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AbstractÐDomain-Specific languages (DSL) have many potential advantages in terms of software engineering ranging from

increased productivity to the application of formal methods. Although they have been used in practice for decades, there has been little

study of methodology or implementation tools for the DSL approach. In this paper, we present our DSL approach and its application to

a realistic domain: the generation of video display device drivers. The presentation focuses on the validation of our proposed

framework for domain-specific languages, from design to implementation. The framework leads to a flexible design and structure, and

provides automatic generation of efficient implementations of DSL programs. Additionally, we describe an example of a complete DSL

for video display adaptors and the benefits of the DSL approach for this application. This demonstrates some of the generally claimed

benefits of using DSLs: increased productivity, higher-level abstraction, and easier verification. This DSL has been fully implemented

with our approach and is available. Compose project URL: http://www.irisa.fr/compose/gal.
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1 INTRODUCTION

IN contrast to a general purpose language (GPL), a domain-
specific language (DSL) is a language that is expressive

uniquely over the specific features of programs in a given
problem domain. It is often small and more declarative than
imperative; it may be textual or graphic. DSLs have also
been called application domain languages [7], little or micro-
languages [2], and are related to scripting languages. DSLs
have been used in various domains such as graphics [14],
[19], financial products [1], telephone switching systems
[15], [21], protocols [8], [31], operating systems [28], and
robot languages [5]. Languages such as SQL, TEX, and Unix
shell languages may also be considered DSLs.

Software architectures based on DSLs are primarily
aimed at achieving faster development of safer applications.
Because constructs in a DSL abstract key concepts of the
domain, the developer (that does not have to be a skilled
programmer) can write more concise and higher level
programs in less time. Programming with a DSL also
contributes to safety because it is less error-prone than with
a GPL. Additionally, high-level constructs translate, in
practice, into the reuse of validated components. Moreover,
when the language is small and specific, it is possible or
easier to apply automated proof techniques that have been
developed for general purpose languages, but have had
limited success due to the generality of GPLs. For example,
termination properties may be considered if the language is
not Turing-complete. Similarly, it is easier to build test
generation tools.

A DSL may also be seen as a way to parameterize a
generic application or to designate a member of a program
family. A program family is a set of programs that share
enough characteristics that it is worthwhile to study them as
a whole. In fact, designing a DSL actually involves the same
commonality analysis [15] that is used in the study of a
program family, i.e., determining assumptions that are true
for all members of the family and variations among
members. This process should be performed by both
domain experts and software engineers.

Though actual uses of DSLs record benefits such as
productivity, reliability, and flexibility [20], implementing
DSLs is often difficult and costly [9]. There are two kinds of
approaches to language implementation, each with sig-
nificant disadvantages. Approaches that are based on
compilers, such as application generators (translation from
the DSL to a GPL), are not easy to write or to extend, and
extensions require skills in compiler technology that cannot
be expected from ªdomain developers.º On the other hand,
approaches that are based on interpreters are easier to write
or to extend, but are less efficient [4]. This implementation
issue also impacts maintainability because complexity in a
DSL compiler defeats the software engineering goals of
using a DSL [33]. Depending on one's objectives, either style
of implementation is thus chosen: application generator or
interpreter.

We have proposed a framework for the development of
application generators that reconciles both alternatives,
offering the flexibility of interpreters and the performance
of compilers [30]. The framework relies on partial evaluation
[16], [18], a program transformation technique that is well
suited to automatically transform interpreters into compi-
lers [17]. Partial evaluation exploits known information
about a program's input to be able to evaluate parts of a
program in advance. Given a program and the known
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portion of its input, a partial evaluator produces a
specialized program. In this new, semantically equivalent
program, computations depending on known values have
already been performed. Given an interpreter for a DSL
(that takes as arguments a DSL program and the input data
of the DSL program) and a DSL program, partial evaluation
automatically yields a specialized interpreter, i.e, a com-
piled version of the DSL program.

Our framework is structured into two parts that come
after the family analysis. The first part consists of the
definition of an abstract machine, whose operations can be
viewed as generic components that capture important
operations of the domain. The second part is the definition
of a DSL in terms of the abstract machine operations, thus
providing a high level interface to the abstract machine. The
use of partial evaluation in our framework is twofold,
corresponding to each part: it maps a DSL program into an
abstract machine program, removing the interpretation
layer, and an abstract machine program into an efficient
implementation. The development of this framework is
supported by industry partners for realistic applications.

This paper describes a realistic application of our
framework for the automatic generation of video card
drivers. This domain naturally forms a program family, for
which DSLs are well suited. We present the design and
definition of a complete DSL for video display adaptors.
Concerning performance, we show how partial evaluation
can yield efficient drivers. Concerning safety, we insure that
all generated drivers can be proven to terminate and define
some analyses that can greatly improve their reliability. The
DSL has been fully implemented with our approach and is
available at URL http://www.irisa.fr/compose/gal.

Our contributions can be summarized as follows:

. We validate our framework of application generator
design on a realistic example: video card device
drivers.

. We define a DSL for generating such drivers. This
restricted language allows program verifications.

. We provide a flexible implementation of this
language that generates efficient video drivers.

. We illustrate the benefits of DSLs as a software
architecture.

The rest of the paper is organized as follows. Section 2
describes our framework for application generator design in
further detail. Section 3 presents the domain of video card
drivers. Section 4 describes the two-level design: abstract
machine and graphics adaptor language. Section 5 discusses
the results of applying this approach to the domain of video
drivers. Section 6 summarizes the results of this experiment
and identifies future work, both for the language and the
framework.

2 A FRAMEWORK FOR DESIGNING AND

IMPLEMENTING DSLS

In a previous paper, we presented an approach to
application generator design [30]. In this approach, we
consider the implementation of a program family as a single
generic program. The parameterization of this generic
program corresponds to variations within the program

family and can be represented using a microlanguage, i.e., a
DSL. In other words, the generic program interprets DSL
programs to know what actions pertaining to the applica-
tion family to perform. The possible actions define an
abstract machine that is adapted to the domain and the
application family, whereas an interpretation layer, map-
ping constructs to actions, provides an interface between
DSL programs and the abstract machine. The performance
overhead due to genericity, in the interpretation layer as
well as in the adaptation of the abstract machine, calls for
optimization via partial evaluation.

This approach is the basis of a general framework for
designing and implementing DSLs. This framework is
sketched in Fig. 1; it is described further in the following
subsections. More details concerning the impact on reuse
(for code as well as expertise) and advantages over other
application generators designs are given in [30].

