
Modular Domain Specific Languages and Tools

Paul Hudak

Department of Computer Science

Yale University

New Haven, CT 06520

paul.hudak@yale.edu

Abstract
A domain specific language (DSL) allows one to

develop software for a particular application domain
quickly and effectively, yielding programs that are
easy to understand, reason about, and maintain. On
the other hand, there may be a significant overhead
in creating the infrastructure needed to support a
DSL. To solve this problem, a methodology is de-
scribed for building domain specific embedded lan-
guages (DSELs), in which a DSL is designed within
an existing, higher-order and typed, programming lan-
guage such as Haskell or ML. In addition, techniques
are described for building modular interpreters and
tools for DSELs. The resulting methodology facilitates
reuse of syntax, semantics, implementation code, soft-
ware tools, as well as look-and-feel.

Keywords: software reuse, modularity, abstrac-
tion, domain specific languages, functional languages,
formal methods.

1 Introduction
A domain specific language (DSL) is a program-

ming language tailored for a particular application do-
main. Characteristic of an effective DSL is the ability
to develop complete application programs for a do-
main quickly and effectively. A DSL is not (neces-
sarily) “general purpose.” Rather, it should capture
precisely the semantics of an application domain, no
more and no less. Bentley also makes a strong argu-
ment for DSLs as “little languages” [Ben86].

Common examples of DSLs include Lexx and Yacc
for lexing and parsing programs, PERL for text ma-
nipulation, VHDL for hardware description, TeX and
LaTex for document preparation, HTML and SGML
for document markup, Tcl/Tk for GUI scripting,
VRML and Open GL for 3D graphics, Mathematica
and Maple for symbolic computation, and AutoLisp
and AutoCAD for computer-aided design. Some pur-
ported general-purpose languages can also be said to
be domain specific. For example, Prolog is excellent
for applications specified using predicate calculus, and
functional languages such as Haskell and ML for func-
tional specifications (Haskell is sometimes referred to
as a DSL for denotational semantics).

There are lots of advantages to using DSLs, start-
ing with the fact that programs are generally easier to
write, reason about, and modify compared to equiv-

Figure 1: The Payoff of DSL Technology

alent programs written in general purpose languages.
Indeed, these are the same advantages gained from us-
ing any high-level programming language. Arguably,
a good DSL is at an even higher level than a conven-
tional high-level language, and can often be used by
those who are not expert programmers. Mathemati-
cians can easily learn Mathematica, paper writers can
learn Latex, hardware designers can learn VHDL, and
so on. In sophisticated domains, the domain engineer
is the person we want to use a DSL.

A very rough (and admittedly over-simplified)
quantitative argument in favor of using DSLs for soft-
ware development is illustrated in Figure 1. The point
is, the initial cost of DSL development may be high
compared to the equivalent cost of “tooling up” for
an application under a more traditional software de-
velopment scenario. But the slope of the curve for
aggregate software development cost should be con-
siderably lower using a DSL, and thus at some point
the DSL approach should yield significant savings.

2 The Problem
Unfortunately, it can be fairly difficult to design

and implement a programming language from scratch.
Moreover, there’s a good chance that we won’t get it
right the first time; it will evolve, and we will experi-
ence all of the difficulties associated with that evolu-
tion. In other words, what if the start-up costs shown
in Figure 1 are so high that we never break even?
Or what if we get it all wrong, and incur the start-
up cost several more times during a software system’s

1

life-cycle? In other words, is in fact the DSL approach
really practical?

In this paper I outline several techniques that I be-
lieve can lead to the effective use of this methodology.
These techniques rest on two key thoughts:

1. We begin with the assumption that we really
don’t want to build a new programming language
from scratch. Better, let’s inherit the infrastruc-
ture of some other language—tailoring it in spe-
cial ways to the domain of interest—thus yielding
a domain-specific embedded language (DSEL).

2. Building on this base, we can then concentrate
on semantic issues. Sound abstraction principles
can be used at this level to build language tools
that are themselves easy to understand, highly
modular, and straightforward to evolve.

With this approach one can create a rich infrastructure
that facilitates reuse of syntax, semantics, implemen-
tation code, software tools, look-and-feel, and various
other related artifacts. With such an infrastructure,
the savings implied by Figure 1 are more likely to be
achievable.

