
Domain-Specific Languages:
An Annotated Bibliography*

Arie van Deursen Paul Klint Joost Visser

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
http://www, cwi .nl/~ {arie, paulk, jvisser} /

Abstract We survey the literature available on the topic of
domain-specific languages as used for the construction and
maintenance of software systems. We list a selection of 75
key publications in the area, and provide a summary for each
of the papers. Moreover, we discuss terminology, risks and
benefits, example domain-specific languages, design method-
ologies, and implementation techniques.

1 Introduction

In all branches of science and engineering one can distinguish
between approaches that are generic and those that are spe-
cific. A generic approach provides a general solution for many
problems in a certain area, but such a solution may be subop-
timal. A specific approach provides a much better solution
for a smaller set of problems. One of the incarnations of this
dichotomy in computer science is the topic of this annotated
bibliography: domain-specific languages versus generic pro-
gramming languages.

Of course, this is not a new topic. The older programming
languages (Cobol, Fortran, Lisp) all came into existence as
dedicated languages for solving problems in a certain area
(respectively business processing, numeric computation and
symbolic processing). Gradually they have evolved into gen-
eral purpose languages and over and over again the need for
more specialized language support to solve problems in well-
defined application domains has resurfaced. Over time, the
following solutions have been tried:

• Subroutine libraries contain subroutines that perform
related tasks in well-defined domains like, for in-
stance, differential equations, graphics, user-interfaces
and databases. The subroutine library is the classical
method for packaging reusable domain-knowledge.

• Object-oriented frameworks and component frameworks
continue the idea of subroutine libraries. Classical li-
braries have a flat structure, and the application invokes
the library. In object-oriented frameworks it is often the

*This research was sponsored by the Dutch Telematica Instituut, project
DSL (see also http : //www. cwi. nl/proj ects/dsl/).

case that the framework is in control, and invokes meth-
ods provided by the application-specific code [42, 32].

• A domain-specific language (DSL) is a small, usually
declarative, language that offers expressive power fo-
cused on a particular problem domain. In many cases,
DSL programs are translated to calls to a common sub-
routine librm'y and the DSL can be viewed as a means to
hide the details of that library.

Although many domain-specific languages have been de-
signed and used over the years, the systematic study of
domain-specific languages has only started more recently.
This bibliography has grown out of our own research needs to
make an inventory of the field and provides references to re-
search that deals with the following topics: terminology (Sec-
tion 2), risks and opportunities (Section 3), example DSLs
(Section 4), DSL design methodology (Section 5), and DSL
implementation strategies (Section 6). The papers listed are
annotated with summaries, which in turn are cross-referenced
to related papers.

Although these topics are the subject of current research
and progress is being made in addressing them, we expect
that they will remain important for several years to come.

2 Terminology

The question what exactly is a domain-specific language is
subject to debate. We propose the following definition:

A domain-specific language (DSL) is a program-
ming language or executable specification language
that offers, through appropriate notations and ab-
stractions, expressive power focused on, and usu-
ally restricted to, a particular problem domain.

The key characteristic of DSLs according to this definition is
their focussed expressive power.

Our definition inherits the vagueness of one of its defining
terms: problem domain. Rather than attempting to define this
volatile notion as well, we list and categorize a number of do-
mains for which DSLs have actually been built in Section 4.

ACM SIGPLAN Notices 26 V. 35(6) June 2000

Moreover, we refer to [70], which contains an interesting dis-
cussion contrasting a "domain as the real world" point of view
as adopted in the artificial intelligence community, with a "do-
main as a set of systems" approach, as used in the systematic
software reuse research community.

DSLs are usually small, offering only a restricted suite of
notations and abstractions. In the literature they are also called
micro-languages and little languages [7]. Sometimes, how-
ever, they contain an entire general-purpose language (GPL)
as a sublanguage, thus offering domain-specific expressive
power in addition to the expressive power of the GPL. This
situation occurs when DSLs are implemented as embedded
languages (see Section 6). Languages such as Cobol or For-
tran, which could be viewed as languages tailored towards the
domain of business and scientific programming, respectively,
are generally not regarded as DSLs, because they are not small
and because their expressive power is not restricted to these
domains.

Domain-specific languages are usually declarative. Con-
sequently, they can be viewed as specification languages, as
well as programming languages. Many DSLs are supported
by a DSL compiler which generates applications from DSL
programs. In this case, the DSL compiler is referred to as
application generator in the literature [17], and the DSL as
application-specific language. Other DSLs, such as YACC [7]
or ASDL [77], are not aimed at programming (specifying)
complete applications, but rather at generating libraries or
components. Also, DSLs exist for which execution consists
in generating documents (TEX), or pictures (PIC [7]). A com-
mon term for DSLs geared towards building business data
processing systems is 4th Generation Language (4GL).

Related to domain-specific programming is end-user pro-
gramming, which happens when end-users perform simple
programming tasks using a macro or scripting language. A
typical example is spreadsheet programming using the Excel
macro-language.