2.1 Analysis

The first phase of the framework is a family analysis phase.
This phase studies features that are present in all members
of the family and variations among members. It can be
conducted using a methodology such as FAST's common-
ality analysis [15]. The family analysis may also rely on a
domain analysis [23], [25], [27], which discovers the com-
monalities in a domain. This analysis phase has two sets of
outputs, which lead to the design of both a DSL and an
abstract machine.

2.2 Abstract Machine Design

The analysis phase identifies key objects of the domain and
program family, as well as basic operations on those objects.
These operations are used to define an abstract machine,
which offers a model of computation that underlies all
programs in the family [9]. Other operations are also
included so that it is possible to construct any program in
the family from those operations.

The use of abstract machines is a natural progression
from established reuse practices. Starting from the idea of
highly parameterized subroutines in a reuse library [6], one
might consider these to be generic components or opera-
tions that provide a level of abstraction. This level of
abstraction provides insulation between the definition of
the operation and an implementation. Given the context of a
domain-specific solution, it then seems reasonable that for a
given domain, we can define a collection of related
operations that cooperate to solve the relevant problems
in the domain. Finally, by enforcing an explicit state, as
opposed to threading arguments across abstract machine
instructions, we obtain an abstract machine model that can
be implemented efficiently.

There are many advantages to this approach. One of
these advantages is the opportunity to have several
implementations of a single abstract machine. The same
abstract machine could also be implemented in different
languages. Another benefit of the approach is that it
provides a formal model of computation that can be
reasoned about using well-established techniques for
abstract machines [26]. Being able to reason about opera-
tions in this way enables the verification of certain proper-
ties about DSL programs, or derive other properties like
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time complexities. The abstract machine model also
provides the right level of decomposition to increase reuse
of the abstract machine [35].

2.3 Language Design

The analysis phase has three other outputs: 1) terminology,
2) commonalities, and 3) variations among the family
members. This information, with the addition of constraints
such as the level of the language or its analyzability, is used
to design the DSL.

The idea is that the DSL is implemented in terms of the
abstract machine. The key difference between the DSL and
the abstract machine is that a DSL program describes what
an application does and an abstract machine program
describes how the application operates. The link between the
DSL and the abstract machine is that the DSL can be viewed
as a glue language for composing abstract machine
operations, i.e., an interface to the abstract machine. This
interface first provides a superior abstraction to the DSL
program designer, and second, further restricts the applica-
tions that can be expressed, thus forming the program
family. The DSL is generally designed to express programs
in terms of domain-specific concepts. For usability and
analyzability, it should have a semantics as restricted as
possible, depending on the future requirements of the
program family.

2.4 Structuring the Implementation

A DSL can be implemented as either an interpreter or a
compiler (to a target machine or a GPL). The most

straightforward approach to implementing a DSL is to
build an interpreter. While an interpreter directly interprets
each language construct to produce the results, a compiler
produces a program, which when executed produces the
results. Thus, the compiler approach introduces an indirec-
tion which makes it more difficult to construct. Moreover,
an interpreter facilitates prototyping. For these reasons, we
propose an approach based on interpreters.

In our framework, the implementation of the DSL is thus
expressed as an interpreter, which calls the abstract
machine operations. The abstract machine is typically
implementated as a highly parameterized library.

Just as there could be many implementations for an
abstract machine, this staged framework also provides the
possibility to have many DSL languages for one abstract
machine. Since the abstract machine can express a wide
range of applications within the domain, and the DSL only
a restricted subset of these, it is useful to have multiple
DSLs for different users. For example, a DSL could manage
a whole database while a subset of this DSL might only be
able to express queries.

Although interpreters are easier to construct they are
also less efficient. Similarly, the genericity of a parameter-
ized library introduces execution-time overhead. In the next
subsection, we present an approach to obtaining efficient
implementations based on partial evaluation.

2.5 Efficiency via Partial Evaluation

There are two identified sources of inefficiency in the
framework presented so far: the DSL interpretation layer
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and the parameterization of the library implementing the
abstract machine. In particular, interpretation has been cited
to be one to two orders of magnitude slower than compiled
code [29]. There exist a technique to automatically remove
these two kinds of overhead: partial evaluation. As a matter
of fact, partial evaluation has proved to be very effective in
mapping software architectures to efficient implementa-
tions [22].

Partial evaluation. Partial evaluation is a fully auto-
matic program transformation which specializes a pro-
gram to a particular context reducing its execution time
and, in some cases, its size [10], [18]. A specialization
context is defined by assigning values to some subset of
a program's inputs. More specifically, consider a program
p, taking some argument data d and producing a result r,
which may be written as p�d� � r. If d can be split into
d � �d1; d2� where d1 is a known (i.e., it does not vary)
subset of the input, which describes the context, and d2 is
yet unknown, we may form a new program �p; d1� that
waits until d2 is available and then calls the original p
program on �d1; d2� to produce the same result r. In
other words, �p; d1��d2� � p�d1; d2� � r. However, since
d1 is known, computations relying on d1 can be
performed before d2 is actually available. Therefore, we
can form a new program pd1

, equivalent to �p; d1�, where
computations depending on d1 have been eliminated. We
thus have pd1

�d2� � p�d1; d2� � r. The program pd1
is

called a specialization of p with respect to the known
input d1. The known inputs representing the context are
also called static whereas the other unknown inputs are
called dynamic. A partial evaluator is a program PE
which computes pd1

: PE�p; d1� � pd1
.

For the case study described in this article, we have used
a partial evaluator named Tempo Specializer [10], [11].
Tempo is a fully automatic partial evaluator for C
programs. Tempo can specialize programs at compile time
(i.e., source-to-source transformation) as well as at run time.
Users of Tempo specify inputs to the program entry point
and global variables as either static (i.e., already known) or
dynamic (i.e., yet unknown).

An example of partial evaluation. Fig. 2 shows an
example of specializing a simple version of printf. The top
part of the figure is the original code while the bottom part
is the result of specializing the function with the input fmt
equal to ªn: %dº. In fact, this example represents a very
simple interpreter in the two-level framework in Fig. 1. The
fmt parameter is a program which specifies how the data in
the val parameter should be displayed. The putint,
putchar, and abort functions are the abstract machine
instructions that are used to print simple values. The
mini_printf function represents the interpretation layer
which decides when and how to invoke the abstract
machine instructions to implement the behavior specified
in the fmt argument.

Partial evaluation of interpreters. Given an interpreter
for a DSL (that takes as arguments a DSL program and the
input data of the DSL program) and a known DSL program,
partial evaluation can be applied to automatically produce
an implementation that is specialized with respect to the
DSL program, i.e., a compiled DSL program. Thus, the

resulting functionality is equivalent to that of a compiler at
the cost of writing an interpreter. The use of partial
evaluation, that makes up a standalone application, given
the generic program and a DSL program, can be considered
an application generator.