The idea of embedding a DSL within an existing
language is not new, of course. Lisp macros have
been used for years to develop embedded languages.
Modern object-oriented approaches such as Jakarta
[BLS98] take a software-generator approach to the
problem: a DSL is a specification language that a
software generator uses to create the program of in-
terest. Our approach, however, is distinctive in two
ways. First, it is based on a pure embedding—no
pre-processor, macro-expander, or generator. Second,
it emphasizes the importance of semantics, as mani-
fested through modular algebraic approaches to DSL
implementation.

In the remainder of this paper I describe the results
of using the functional language Haskell [HPJWe92]
to build DSELs. Haskell has several features that
I believe are crucial to the pure embedding of a
DSL: higher-order functions, lazy evaluation, poly-
morphism, and type classes. A language with less of
these features could possibly also be used, but proba-
bly only with a higher emphasis on pre-processing and
the complexities thus introduced.

3 Syntax vs. Semantics
Tools such as Lex [Les75] and Yacc [Joh75], as well

as more sophisticated programming environment gen-
erators (e.g. [Rep84]), have been shown to be quite
useful in designing new programming languages; they
are certainly better than building lexers, parsers, and
other tools from scratch. On the other hand, syntac-
tic minutiae should arguably be the least of a language
designer’s worries. This is another twist on the slogan
“semantics is more important than syntax” often bel-
lowed in programming language circles. This is not
to say that syntax does not matter—I believe that it
does—but rather places syntax in proper perspective.

However, even when one focuses on semantic issues,
many of the details still do not matter much. Exam-
ples of semantic minutiae include numbers, booleans,

and other simple datatypes and their operators; scop-
ing rules; looping constructs; pattern-matching rules;
endless details in the type system and module sys-
tem; etc. Of course there are many deeper semantic
issues—such as the evaluation order of arguments, and
higher-order constructs and values—but in most do-
mains there are many reasonable choices in the spec-
trum of possibilities of these features.

3.1 DSELs Inherit Language Features
So the point is, instead of designing a program-

ming language from scratch, why not borrow most of
the design decisions made for some other language?
And while we’re at it, let’s borrow as many as we can
of the tools designed for this other language as well.
We call this a domain-specific embedded language, or
DSEL. Aside from the obvious advantage of being able
to reuse many ideas and artifacts, DSELs have certain
other advantages over DSLs:

First off, although I pointed out earlier that a DSL
“should capture precisely the semantics of an applica-
tion domain, no more and no less,” a DSL in fact is
often not used in total isolation. Users of even (or per-
haps especially) the most elegant DSLs may find them-
selves frustrated at not having access to more general
programming language features. Indeed, a common
evolutionary path of DSL design is to begin with mod-
est goals—usually achieved quickly—and to end with a
complex general purpose language—usually achieved
after much time and effort—where one has to look
hard to find the pure domain-specific abstractions that
were its foundation.

Secondly, if we design several DSELs for different
domains, all derived from the same base language,
then programmers in the different domains can share
a common core language, along with all its associated
tools. Indeed, in a large application it is quite con-
ceivable to have more than one DSEL. For them all to
have a similar look-and-feel is a clear advantage.

3.2 An Example
It is surprisingly straightforward to design a DSEL

for many specific applications. We and others in the
Haskell community have done so using Haskell in a
variety of domains: parser generation, graphics, ani-
mation, simulation, music composition, hardware de-
sign, VLSI layout, pretty printing, concurrency, GUIs,
component scripting [PJML98], and geometric region
analysis, to name a few. Each of these applications
was a pure embedding: neither Haskell semantics nor
implementation was modified, nor was a pre-processor
used to add extra language features. Everything was
written entirely in standard Haskell.

As an example, a DSEL for the domain of geomet-
ric region analysis came about through an experiment
conducted jointly by Darpa, ONR, and the Naval Sur-
face Warfare Center. This well-documented experi-
ment (see [Car93, CHJ93, LBK+94]) demonstrates not
only the viability of the DSEL approach, but also its
evolvability. Three different versions of the system
were developed, each capturing more advanced notions
of the target system, with no a priori knowledge of the
changes that would be required. The modularity af-
forded by the DSEL made these non-trivial changes

