇒ S1

and another starting with

S ⇒ S2.

Thus the grammar is ambiguous.

L1 and L2 have conflicting requirements. L1 places restrictions on the number
of a’s and b’s while L2 places restrictions on the number of b’s and c’s. It is
imposible to find production rules that satisfy the n = m case uniquely.
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5.3 Context-Free Grammars and Programming Lan-
guages

The syntax for practical programming language syntax is usually expressed with
context-free grammars. Compilers and interpreters must parse programs in these
language to execute them.

The grammar for programming languages is often expressed using the Backus-
Naur Form (BNF) to express productions.

For example, the language for arithmetic expressing in Linz Example 5.12 can
be written in BNF as:

<expression> ::= <term> | <expression> + <term>
<term> ::= <factor> | <term> * <factor>

The items in angle brackets are variables, the symbols such as “+” and “-” are
terminals, the “|” denotes alternatives, and “::=” separates the left and right
sides of the productions.

Programming languages often use restricted grammars to get linear parsing: e.g.,
regular grammars, s-grammars, LL grammars, and LR grammars.

The aspects of programming languages that can be modeled by context-free
grammars are called the the syntax.

Aspects such as type-checking are not context-free. Such issues are sometimes
considered (incorrectly in your instructor’s view) as part of the semantics of the
language.

These are really still syntax, but they must be expressed in ways that are not
context free.
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