Ensuring efficiency. If the mapping performed by the
interpretation layer depends only on the input program and
the input program is a known input, a partial evaluator
should be able to eliminate the entire interpretation layer.
Thus, as shown in Fig. 1, when the interpretation layer is
specialized with respect to the input program, only
invocations of the abstract machine instructions should
remain: the result is an abstract machine program. In order
to ensure that the interpreter has been correctly structured
to eliminate the interpretation layer, we rely on a program
analysis performed during partial evaluation: binding time
analysis.

The actual partial evaluation process is split into two
phases: a binding-time analysis and the actual specialization
transformation. During the binding-time analysis, depen-
dencies are propagated to determine for each subexpression
of a program if it depends only on known values and can,
thus, be evaluated. As a result, each subexpression is given
a binding time of static to mean it depends only on known
inputs or dynamic otherwise. The second phase performs
the specialization by evaluating the static expressions and
outputting the specialized program.

The code in the top of Fig. 2 depicts a bind-time
annotated function. The underlined expressions have
dynamic binding times and the rest have static binding
times. As expected, the only dynamic expressions in
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mini_printf are calls to the abstract machine instruc-
tions. Thus, all the interpretation is evaluated at specializa-
tion time and all that remains are these calls, as shown in
the bottom of Fig. 2.

The following rules define the requirements on the
structure which guarantee the elimination of the interpreta-
tion layer.

1. References to the abstract machine state in the
interpretation layer may only appear as subprogram
arguments.

2. The abstract machine implementation may not
contain any references to the interpreter state.

In our application of Tempo, we ensure the successful
application of partial evaluation via the separation of the
abstract machine and the interpreter, each having its on
state represented in C by global variables. The interpreter
state is specified as static and the abstract machine state is
specified as dynamic. The visualization of the binding times
produced by Tempo analyses lets the user assess the correct
separation between the interpreter and the abstract ma-
chine, and thus the successful partial evaluation.

In Fig. 1, a second step of partial evaluation is shown in
which the implementation of the abstract machine is
specialized with respect to the abstract machine program.
The reason for this second step is that the abstract machine
operations are often highly parameterized reusable compo-
nents. It may also be desirable to eliminate the genericity
introduced by this parameterization. If these parameters
depend only on the input program, then the abstract
machine program will contain instructions with constant
values for these arguments. The second step of partial
evaluation will exploit these values to remove the genericity
from the instructions' implementations. Specialization can
also optimize inefficiencies introduced by the boundaries
between operations. The reason that partial evaluation is
done twice is to obtain the abstract machine program for
analysis or any other reason. If the abstract machine
program is not needed, a single application of partial
evaluation to the whole interpreter will yield the same
results.

There is an important difference between the genericity
removed from the interpretation layer and that of the
abstract machine layer. If the interpreter structure of our
framework is respected then the interpretation layer is
guaranteed to be removed. However, there is no guarantee
on how much of the abstract machine layer will be
removed.

3 VIDEO DRIVER DOMAIN

This section introduces the domain of the experiment: video
adaptor device drivers. A video adaptor(or video card) is a
hardware component of a computer system which stores
and produces images on the display. Video cards consist of
a frame buffer, and a graphics controller. The frame buffer is
a bank of high speed memory used to store the display data,
including the currently visible image. The graphics controller
consists of two main functionalities: producing the video
signal for the display, and providing access to the frame
buffer to create the display image. Graphics controllers all

provide similar sets of functionalities (e.g., changing the
display resolution).

Although all adaptors provide similar functionalities,
their programming interface is different from vendor to
vendor, and often between successive models of the same
adaptor. This is true of most devices, and is resolved by the
use of device drivers. Device drivers generally consist of a
library of functions that implement a standard API that is
fixed for all devices. Thus, the driver's purpose is to
translate the standard API operations into the operations
required by a specific device, providing a uniform interface
to the operating system and applications.

Video device drivers provide two main services to the
operating system and applications. The first is to put the
graphics display into different video modes. A video mode
(or graphics mode) is defined by the horizontal and vertical
resolution, the number of colors per pixel and screen refresh
rates. The second service provided by the driver is to
provide access to hardware drawing operations. For
example, most video cards provide line drawing hardware,
which draws lines on the display at a much faster rate than
would be possible in software.

4 APPLICATION OF THE APPROACH

We have applied the approach described in Section 2 to a
family of device drivers for video adaptors. We considered
an already existing set of device drivers from the XFree86 X
Window server created by The XFree86 Project, Inc. [36].
The XFree86 SVGA server is a generic X Window server,
written in C, supporting several different cards using a
device driver architecture. This server contains drivers for
cards from about 25 different vendors. Additionally, each
driver supports as many as 24 different models from the
same company. This structure alone indicates that there is
enough similarities between models of the same vendor to
implement them as a generic program, but that it is not
reasonable to do so for multiple vendors. This may be due
to efficiency, but more likely is due to the lack of a
methodology to handle larger scales of variation.

The remainder of this section details the application of
our approach to the construction of an application generator
of video drivers (for different vendors) for the X Window
server. We first discuss the definition of an abstract machine
for the domain, identified by studying the existing device
drivers. Then we describe a DSL for generating video
drivers and related design issues.

4.1 The Abstract Machine

The abstract machine for the video driver domain was
designed primarily by studying the implementation of
existing drivers. The abstract machine was also iteratively
refined during the development of a DSL. We identified
three patterns which appeared in the existing drivers that
could be used to guide the definition of abstract machine
operations.

Operation pattern. The first of these patterns corre-
sponds to simple atomic operations in the abstract machine.
There are two forms in which this pattern appears: as
repeated fragments of code that differ only by data, and as
fragments which perform the same treatment but have a
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small number of variations on how it is performed. In the
first case, the fragments are often already identified and
placed in a library or defined as a macro. These fragments
directly correspond to abstract machine operations.

As an example of the second case, the device drivers are
dominated by occurrences of code fragments which read or
write data from or to the video card. Communication with
hardware devices can be handled in a small number of
different ways, and the scheme chosen varies from vendor
to vendor. There were several occurrences of three of these
different schemes of I/O, differing only in certain data (e.g.,
the I/O address). These fragments were captured in a single
abstract machine operation defined as follows:

write_port(port_number: integer,
index: integer,
indexed: boolean,
pair: boolean,
pci: boolean)

This instruction is parameterized by flags to specify which
scheme to use (indexed, paired, or PCI), and the data used
by the scheme to perform the I/O (port_number, index).