-- Geometric regions are represented as functions:

type Region = Point -> Bool

-- So, to test a point’s membership in a region:

inRegion :: Point -> Region -> Bool

p ‘inRegion‘ r = r p

-- Given suitable definitions of "circle",

-- "outside", and (/\):

circle :: Radius -> Region

-- creates a region with given radius

outside :: Region -> Region

-- the logical negation of a region

(/\) :: Region -> Region -> Region

-- the intersection of two regions

(\/) :: Region -> Region -> Region

-- the union of two regions

-- We can then define an annulus:

annulus :: Radius -> Radius -> Region

annulus r1 r2 = outside (circle r1) /\ (circle r2)

Figure 2: Example of a DSEL for a Naval Application

quite easy to incorporate.
The resulting notation was not only easy to design,

it was also easy to use and reason about. Figure 2
shows some of the code to give the reader a feel for
its simplicity and clarity.1 Because the domain se-
mantics is captured concisely, it is possible even for
non-programmers to understand much of the code. In
the NSWC experiment, those completely unfamiliar
with Haskell were able to grasp the concepts imme-
diately. Some even expressed disbelief that the code
was actually executable.

(Indeed, despite the presence of this last sentence,
one reviewer of the first draft of this paper complained
that “the paper claims to be interested in both syntax
and semantics, [but] the presented details are mostly
syntactic (e.g., the definition inRegion), and the pa-
per makes no attempt to distinguish mathematical
and programmatic entities.” But in fact this defini-
tion of inRegion is entirely semantic. Furthermore,
equational reasoning, as described below, allows one
to blur the distinction between mathematical and pro-
grammatic entities: programs can be viewed as spec-
ifications. This is a feature, as it enhances the appli-
cation of formal methods.)

Note that operators such as (/\), (\/) and
outside take regions as arguments. But regions are
themselves represented as functions, so it it not sur-
prising that higher-order functions are the key under-
lying abstraction needed to create this simple DSL.
For example, the definition of (/\) is given by:

1In Haskell, any function can be used in infix style by en-
closing it in back-quotes. Thus p ‘inRegion‘ r is the same as
inRegion p r.

(r1 /\ r2) p = r1 p && r2 p

which is equivalent to:

p ‘inRegion‘ (r1 /\ r2) =
(p ‘inRegion‘ r1) && (p ‘inRegion‘ r2)

and which can be read quite naturally as: “a point p
lies in the intersection of r1 and r2 if it lies in both
r1 and r2.”

Another important advantage of the DSEL ap-
proach is that it is highly amenable to formal methods,
especially when using a language such as Haskell with
a simple underlying semantics. The key point is that,
once a set of axioms is established, one can reason di-
rectly within the domain semantics, rather than within
the semantics of the programming language. In the
NSWC experiment we straightforwardly proved sev-
eral axioms of our DSEL that would have been much
more difficult to prove in most of the competing de-
signs. As a simple example, to prove associativity of
region intersection:

(r1 /\ r2) /\ r3 = r1 /\ (r2 /\ r3)

we can use the definition of (/\) given above to reason
equationally:

((r1 /\ r2) /\ r3) p
= (r1 /\ r2) p && r3 p
= (r1 p && r2 p) && r3 p
= r1 p && (r2 p && r3 p)
= r1 p && (r2 /\ r3) p
= (r1 /\ (r2 /\ r3)) p

Indeed, what often arises out of this use of formal
methods is a rich algebra that captures the domain
semantics quite nicely. This is elaborated on in the
next section.

4 Modular Algebraic Semantics
In a later section I describe how an implementa-

tion of a DSL can be constructed in a modular way,
thus facilitating reuse of software components across
possibly many DSL design efforts. The root of that
process, however, is a good understanding of the do-
main semantics itself: one that recognizes layers of
abstraction rather than one monolithic structure.

4.1 Simple Graphics
To demonstrate this, let’s look at a simplified ver-

sion of Fran [EH97, Ell97], a DSEL that we have devel-
oped in collaboration with Microsoft, for “functional
reactive animation.” We begin with some simple op-
erators for manipulating graphical objects, or “pic-
tures,” as shown in Figure 3.2 With these operators a
rich algebra of pictures can be established. For exam-
ple, scale, color, and trans all distribute over over,
above, and beside, and the latter three are all asso-
ciative. With these axioms many useful properties of
graphical objects can be established.

2These are not unlike those for geometric regions given pre-
viously, but are even more like Henderson’s functional graphics
given in [Hen82].

