CSci 311 : Models of Computation CSci 500 : Fundamental Concepts of Computing Fall Semester 2000, Assignment #2 Due 11:00 A.M., Friday, 8 September 2000

1. Assume the following facts. Let Σ be an alphabet.

- (a) For all strings $w \in \Sigma^*$, $w\lambda = \lambda w = w$. (λ is the identity element for string concatenation.)
- (b) For all strings $w \in \Sigma^*$, $w^0 = \lambda$.
- (c) For all strings $w \in \Sigma^*$ and integers $n \ge 0$, $w^{n+1} = w^n w$.
- (d) For all strings $u \in \Sigma^*$, $v \in \Sigma^*$, and $w \in \Sigma^*$, u(vw) = (uv)w. (Associativity of concatenation.)
- (e) $|\lambda| = 0.$
- (f) For all strings $w \in \Sigma^*$ and symbols $a \in \Sigma$, |wa| = |w| + 1.
- (g) $\lambda^R = \lambda$.
- (h) For all strings $w \in \Sigma^*$ and symbols $a \in \Sigma$, $(wa)^R = aw^R$.
- (i) Basic properties of integer arithmetic such as associativity and commutativity of addition and multiplication, identity elements for addition (i.e., 0) and multiplication (i.e., 1), and distribution of multiplication over addition.

Prove $(uv)^R = v^R u^R$ for all strings $u \in \Sigma^*$ and $v \in \Sigma^*$. Give justifications for each of your steps (e.g., facts from the above list).

- 2. Exercise 5 on page 27.
- 3. Exercise 8, parts (a) and (c), on page 27.
- 4. Exercise 11, parts (a) and (c), on page 27.
- 5. Exercise 1 on page 33.
- 6. Exercise 2 on page 33.
- 7. Required for CSci 500 students, optional for CSci 311: Exercise 9 on page 34.