Combination of operations pattern. The second type of
pattern recognized can be identified as expressions or
combinations of operations. This pattern is characterized by
expressions or combinations of operations that have no
commonalities between members of the family. For exam-
ple, in the device drivers there are sequences of shifts and
logical expressions which are different for every driver.
Although there are no commonalities in those expressions
from one driver to the next, we can identify a sufficient set
of operations to construct any instance. The selection of
these operations depends not only on the existing samples,
but on an understanding of the domain, and speculation on
the future of the domain.

The following code fragment shows an example of this
pattern from one of the existing drivers.

outb(0x3C2, ( inb(0x3CC) & 0xF3)
((no << 2) & 0x0C));

outb(OTI_INDEX, OTI_MISC);
outw(OTI_INDEX, OTI_MISC |

((( inb(OTI_R_W) & 0xDF ) |
(( no & 4) << 3)) < < 8));

This portion of the driver maps the value of no onto the
appropriate registers in order to select the clock. For a given
driver, there may be any number of reads, writes, shifts and
logic operations, but no other operations. Thus, we can
implement any given driver with a sequential composition
of a small number of abstract machine operations.

Control pattern. The last pattern consists of code
fragments that share a common control structure, but
contain code fragments matching the combination of
operations pattern previously discussed. For example,
consider a function of the device driver which is used to
save, restore, and set the clock value on the video card.1

This function has the following form:

Bool ClockSelect (int no)
{
switch (no) {
/* Save the clock value. */
case CLK_REG_SAVE:

Series of I/Os and logic operations.
break;

/* Restore saved clock value. */
case CLK_REG_RESTORE:

A second series of I/Os and logic operations.
break;

/* Set the clock value to no. */
default:

A third series of I/Os and logic operations.
}

}

The series of I/Os and logic operations in this example
follow the combination of operations pattern, and can be
constructed by sequences of abstract machine operations.

For this pattern, we introduce higher-order abstract
machine operations. That is, abstract machine operations
which take sequences of abstract machine operations as
parameters. These parameters correspond to the contained
fragments that follow the combination of operations
pattern. The example above is captured by the following
abstract machine operation:

change_clock(save_clk: instructions,
restore_clk: instructions,
set_clk: instructions)

Conclusion. Using these patterns with existing exam-
ples, we were able to define an abstract machine that could
express the behavior of any particular device driver.
Although they were typically easy to recognize, it is
important to realize that it was necessary to abstract from
certain details in order to see the different patterns; e.g., in
our experiment, the examples were mostly written by
different people, who had different styles of programming,
and sometimes took different approaches to the same
problem. In this situation, it was necessary to determine if
the same functionality could be implemented with a
common structure, which happened to always be the case.

4.2 The GAL Language

In this section, we present the Graphics Adaptor Language
(GAL) for video device driver specification. In order to
understand where the language comes from, it is important
to know what the essential variations are among video
adaptors. The remainder of the section describes the
variations that exist between cards and the corresponding
constructs in GAL that capture them. A complete example
of a GAL specification is described in Appendix A.

4.2.1 Ports, Registers, Fields, and Params

A video adaptor is controlled by setting certain parameters
stored in hardware registers of the card. These registers
have addresses. A single parameter may be stored in
multiple registers and only certain bits of the registers may
be used. Thus the layout of the parameters on the register
space is the first major variation between cards.

Access to the registers are provided through various
communication schemes. As mentioned in the previous
section, there is a small number of different schemes that
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can be used to communicate with a hardware device
from a program. The choice of communication scheme is
the second major variation between cards. We define
several concepts to describe these notions of communica-
tion and register layout.

Ports. The first concept is the port which is used to define
a point of communication. For example, the declaration

port svga indexed := 0x3d4;

defines a port named svga, which uses an indexed
communication scheme at the I/O address 0x3d4. This is
a standard port used by many video cards.

Registers. A second concept is provided by the register
declaration, which defines how to access registers on the
card using the defined ports. For example, the declaration

register ChipID := svga(0x30);

defines a register ChipID, which is accessed through port
svga, at index 0x30.

Fields. The next concept is specified with a field
declaration. The field declaration defines where a logical
value is stored (in which bits of what registers) and a
mapping from logical values to actual stored values. For
example, the declaration

field LogicalWidth :=
Control2[5..4] # Offset scaled 8;

defines a field LogicalWidth, which is stored in bits 5 and
4 of the Control2 register and the entire Offset register.
Additionally, the mapping clause (scaled 8) specifies that
the value stored in the register is 1/8th the actual value. The
mapping is needed because cards often store a value which
is some function of the field's actual value.

Parameters. Related to the field declaration, the parameter
declaration is the definition of a constant value that is either
explicit in the specification or read from the card during
configuration. An example of the former case would be

param NoClocks := 4;

The majority of a GAL specification consists of the
definition of fields for standard values that are used to
control the video adaptors and parameters which deeter-
mine certain features of the card (e.g., size of the frame
buffer). Table 1 lists some of these predefined field and
parameter names that can be defined in GAL specifications.

4.2.2 Clocks

A third major variation between different adaptors is the
use of clocks. All adaptors have a clock which controls
the frequency at which data is sent to the display. This
frequency needs to be changed for different resolutions,
and there are two approaches to doing this. One is to
have a fixed number of frequencies to choose from, and
the other is to have a programmable chip that can
generate many frequencies by changing its parameters.
The cards with a fixed number of clocks vary in the
number of clocks and the frequencies provided, while the
cards with a programmable clock vary in how the clock is
programmed and its range of frequencies.

A card that has fixed clocks can be specified by defining
a parameter NoClocks and a field ClockSelect. The

NoClocks constant defines the number of clocks available,
and the ClockSelect field defines the field which selects
the clock.

For cards that have programmable clocks, a special
construct is defined to specify how to program the clock.
For example,

clock f3 is 14318 * f3M / (f3N1 * f3N2);

defines a clock named f3, which is programmable accord-
ing to the equation on the right. The equation defines the
frequency generated based on programmable values, which
are defined elsewhere by the three fields f3M, f3N1, and
f3N2. Given the desired clock frequency, the device driver
uses the specified equation to find values of f3M, f3N1, and
f3N2 which approximate this frequency as closely as
possible.

4.2.3 Identification

The fourth major variation observed among video cards is
how the card is identified. This information is required for
systems which dynamically configure themselves to use
whatever card is available at that time. Card identification
uses a small number of predicates which test the card and
follows a decision tree to decide if the card is supported by
the driver and which one.2 Thus, we define an appropriate
construct for specifying this type of decision tree in GAL.