-- Atomic objects:

circle -- a unit circle

square -- a unit square

import "p.gif" -- an imported bit-map

-- Composite objects:

scale v p -- scale picture p by vector v

color c p -- color picture p with color c

trans v p -- translate picture p by vector v

p1 ‘over‘ p2 -- overlay p1 on p2

p1 ‘above‘ p2 -- place p1 above p2

p1 ‘beside‘ p2 -- place p1 beside p2

Figure 3: A Simple Graphics DSEL

4.2 Simple Animations
Next, we note a very simple relationship between

pictures and animations: an animation is simply a
time-varying picture! In Haskell we can express the
type signature for animations by writing:

type Animation = Time -> Picture

which means that an animation is a function from time
to pictures. But in fact many sorts of things can be
time varying. Thus we adopt a more generic viewpoint
by defining the notion of a (polymorphic) behavior,
and then defining animations in terms of it:

type Behavior a = Time -> a
type Animation = Behavior Picture

Now for the key step, we can “lift” all of our op-
erators on pictures to work on behaviors as well. For
example:3

(b1 ‘overB‘ b2) t = b1 t ‘over‘ b2 t
(b1 ‘aboveB‘ b2) t = b1 t ‘above‘ b2 t
(b1 ‘besideB‘ b2) t = b1 t ‘beside‘ b2 t

We can also lift the other operators, keeping in mind
that the vector and color arguments themselves might
be time varying, and so we write:

(scaleB v b) t = scale (v t) (b t)
(colorB c b) t = color (c t) (b t)
(transB v b) t = trans (v t) (b t)

Indeed, using higher-order functions we can write
functions to lift any other function of a given arity. For
example, for arities zero, one, and two we can define:

(lift0 v) t = v
(lift1 f b1) t = f (b1 t)
(lift2 f b1 b2) t = f (b1 t) (b2 t)

3This lifting can be done more elegantly by using Haskell’s
type classes to overload the operators over, above, etc., but for
simplicity this technicality is avoided in this paper; see [EH97]
for details.

Now the previous functions can be defined more sim-
ply by:

scaleB = lift2 scale
colorB = lift2 color
transB = lift2 trans

Lots of new functions can be defined as well, such as:

sinB = lift1 sin
cosB = lift1 cos

The function lift0 is used to lift constants to con-
stant functions. For example, lift 3.14159 is equiv-
alent to the constant function:

pi t = 3.14159

Indeed, using Haskell type classes, every literal con-
stant can be automatically lifted. For example, the
literal 42 is equivalent to the constant function b42
defined by:

b42 t = 42

Finally, we define a behavior that reflects the cur-
rent time:

time t = t

Higher-order functions obviously play a crucial role
in this process of “lifting” values from one level of func-
tionality to another. Living in a world where every-
thing is lifted is actually fairly natural. For example,
with the above liftings we can now express continuous-
time animations. Let’s first define a couple of simple
utility behaviors. The first is a numeric behavior that
varies smoothly and cyclically between -1 and +1:

wiggle = sinB (pi*time)

where we assume that * is also lifted. Using wiggle
we can then define a function that smoothly varies
between its two argument values.

wiggleRange lo hi = lo + (hi-lo) * (wiggle+1)/2

where 1 and 2 are lifted literals. Finally, let’s create a
very simple animation: a red, pulsating ball.

ball = colorB red
(scaleB (wiggleRange 0.5 1) circle)

This is an extremely concise animation program. The
equivalent program in Java, for example, is dozens of
lines long.

We can also develop a rich algebra of animation. In
fact, the entire algebra of pictures generalizes directly
to animations. And with time as a first-class value,
there are even more opportunities for expressiveness if
we add time-specific operators. For example, in Fran
we have an operator for expressing time transforma-
tions, and thus:

anim ‘aboveB‘ (timeTransform (-1) anim)

displays two copies of the animation anim, one just
above the other and delayed by 1 second.

Perhaps more importantly, Fran has an operator
for expressing integration over time. To express the
behavior of a falling ball, for example, we can write:

let y = y0 + integral v
v = v0 + integral g

in translate (x0,y) ball

where (x0,y0) is the initial position of the ball, v0
it its initial velocity, and g is gravity. These equa-
tions can be read literally as the standard equations
learned in introductory physics to describe the same
phenomenon. Indeed, partial differential equations in
general can be written and directly executed in Fran.

As you might guess, we can also develop a useful
algebra of time, which includes such basic axioms as:

timeTransform f (timeTransform g b)
= timeTransform (f.g) b

integral k = k*time
integral time = 0.5*time**2
integral (sin time) = cos time

where (f.g) denotes the composition of the functions
(behaviors) f and g.

4.3 Reactive Animations
For the third and final layer of our semantic struc-

ture, we add reactivity. This layer is reminiscent of
CSP or similar process algebra, and is based on a no-
tion of an event. Primitive events include things like
mouse clicks and key presses, but additionally include
predicate events such as time>5. There are also ways
to combine events and filter them. The basic reactive
expression has the form:

b1 ‘until‘ e => b2

which can be read: “behave as b1 until event e occurs,
then behave as b2.” Despite what looks like special
syntax, we emphasize again that this is a pure embed-
ding in Haskell: until and (=>) are just functions,
and the above fragment is equivalent to:

until b1 (e => b2)

where => is an infix operator like + or *.
As a simple example of recursive reactivity, here is

a circle that changes color everytime the left mouse-
button is pressed:

color (cycle red green blue) circle
where cycle c1 c2 c3 =

c1 ‘until‘ lbp => cycle c2 c3 c1

lbp is the event associated with a left mouse-button
press. Note how the recursive call to cycle per-
mutes the color arguments, thus causing the behav-
ior to change color everytime the left mouse-button is
pressed.

This example highlights the utility of lazy evalu-
ation in pure embeddings of DSLs. In particular, if
the functions until and (=>) were strict, the above

progam would not terminate. A similar functional-
ity could be encoded in a strict language such as ML,
but such encodings are generally cumbersome and less
natural.

It turns out the previously described algebra of ani-
mations still holds in the reactive framework—nothing
“gets broken”—and additionally there is an algebra of
reactivity that is reminiscent of that for other process
calculii. (Further details on the design, semantics, and
implementation of reactivity is beyond the scope of
this paper, but may be found in [EH97, Ell97].)

5 Modular Monadic Interpreters
A DSEL in Haskell can be thought of as a higher-

order algebraic structure, a first-class value that has
the “look and feel” of special syntax. In some sense it
is still just notation; its semantics is captured by an
interpreter. For example, although the program for
the red pulsating ball can be thought of as executing
on its own, it is better to think of the existence of an
interpreter to give it meaning, and the software that
implements it can be structured accordingly. This per-
mits a key opportunity for modular design, in turn fa-
cilitating reuse of the interpreter building blocks, and
evolution of the system since changes in the domain
semantics are in many cases inevitable.

The design of truly modular interpreters has been
an elusive goal in the programming language commu-
nity for many years. In particular, one would like
to design the interpreter so that different language
features can be isolated and given individualized in-
terpretations in a “building block” manner. These
building blocks can then be assembled to yield lan-
guages that have only a few, a majority, or even all of
the individual language features. Progress by Moggi,
Espanol, and Steele [Mog89, Ste94, Esp93, Esp95]
laid the groundwork for our recent effort at produc-
ing a modular interpreter for a non-trivial language
[LHJ95], and basing modular compiler construction
technology on it [LH96, Lia98]. The use of monads
[PJW93, Wad90] to structure the design was critical.

Our approach means that language features can be
added long after the initial design, even if they involve
fundamental changes in the interpreter functionality.
For example, we have built a series of languages and
interpreters that begin with a small calculator lan-
guage (just numbers), then a simple first-order lan-
guage with variables, then a higher-order language
with several calling conventions, then a language with
errors and exceptions, and so on, as suggested in Fig-
ure 4. At each level the new language features can
be added, along with their semantics, without altering
any previous code.

It is also possible with this approach to capture
not only domain-specific semantics, but also domain-
specific optimizations. These optimizations can be
done incrementally and independently from each other
and from the core semantics. We have used this to
implement traditional compiler optimizations [LH96,
Lia98], but the same techniques could be used for
domain-specific optimizations.

To get a feel for how a monadic interpreter works,
note that a conventional interpreter maps, say, a term,

callcc

Arithmetic Ops

Function CallsAssignments

Continuations

:=

+,-,*,/

lambda

pure lambda calculus

continuations

store

environment

Modular construction

of the kernel

callcc

update

err

inEnvrdEnv

error reporting

Figure 4: Modular monadic interpreter structure

environment, and store, to an answer. In contrast,
a monadic interpreter maps terms to computations,
where the details of the environment, store, etc. are
“hidden” in the computation. Specifically:

interp :: Term -> InterpM Value

where InterpM Value is the computation monad of
final answers.