The following is an example of this identification
construct.

identification begin
1: writable(Segment) => (true => step 2);
2: Chip_id => (1 => oti087,others => step 3);
3: Chip_id2 => (0 => oti037c, 2 => oti067,

5 => oti077);
end identification;
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This example identifies one of four models (oti037c, oti067,
oti077, oti087) of cards that use an OTI graphics controller.
The construct defines a series of steps numbered 1±3 to the
left. At each step, the expression to the left of the arrow is
evaluated and the result is compared to the list of decisions
on the right. If no decision is matched on the right, then
identification fails and indicates that the driver does not
support the card. Possible decisions are to identify the card
or proceed to another step. Step 2, for example, reads the
value of the Chip_id register, and if the result is 1,
identifies that an oti087 is present, otherwise proceeds to
step 3 for further tests. The stepwise syntax reflects the way
diagnostic procedures are commonly described in manuals.

4.2.4 Modes

The final major variation between cards is that many
adaptors require some flags be set under certain operating
conditions. These are referred to as modes of operation in
GAL, and are defined with the mode construct. The mode
construct is used to specify a predicate and a sequence of
assignments to fields, which enable or disable the corre-
sponding mode of operation for the video card. For
example,

mode HighRes := HTotal > 800;
enable HighRes sequence is

Control[5] <= 1;

This mode declaration defines a mode, HighRes, which
indicates that a '1' must be stored in bit 5 of Control in
order to use a video mode in which the horizontal
resolution is greater than 800 pixels. In our implementation,
the predicate HTotal > 800 is tested after changing the
video mode; if it is true, the sequence Control[5] <= 1 is
executed.

In addition to user defined modes, there are also a few
built-in modes. The built-in modes have fixed predicates,
but allow the specification of enabling and disabling
sequences. For example, the built-in mode SVGAMode is
true for all graphics modes and thus the user-defined
enabling sequence is executed each time the mode is
changed.

4.2.5 Run-Time Variations

In addition to the variations that exist between cards, there
are variations within a single driver that depend on
conditions not known until run-time (of the driver). For
example, some video adaptors operate differently depend-
ing on the hardware bus utilized (AT, PCI, or VLB).
Additionally, if one wants to build a single device driver for
a number of models from the same vendor, the variation
between those models has to be chosen at run-time. In GAL,
the cases construct is used to describe this type of
variation.

As an example, the following statement is used to define
the clocks for different models of S3 cards.

cases
for S3_TRIO32, S3_TRIO64

field ClockSelect := Miscr[3..2];
for others

field ClockSelect := Control[3..0];
end;

This example specifies that if the card identified at run-time
is a S3_TRIO32 or S3_TRIO64, then the card has four fixed
clocks selected by bits 3 and 2 of the Miscr field. All other
cards have 16 clocks selected by bits 3 down to 0 of the
Control field.

4.3 Design of GAL

This section discusses some of the many forces that
influenced the design of GAL. The first two subsections
describe two main inputs to the design process: A definition
of variations in the family and knowledge about the
domain. In our case, the domain knowledge came from
existing documentation used by domain engineers. Other
important issues are the level of abstraction, the level of
restriction, readability, maintainability, etc. While the level
of abstraction and the level of restriction are of particular
importance for DSLs, issues like readability and maintain-
ability apply to both DSLs and GPLs.

4.3.1 Defining Variations

One of the main inputs to the design of a DSL is a
description of the variations that exist among the target set
of applications. The defined variations imply requirements
on the DSL in order to distinguish among instances of the
program family. In our case, these variations came from a
study of the documentation of existing video cards. In
addition to studying different cards, inspection of the
existing device drivers provided a more detailed source of
variations at the implementation level. For example, given
that there were a small number of ways to communicate,
which varied among cards, there must be some construct in
GAL specifications, which would allow the selection of the
correct communication scheme. Some of this information
can also be extracted from the parameters of the abstract
machine operations.

4.3.2 Domain Knowledge

The other main input to the DSL design process is
knowledge of the domain in terms of the abstract objects
or concepts and terminology used in the domain. This
knowledge may come from a domain expert or from
existing natural language specifications, as in our experi-
ment. This is an important input because it leads to a more
abstract user-level DSL. An appropriate terminology pro-
vides a DSL that is familiar to people of the domain. The
identified abstract objects that are affected by variations in
the program family provide starting points for declarative
constructs.

In this experiment, we looked at several English
specifications of video cards to identify the concepts and
terminology used within the domain. The clocks, ports, and
registers are examples of concepts in the domain that we
identified. After identifying them, we considered what
attributes of the objects were related to variations within the
program family. Declarative statements were then defined
to specify the values for the attributes that varied. Thus, the
abstract objects identified in our experiment directly
translated to declarative constructs in the DSL. Addition-
ally, the relationship between the objects translated into a
reference relationship in the DSL. For example, registers are
defined by references to port definitions. This may suggest
the use of an object-oriented analysis for DSL design.
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4.3.3 Level of Abstraction

One of the most important goals guiding the DSL is to
provide a high-level of abstraction. In particular, we wish to
intentionally focus on raising the level of abstraction from
the abstract machine level. In fact, it may be desirable to
include information in the DSL, which is not even used for
implementation, but may be used in analyses or for
documentation.

As an example of abstraction, the abstract machine
developed for the video device drivers includes operations
for doing bitwise shifts and logical operations. However,
these types of expressions do not appear in GAL because
we intentionally introduced the idea of fields and para-
meters to eliminate the low-level procedural nature of these
expressions. This also eliminates a common source of
errors.

After a preliminary design of the language, the language
and abstract machine are revised in an iterative way. The
revision process must satisfy the correspondence constraint
between the language and abstract machine: it must be
feasible to provide a mapping from the language to the
operations of the abstract machine as an interpreter. During
this revision process the level of abstraction must also be
considered. Although it is possible to move all of the
functionality of the language into the abstract machine,
making the mapping essentially one-to-one, there must be
conscious decisions made about where to draw the line
between the interpreter and the abstract machine. The
primary consideration here is the separation of functionality
from specification. The abstract machine should specify
how applications in the family are implemented. The
interpreter, on the other hand, should specify how to make
the design decisions required to map a design specification
(i.e., DSL program) into an implementation (i.e., abstract
machine operators).

4.3.4 Level of Restriction

Another major concern is restricting the language. It is
important to consider what types of analyses might be
performed on specifications in the DSL in order to ensure
that the language is restricted enough to make the analyses
feasible. For example, in the GAL language we have
intentionally not introduced loops, which ensures that all
device drivers can be proven to terminate. Additionally, we
perform other analyses to detect common errors in the
specification by providing explicit information that is
difficult or impossible to extract from general purpose
languages. An example of this is checking that the bits of
each register belong at most to one field. This information
could not be retrieved, in general, from a driver imple-
mented in a language such as C.