What makes the interpreter modular is that all
three components above—the term type, the value
type, and the monad—are configurable. To illustrate,
if we initially wish to have an interpreter for a small
number-expression language, we can fill in the defini-
tions as follows:

type Value = OR Int Bottom
type Term = TermA
type InterpM = ErrorT Id

The first line declares the answer domain to be the
union of integers and bottom. The second line defines
terms as TermA, the abstract syntax for arithmetic op-
erations. The final line defines the interpreter monad
as a transformation of the identify monad Id. The
monad transformer ErrorT accounts for the possibil-
ity of errors; in this case, arithmetic exceptions. At
this point the interpreter behaves like a calculator:

Run> ((1+4)*8)
40

Run> (3/0)
ERROR: divide by 0

Now if we wish to add function calls, we can ex-
tend the value domain with function types, add the
abstract syntax for function calls to the term type,
and apply the monad transformer EnvT Env to intro-
duce an environment Env.

type Value = OR Int (OR Function Bottom)
type Term = OR TermF TermA
type InterpM = EnvT Env (ErrorT Id)

Here is a test run:

Run> ((\x.(x+4)) 7)
11

Run> (x+4)
ERROR: unbound variable: x

We can further add other features—such as condi-
tionals, lazy evaluation, letrec declarations, nondeter-
minism, continuations, references, and assignment—
to our interpreter, as suggested in Figure 4. When-
ever a new value domain (such as Boolean) is needed,
we extend the Value type; and to add a new semantic
feature (such as a store or continuation), we apply the
corresponding monad transformer.

5.1 Language Tools and Instrumentation

It is also possible to add “non-standard” features
to a programming language, such as debugging, trac-
ing, profiling, performance monitoring, etc. Although
these feature may be non-standard in a technical
sense, they are vitally important to effective software
development, including any methodology that is using
a DSL. A disciplined approach to designing such tools
will surely benefit the software development process.
Our framework for modular interpreters can in fact
handle these non-standard features straightforwardly.

The advantage of a modular approach to language
tool construction is that tools can be layered onto the
system without affecting each other; changes and ad-
ditions are thus easily accomplished. A tool building
block specified in our framework can be automatically
combined with the corresponding standard semantics
building block to yield a composite semantics that in-
corporates the behaviors of both. This also means that
a tool building block—say a profiler—may be used for
different language or DSL implementations—say Fran
and geometric region analysis. The opportunities for
code reuse are thus enormous. Figure 5 shows the
compositional nature of this methodology, and Figure
6 shows a flow diagram.

For an example of these ideas in action, consider
this simple factorial program written in a hypothetical
DSL:

fact =
"let mul(x,y) = {Profile mul}:(x*y)
in let fac(n,acc) =

{Profile fac}:
if n==0 then acc
else fac(n-1, mul(n,acc))

in fac 3 1"

Scheme
semantics ➧

Debugger
specification

Profiler
specification

Scheme
debugging and
profiling
semantics

&
M

S

S

&
M

S

S➦

➧

➦
➧

Figure 5: Composing monitors

Standard
Interpreter

Program
&

Input

Standard
Answer

&
Operator

Monitor
Specification

Monitoring
Interpreter

Monitoring
Information

Figure 6: System diagram

The occurrences of Profile are annotations which are
treated as language extensions, and their meaning is
captured precisely in a profiler building block. Follow-
ing the framework implied by Figures 5 and 6, we can
test the profiler on the above program using both a
lazy and eager interpreter:

Run> execute (profiler & eager) fact
(6, [(fac,4), (mul,3)])

Run> execute (profiler & lazy) fact
(6, [(fac,4), (mul,3)])

In this example the profiling results for both inter-
preters are the same. However, this is not always the
case; for example, if we change the consequent branch
in fact to 1 rather than acc (a plausible error):

badFact =
"let mul(x,y) = {Profile mul}:(x*y)
in let fac(n,acc) =

{Profile fac}:
if n==0 then 1
else fac(n-1, mul(n,acc))

in fac 3 1"

then the lazy profiler result differs from the eager one
because acc is never demanded by the lazy interpreter:

Run> execute (profiler & eager) badFact
(1, [(fac,4), (mul,3)])

Run> execute (profiler & lazy) badFact
(1, [(fac,4)])

Using these basic ideas, rather sophisticated debug-
gers for a variety of languages can be quickly devel-
oped [KH95, Kis92].

6 Partial Evaluation
Perhaps all of this seems too good to be true. In-

deed, there is one major drawback to our approach to
modular interpreter construction: each building block
imposes an independent layer of interpretive over-
head, resulting in seemingly impractical interpreters
for any realistic DSL. Although our modular monadic
approach can be used to reason about compiler con-
struction [LH96], we would prefer to use (and reuse)
the modular interpreters.

The solution is to use partial evaluation. In par-
ticular, we can use partial evaluation to optimize the
composed interpreters described earlier in two ways:
(1) specializing each language feature building block
(which may be a non-standard tool-oriented feature)
with respect to the one below it, yielding a concrete in-
terpreter; and (2) specializing the concrete interpreter
(from the previous step) with respect to a source pro-
gram, yielding an instrumented program; i.e. a pro-
gram with embedded code to perform, for example, de-
bugging actions. Figure 7 provides a useful viewpoint
of these two levels of optimization. Similar results as
these can be achieved in object-oriented systems us-
ing design patterns [GHJV95] and more directed ap-

System Functionality:

Meta :: Interpreter ✘ Monitor ✘ Program ✘ Input ➔ (Answer,MonInfo)

Specializing the interpreter w.r.t. monitor.

Meta :: Instrumented-Interpreter ✘ Program ✘ Input ➔ (Answer, MonInfo)

Specializing the instrumented interpreter w.r.t. a program
[Safra & Shapiro] .

Meta :: Instrumented-Program ✘ Input ➔ (Answer, MonInfo)

PE

PE

Figure 7: Partial evaluation optimization levels

Program Unoptimized Instrumented Instrumented Total
system (ms) interpreter (ms) program (ms) speedup

fac 478.42 11.20 (×43) 0.69 (×16) ×693
power2 568.17 14.17 (×40) 0.34 (×42) ×1671
deriv 2642.00 61.53 (×40) 0.88 (×70) ×2797
qsort 1554.50 36.82 (×42) 2.34 (×16) ×664
nsqrt 494.00 12.08 (×41) 1.16 (×10) ×425

Figure 8: Improvements Due to Partial Evaluation

proaches to tool generation [DRW96].
We have used existing partial evaluation techniques

to do this, with dramatic improvements in perfor-
mance. Unfortunately, there does not currently exist
a suitable, easy-to-use partial evaluator for Haskell.
Our approach was to convert the Haskell program to
Scheme, partially evaluate the Scheme program, and
then translate back into Haskell. This is not a fully
automated process, and the lack of a good partial eval-
uator for Haskell remains as the one stumbling block
to more effective use of our overall methodology.

In any case, Figure 8 compares the speedups gained
by partial evaluation for some benchmark programs.
The table shows the execution times for the unop-
timized system, the instrumented interpreter, and
the instrumented program. Each optimization re-
moves one level of interpretation which results in the
speedups shown in parentheses. Every interpretation
level contributes a slowdown of about 15-70 times. By
removing these levels of interpretation using partial
evaluation, the speedup gained is up to three orders
of magnitude (the largest speedup being 2797). These
results dramatically reveal the advantage (and impor-
tance!) of partial evaluation.

7 Conclusion
I have described a methodology for designing and

implementing domain-specific embedded languages.
This collection of techniques has never been collected
together and presented as a single unified methodol-
ogy before. It is especially targeted for the software
reuse community, which is not likely to be familiar
with many of these ideas, and for which the method-
ology offers a high degree of reuse: of syntax, seman-
tics, implementation code, software tools, look-and-
feel, and related artifacts. Except for the lack of an
effective partial evaluator for Haskell, all of these tech-
niques can and are being used to create DSELs in a
variety of applications.

Acknowledgments
Thanks to the Yale Haskell Group for contribut-

ing so much to the ideas in this paper. This research
was supported in part by DARPA under grant num-
ber F30602-96-2-0232, and NSF under grant number
CCR-9633390.

References
[Ben86] Jon Bentley. Little languages. CACM,

29(8):711–721, 1986.

[BLS98] Don Batory, Bernie Lofaso, and Yannis
Smaragdakis. JTS: A tool suite for build-
ing GenVoca generators. In Proceedings
of 5th International Conference on Soft-
ware Reuse. IEEE/ACM, 1998.