4.3.5 GPL Principles

In addition to the design goals that are specific to DSLs,
there are several principles of general purpose language
design that also apply to DSL design. General purpose
languages can also help DSL design by providing a
standard set of constructs that may be restricted for use in
the DSL, but would still be recognized as a common
construct.

On the other hand, the cases construct introduced in
GAL is an interesting example of a construct which possibly
has applications in DSLs in general (when a predefined
abstraction may, conditionally, have one of several defini-
tions), but is not useful for GPLs, since the behavior is
totally described by the program itself and abstractions are
explicitly invoked. One of the main purposes of introducing
a DSL and an application generator is to embed knowledge
about how to implement certain operations of the domain
into the application generator. As a result, there are often
declarative constructs in DSLs that are translated into
executable code by the application generator, which is not
generally true of general purpose languages. Since these
declarations really imply operations, there is often a need to
make choices between the implied operations that can only
be made at run-time. This leads to the type of dynamic
selection of multiple definitions that is provided by the
cases statement. Since a main motivation of utilizing a
DSL is to raise the level of abstraction, it will be common for
DSLs to have declarative objects which imply operations
and require this dynamic selection. Thus, we suspect that
this construct will be useful in DSLs in general, and in fact
have found it necessary in other DSLs that we have
experimented with. This suggests that there are new
constructs and principles that are interesting and unique
to DSLs and warrant study.

5 RESULTS

In this section, we present the results of applying our
framework to the domain of video device drivers. The
results are presented in terms of the advantages we have
gained from using our approach for this family of drivers.
There are two aspects of the approach that led to these
advantages. One aspect is the use of DSLs and application
generators in general, and the second is specific to our
framework for application generator design.

5.1 Domain Specific Language

The GAL language demonstrates many advantages of using
an application generator with a DSL for the video device
driver domain. These benefits include an increased level of
abstraction, the possibility of automated program analyses,
reuse, and productivity.

There are two significant examples of the benefit of a
higher level of abstraction. The first, already discussed in
Section 4.3.3, is the use of ports, registers, and fields to
abstract from the low-level bitwise operations that would
otherwise have to be used. This eliminates many common
errors, is more readable, and easier to write. A second
example is an abstraction from implementation. The X
Window server can be considered a framework, where the
device driver provides the additional functions. As with
any framework, the device driver needs to be implemented
in a certain way in order to be compatible with the server
and requires considerable knowledge about the framework.
Using an application generator, knowledge about the
framework and compatibility issues are coded in the
application generator, and hidden from the designer.

GAL also demonstrates that automatic analyses can be
performed on the DSL, which would not be possible or
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feasible with a general purpose language. Example analyses
that are performed on GAL specifications include detecting
unused definitions, checking for exhaustive identification of
video cards, identifying overlap in field definitions, check-
ing for minimum requirements on predefined fields, and
generating a card profile (summary of card characteristics).
None of these analyses would have been feasible on the
existing device drivers implemented in C. Using GAL not
only makes the analyses feasible, but also easy to imple-
ment. For example, all of these analyses for GAL were
implemented within a single day.

One particularly interesting analysis is the one which
generates a card profile. Generating a card profile is an
analysis which, from the GAL specification, produces a
summary of the video modes that are supported by the
generated device driver. Fig. 3 shows an extract of the
profile generated for the S3 specification listed in Appendix
B. A profile is generated for each subset of cards in the
specification that have the same profile. The figure shows
the profile for the S3_TRIO64 and S3_TRIO32. This
summary can be compared with vendor specifications to
find mistakes in field definitions and provides automatic
documentation of the specification.

Finally, using an application generator provides reuse by
capturing design knowledge. In the domain of video device
drivers there are large benefits of reuse because there is a
large growing number of video cards which could poten-
tially be generated from a single application generator. The
amount of productivity gained depends on the ease of
building the application generator and consequently on the
approach to its design. Thus, we discuss productivity
measurements in the next section with respect to our
framework.

5.2 Our Framework

In addition to the advantages obtained from the DSL
approach, there are several advantages demonstrated by
GAL due to our framework of generator design. The
experiment shows that the framework achieves automatic
and predictable generation of efficient video drivers, and a
high-level of reuse. GAL also demonstrates that the benefits
of the two-level approach for analyses and multiple
implementations are of practical value.

5.2.1 Reuse and Productivity

The abstract machine for X Window device drivers consists
of 95 small C procedures totaling 1,200 lines. Implementing
the abstract machine has roughly the same difficulty level

as implementing a single driver directly, as the code is very
similar. Since we had existing device driver implementa-
tions, some of the abstract machine code could be reused
from those drivers.

Table 2 summarizes the number of lines of code in the
GAL system in comparison to writing drivers in C. The
interpreter for GAL consists of 4,300 lines of C code and an
automatically generated parser, much of which concerns
building an environment and look-up routines for declara-
tions. Thus, together the system consists of about 5,500 lines
of C code. We can compare this to the size of the existing
hand-coded drivers which averaged about 1,500 lines.
Though the effort required to build an interpreter should
be less than that for building a device driver, we can
estimate that the application generator requires a little more
than 3.5 times the effort of an individual driver (assuming
code size proportional to effort).

For the version of the X Window server we used, the
existing drivers together consisted of 35,000 lines of code.
The GAL specifications that have been written are at least a
factor of 9 smaller than the corresponding existing C driver .
We can then estimate that these drivers could be generated
from less than 4,000 lines of GAL specifications plus the
5,500 lines of the generator, totaling less than 10,000 lines.
This is an estimated productivity gain of a factor of 3.5. In
practice there would be a higher gain, since GAL specifica-
tions are easier to write then the corresponding C driver. In
addition, having an interpreter for GAL provides a
prototyping environment.

5.2.2 Efficiency

Here we consider two measures of efficiency: object code
size and execution speed. Although designing an inter-
preter is easier than designing a compiler, there are
significant losses in speed and size (compared to compila-
tion). In terms of speed, interpreters are typically 10±100
times slower than compiled programs, and in terms of size,
our GAL interpreter is 10 times larger than a typical driver
in object code size. However, a benefit of using partial
evaluation is that we can regain the loss in efficiency.

We used Tempo [11], a partial evaluator for C, as the
program specializer used to translate GAL specifications to
abstract machine programs, and to produce an efficient
implementation of the abstract machine programs. In order
to make a size comparison, we compared the object file
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sizes of the generated drivers to that of the hand-coded
drivers. On average, the generated driver is only 30 percent
larger than the hand-coded one. One main difference that
lead to an increase in code size is that the hand-coded
drivers often use loops to access a block of contiguous
registers. GAL does not recognize when registers are
contiguous, although it could. A second difference is that
hand-coded drivers are not always careful about saving and
restoring all registers.