[Car93] J. Caruso. Prototyping demonstration
problem for the prototech hiper-d joint
prototyping demonstration project. CCB

Report 0.2, Naval Surface Warfare Cen-
ter, August 1993.

[CHJ93] W.E. Carlson, P. Hudak, and M.P. Jones.
An experiment using Haskell to prototype
”geometric region servers” for navy com-
mand and control. Research Report 1031,
Department of Computer Science, Yale
University, November 1993.

[DRW96] P. Devanbu, D. Rosenblum, and A. Wolf.
Generating testing and analysis tools.
ACM Transactions on Software Engineer-
ing and Methodology, 1996.

[EH97] Conal Elliott and Paul Hudak. Func-
tional reactive animation. In Inter-
national Conference on Functional Pro-
gramming, pages 163–173, June 1997.

[Ell97] Conal Elliott. Modeling interactive 3D
and multimedia animation with an em-
bedded language. In Proceedings of the
first conference on Domain-Specific Lan-
guages. USENIX, October 1997.

[Esp93] David Espinosa. Modular denotational
semantics. Unpublished manuscript, De-
cember 1993.

[Esp95] David Espinosa. Semantic Lego. PhD the-
sis, Columbia University, 1995.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Pattens: Ele-
ments of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

[Hen82] P. Henderson. Functional geometry. In
Proceedings of the 1982 ACM Symposium
on Lisp and Functional Programmming,
pages 179–187. ACM, 1982.

[HPJWe92] P. Hudak, S. Peyton Jones,
and P. Wadler (editors). Report on the
Programming Language Haskell, A Non-
strict Purely Functional Language (Ver-
sion 1.2). ACM SIGPLAN Notices, 27(5),
May 1992.

[Joh75] S.C. Johnson. Yacc – yet another com-
piler compiler. Technical Report 32, Bell
Labs, 1975.

[KH95] A. Kishon and P. Hudak. Semantics-
directed program execution monitoring.
Journal of Functional Programming, 5(4),
October 1995.

[Kis92] A. Kishon. Theory and Art of Semantics-
Directed Program Execution Monitoring.
PhD thesis, Yale University, Department
of Computer Science, 1992.

[LBK+94] J.A.N. Lee, B. Blum, P. Kanellakis,
H. Crisp, and J.A. Caruso. ProtoTech
HiPer-D Joint Prototyping Demonstra-
tion Project, February 1994. Unpub-
lished; 400 pages.

[Les75] M.E. Lesk. Lex – a lexical analyzer gen-
erator. Technical Report 39, Bell Labs,
1975.

[LH96] Sheng Liang and Paul Hudak. Modular
denotational semantics for compiler con-
struction. In European Symposium on
Programming, April 1996.

[LHJ95] Sheng Liang, Paul Hudak, and Mark
Jones. Monad transformers and modular
interpreters. In Proceedings of 22nd ACM
Symposium on Principles of Program-
ming Languages, pages 333–343, New
York, January 1995. ACM Press.

[Lia98] Sheng Liang. Modular Monadic Seman-
tics and Compilation. PhD thesis, Yale
University, Department of Computer Sci-
ence, May 1998.

[Mog89] E. Moggi. Computational lambda-
calculus and monads. In Proceedings of
Symposium on Logic in Computer Sci-
ence, pages 14–23. IEEE, June 1989.

[PJML98] Simon Peyton-Jones, Erik Meijer, and
Dan Leijen. Scripting COM components
in haskell. In Proceedings of 5th Inter-
national Conference on Software Reuse.
IEEE/ACM, 1998.

[PJW93] S. Peyton Jones and P. Wadler. Imper-
ative functional programming. In Pro-
ceedings 20th Symposium on Principles of
Programming Languages. ACM, January
1993. (to appear).

[Rep84] T. W. Reps. Generating Language-Based
Environments. The MIT Press, 1984.

[Ste94] Guy L. Steele Jr. Building interpreters by
composing monads. In Conference Record
of POPL ’94: 21st ACM SIGPLAN-
SIGACT Symposium on Principles of
Programming Languages, Portland, Ore-
gon, pages 472–492, New York, January
1994. ACM Press.

[Wad90] P. Wadler. Comprehending monads. In
Proceedings of Symposium on Lisp and
Functional Programming, pages 61–78,
Nice, France, June 1990. ACM.