The speed of most of the device driver functions are
insignificant, as they are only called during configuration.
However, we picked three device driver functions used for
drawing lines and rectangles in hardware to benchmark
performance. Since the interpreter level of our framework is
guaranteed to be eliminated (see Section 2), we are only
concerned with the abstract machine layer.

For comparison, we prepared three versions of the X
Window server for an S3 TRIO64V + video card on a
Pentium PRO-200. Table 3 shows the timing results for the
three servers. The S3 XAA server is the X Window server
provided with XFree86 and the included hand-coded S3
device driver. S3 AM is the same server with a device driver
which directly uses the abstract machine. Finally, S3 PE is
the same server using the abstract machine, but after partial
evaluation. The table shows the performance of these
servers for lines and filled rectangles of size 10 as measured
by the standard XBench benchmark utility.3 The table also
includes a percentage using S3 XAA as a baseline.

The table indicates that there is a loss of about 20 percent
in performance from the use of the abstract machine. This
loss of performance can be contributed to error checking,
interpretation, function call, and data copying overhead.
Data copying is due to the need to communicate across
abstract machine operations. The write operation includes
error checking to ensure that if previous operations fail the
resulting data is not written to the card. This is particularly
important because the card could otherwise be damaged.
Finally, the I/O operations require some interpretation of
their parameters to determine the type of I/O to perform
and which addresses to use. Although directly using the
abstract machine incurs this performance loss, the results
for the S3 PE server show that the program transformations
performed by partial evaluation are able to recapture all of
the performance loss. A majority of the error checking can
also be eliminated using Tempo because often the opera-
tions preceding write operations cannot fail, and thus error
conditions do not need to be checked. Finally, the
parameters which are interpreted to select the type of I/O
to perform and used for address computation are known
and eliminated by Tempo. Tempo also performs inlining
and copy elimination which eliminates function call and
data copying overhead.

5.2.3 Analyses

Our framework for application generator design contributes
in two ways to the use of program analyses. The generation
process is predictable and can be analyzed, and the

separation of the abstract machine from the interpreter
allows analysis at the abstract machine level.

As an example, the GAL abstract machine includes
operations that allocate and deallocate temporary storage
and operations which use the temporary storage. As long as
the operations which use the temporary storage are only
used between a set of allocate and deallocate operations, we
can insure there will be no uninitialized pointer derefer-
ences. The analyses of partial evaluation are capable of
producing a specification of all the programs that could
possibly be generated by the partial evaluation process.
From this, we can obtain a formal description of all possible
abstract machine programs that could be generated, and
can check that the operations are always generated in the
correct order. Thus, for the GAL system we can prove that
uninitialized pointer dereferences will never occur. This
description of the generation process may also be analyzed
for performance properties, for example.

The separation of the abstract machine and the DSL
provides an intermediate level at which analyses can be
performed and could allow analysis at run-time. In fact, this
separation corresponds to a standard technique of program
specification, which factors the verification process into two
parts [3]. As an example of analysis at run-time, we may
wish to check that device access within a video driver is safe
(e.g., does not access the disk device). This cannot be done
until run-time because it depends on what devices are
present at run-time. In this case, we might accept video
drivers in abstract machine form and analyze the abstract
machine at run-time. Partial evaluation can be performed at
run-time [12], so the efficiency can still be recaptured. This
kind of analysis is not feasible on machine code or even Java
bytecodes due to their general purpose nature. In proof-
carrying code [24], the burden of proof is put on the
programmer and the proof is sent with the code to be
verified (verification being easier), whereas here we make
the proof easier so that it can be done at run-time.

5.2.4 Multiple Implementations

The video device driver family also demonstrates a useful
application of having multiple implementations of inter-
preters and abstract machines. In this domain, it would be
desirable to have abstract machines for several architectures
and interpreters for different operating systems. For
example, Fig. 4 shows the situation where there are
implementations of interpreters for Microsoft Windows 95
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and Linux/X11, and implementations of the abstract
machine for the Dec Alpha and Intel based computers. In
this situation, with the equivalent of two application
generators (interpreter/abstract machine pairs), the same
GAL specification can be used to generate four different
device drivers. We have implemented the X11/Intel path of
Fig. 4.

For prototyping, we have also benefited from having a
second implementation of the abstract machine which
simulates the abstract machine operations. The simulation
records the values that would be written to the card by the
real abstract machine. This is an important feature as some
video adaptors can be damaged by writing inappropriate
values to the card.

6 CONCLUSIONS AND FUTURE WORK

Domain specific languages hold the promise of delivering
high payoffs in terms of software reuse, automatic program
analysis, and software engineering. In this paper we have
presented GAL, an example of a complete DSL for a realistic
program family: video device drivers. We also demon-
strated the benefits of DSLs by showing how GAL raises the
level of abstraction of device driver specifications and
identifying some analyses that can be performed on GAL
specifications because it is domain specific.

A further contribution of the paper is to validate our
framework of application generator design by applying it to
this program family to provide an implementation of GAL.
Since our implementation is based on partial evaluation, it
provides a complete interpreter for prototyping device
drivers, but still automatically generates efficient device
drivers. Efficiency is demonstrated with results comparing

hand-coded drivers to automatically generated device
drivers. Generated drivers are roughly one third larger
than hand-code drivers and perform equivalently in terms
of speed. Additionally, we give measures on expected reuse
benefits; GAL specifications are roughly a factor of 9
smaller than a driver hand-coded in C.

The techniques presented in this paper have also been
applied to the active networks domain [31]. In this work, we
have developed PLAN-P, a DSL for active networks. By
using techniques for run-time specialization, we have
successfully specialized PLAN-P programs at run time to
achieve the effect of a just-in-time compiler (JIT). Experi-
mental results show that the programs produced by the
run-time specializer incur no overhead in overall system
performance in comparison to using handwritten C code.
Furthermore, in comparison to Java, another mobile code
approach, the specialized program is twice as fast as an
equivalent Java program compiled with an optimizing off-
line byte-code compiler.

Although our framework significantly reduces the
development time of application generators, future work
could be done in this direction. Specifically, this approach
would benefit from a generator-specific reuse method that
would allow interpreters and abstract machines to be
constructed from reused composable parts. Additionally,
given the nature of DSLs, they are extended frequently to
adapt to new program requirements, and the ease of
extension also needs to be considered for such language
components.

Our implementation of the static analyses indicates that
methods of quickly constructing static analyses should also
be investigted (e.g., composable anlayses). This is more
important for DSLs than GPLs, since static analyses are a
major motivation of the approach.

In this work we have presented an application of our
approach to a program family with existing family
members. To further validate the approach, it is also
important to study its application to a program family
which is not pre-existing. In this case, the abstract machine
and DSL might be developed from the results of a domain
analysis or a commonality analysis, such as FAST [15].

APPENDIX A

A COMPLETE GAL EXAMPLE

Appendix B gives a complete listing of the GAL specifica-
tion for several models of S3 video adaptors. In this
appendix, we explain some of the constructs that were not
included in the main text.

Although the various registers of video cards are
typically accessed using an addressing scheme, there is
sometimes a sequential procedure that must be followed to
access some registers. The serial construct is used to
specify this kind of procedure (see listing). The construct
consists of a list of sequences of actions that should be
performed on the ports to access the registers. Thus,
multiple ports may be accessed during the procedure, as
in the example. Each sequence consists of a port, an
operation (<= write, <=> read/write, => read), and a
sequence of values for writes or registers names for reads
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and read/writes. The actions in the sequence are performed
from the first port to the last, from left to right in the
sequence. The mode (R read, R/W read/write, W write) to the
right of the sequence indicates whether this sequence
applies to reading the registers to writing the registers or
both.

The serial construct in the example defines the registers
PLL1, and PLL2. In order to write values to these registers
the construct would be executed as follows. Write 3 to
misc[3..2], write the value of PLL1 to seq(0x12), write
the value of PLL2 to seq(0x13), and finally, write 0, then
1, then 0 to seq(0x15)[5].

The S3 specification also includes an example of a derived
field, which is not discussed in the paper. This is a field
whose value is derived from one of the standard fields. In
the example, StartFIFO is a derived field. Its value is set
whenever the graphics mode is set, and is based on the
value of HTotal, the horizontal resolution. The declaration
indicates this with the from clause.

The clockmap is used when a card has both fixed and
programmable clocks such as the S3 Trio cards. It indicates
which clocks are fixed and which are programmable. The
example for the S3 indicates that clock 0 and 1 are fixed,
clock 2 is not available (NA), and clock 3 is the program-
mable clock f3. The parameters MinPClock and MaxP-

Clock are also related to clocks and specify the minimum
and maximum values that can be generated by the clock
(i.e., not all values of f3M, f3N1, and f3N2 are valid).

Finally, the operating mode access is used to lock an
unlock registers on the card.

APPENDIX B

GAL S3 LISTING

±± List all cards/models supported by this
driver.

chipsets
S3_911, S3_924, S3_80x, S3_928, S3_864,
S3_964, S3_866, S3_868, S3_968, S3_TRIO32,
S3_TRIO64;

±± Define ports.
port svga indexed := 0x3d4;
port seq indexed := 0x3c4;
port misc := 0x3cc, 0x3c2;

±±Define registers.
register Miscr := misc;
register Slock := seq(0x8);
register Offset := svga(0x13);
register ExtChipID := svga(0x2e);
register ChipID := svga(0x30);
register Memory := svga(0x31);
register State := svga(0x36);
register Lock1 := svga(0x38);
register Lock2 := svga(0x39);
register StartFIFOr := svga(0x3B);
register Misc1 := svga(0x3a);
register Control := svga(0x42);
register Control2 := svga(0x51);
register HOverflow := svga(0x5D);
register VOverflow := svga(0x5E);

register Control3 := svga(0x69);

±±Serial registers (see Appendix A).
serial begin

misc[3..2] <= (3,- , -, -, -) W;
seq(0x12) <=> (-, PLL1, -, -, -) R/W;
seq(0x13) <=> (-, PLL2, -, -, -) R/W;
seq(0x15)[5] <= (-,- , 0, 1, 0) W;

end;

±± Define predefined fields

±± Horizontal resolution fields.
field HTotal := HOverflow[0]#std;
field HEndDisplay := HOverflow[1]#std;
field HStartBlank := HOverflow[2]#std;
field HStartRetrace := HOverflow[4]#std;

±±Vertical resolution fields.
field VTotal := VOverflow[0]#std;
field VEndDisplay := VOverflow[1]#std;
field VStartBlank := VOverflow[2]#std;
field VStartRetrace := VOverflow[4]#std;

±±Virtual screen fields.
field LogicalWidth :=
Control2[5..4]#Offset scaled 8;

cases
for S3_928, S3_968, S3_TRIO32, S3_TRIO64

field StartAddress :=
Control2[1..0]#Memory[5..4]#std;

for S3_80x
field StartAddress :=
Control2[0]#Memory[5..4]#std;

for S3_864,S3_964
field StartAddress := Control3[4..0]#std;

for others
field StartAddress := Memory[5..4]#std;

end;

±± Define derived fields (see Appendix A).
field StartFIFO from HTotal :=

HOverflow[6]#StartFIFOr offset 10 scaled 8;

±±Special S3 flags that must be set for 256 color
graphics modes.

enable SVGAMode sequence is
Misc1[4] <= 1, Memory[3] <= 1;

±±Define standard parameters.
param TwoBankRegisters := false;
param InterlaceDivide := true;

cases
for S3_911, S3_924

param RamSize := State[5] mapped
(0 => 1024,1 => 512);

for others
param RamSize := Se[7..5] mapped
(0 => 4096,2 => 3072> 8192, 4 => 2048,
5 => 5120, 6 => 1024,7 => 512);

end;

±± Define clocks.
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cases
for S3_TRIO32,S3_TRIO64

param NoClocks := 4;
field ClockSelect := Miscr[3..2];
param MinPClock := 135;
param MaxPClock := 270;
field f3M := PLL2[6..0] offset 2
range 1 to 127;

field f3N1 := PLL1[4..0] offset 2
range 1 to 31;

field f3N2 := PLL1[6..5] mapped
(0 => 1, 1 => 2, 2 => 4, 3 => 8);
clock f3 is 14318 * f3M / f3N1 * f3N2;

clockmap is (fixed, fixed, NA, f3);
for others

param NoClocks := 16;
field ClockSelect := Control[3..0];

end;

±± Identification procedure.
identification begin
1: ChipID[7..4] =>

(0x8 => step 2, 0x 9 => S3_928,
0xA => S3_80x, 0xB => S3_928,
0xC => S3_864, 0xD => S3_964,
0xE => step 3);

2: ChipID[1..0] => (0x1 => S3_911,
0x2 => S3_924);

3: ExtChipID =>
(0x10 => S3_TRIO32, 0x11 => S3_TRIO64,
0x80 => S3_866, 0x90 => S3_868,
0xB0 => S3_968);

end;

±± Register locks on S3 chips.
enable access sequence is

Lock1 <= 0x48, Lock2 <= 0xA5, Slock <= 0x6;
disable access sequence is

Lock1 <= 0x00, Lock2 <= 0x5A, Slock <= 0x0;
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