3 Risks and Opportunities

Adopting a DSL approach to software engineering involves
both risks and opportunities. The well-designed DSL man-
ages to find the proper balance between these two. The bene-
fits of DSLs include:

• DSLs allow solutions to be expressed in the idiom and at
the level of abstraction of the problem domain. Conse-
quently, domain experts themselves can understand, val-
idate, modify, and often even develop DSL programs.

• DSL programs are concise, self-documenting to a large
extent, and can be reused for different purposes [50].

• DSLs enhance productivity, reliability, maintainability
[24, 47], and portability [38].

• DSLs embody domain knowledge, and thus enable the

conservation and reuse of this knowledge.

• DSLs allow validation and optimization at the domain
level [6, 13, 55].

• DSLs improve testability following approaches such
as [71].

The disadvantages of the use of a DSL are:

• The costs of designing, implementing and maintaining a
DSL.

• The costs of education for DSL users.

• The limited availability of DSLs [49].

• The difficulty of finding the proper scope for a DSL.

• The difficulty of balancing between domain-specificity
and general-purpose programming language constructs.

• The potential loss of efficiency when compared with
hand-coded software.

Comparisons of the DSL approach to other approaches to
software generation are made in [20, 22, 47]. In [24] the costs
and benefits of DSLs are analyzed from the perspective of
software maintenance. In [49], DSLs are categorized as one
of the main approaches to software reuse, and a detailed com-
parison is made to other reuse techniques.

4 Example DSLs

Literally hundreds of DSLs are in existence today. Of these,
only a subset is actually described in the software engineering
or programming language literature. Best-known are classi-
cal examples like PIC, SCATrER, CHEM, LEX, YACC, and
Make, which are described in [7]. Other well-known exam-
ples are SQL, BNF, and HTML. We have included references
to various example domain-specific languages. Their domains
can be grouped into the following areas:

Software Engineering Financial products [12, 22, 24], be-
havior control and coordination [9, 10], software archi-
tectures [54], and databases [39].

Systems Software Description and analysis of abstract syn-
tax trees [77, 19, 51], video device driver specifications
[76], cache coherence protocols [15], data structures in
C [72], and operating system specialization [63].

Multi-Medla Web computing [14, 35, 4, 33], image manip-
ulation [73], 3D animation [29], and drawing [44].

Telecommunications String and tree languages for model
checking [48], communication protocols [6], telecom-
munication switches [50], and signature computing [11].

Miscellaneous Simulation [2, 13], mobile agents [36], robot
control [61], solving partial differential equations [26],
and digital hardware design [41].

ACM SIGPLAN Notices 27 V. 35(6) June 2000

A collection of several papers on DSLs can be found
in [67].

5 DSL Design Methodology

The development of a domain-specific language typically in-
volves the following steps (see [17, 24]):

Analysis (1) Identify the problem domain. (2) Gather all rel-
evant knowledge in this domain. (3) Cluster this knowl-
edge in a handful of semantic notions and operations on
them. (4) Design a DSL that concisely describes appli-
cations in the domain.

Implementation (5) Construct a library that implements the
semantic notions. (6) Design and implement a compiler
that translates DSL programs to a sequence of library
calls.

Use (7) Write DSL programs for all desired applications and
compile them.

The aim of the analysis steps (1) through (4) is to build up a
thorough understanding of the underlying application domain.
Guidelines for acquiring such an understanding are provided
by the research area of domain analysis which investigates
ways of modeling domains. Following [58], a domain analyst
is a person who examines the needs and requirements of a col-
lection of systems which seem "similar". Neighbors empha-
sizes that this is work that only can be done by a person who
has built many systems for different customers in the same
problem area. The domain analyst is like a systems analyst,
except that the goal is to support the development of families
of related systems, not just one-of-a-kind productions [75].

Domain engineering [3] refers to the activity of systemati-
cally modeling domains. Domain engineering originates from
research in the area of software reuse, and can be used when
constructing domain-specific reusable libraries, frameworks
or languages. A recent domain engineering survey is provided
by [20, Chapter 3]. Several domain engineering methodolo-
gies exists, of which ODM (Organizational Domain Modeling
[69, 70]), FODA (Feature-Oriented Domain Analysis [45]),
and DSSA (Domain-Specific Software Architectures [75]) are
best known.

Strongly related to domain engineering is the notion of pro-
gram families which are sets of similar programs [52, 18]. At
Lucent, a systematic approach to the development of families
is in use, the Family-Oriented Abstraction, Specification and
Translation (FAST) approach, which has been successfully
applied to over 25 different domains [18]. Program families
are in turn related to software product lines. These emphasize
features shared by all products, and are focused on the needs
of a selected market [21, 53, 78].

A prerequisite to developing a DSL is mature domain
knowledge. For that reason, a DSL is viewed as the final and
most mature phase of the evolution of an object-oriented ap-

plication framework [66, 22]. For the same reason, the exis~
tence of legacy systems implementing domain concepts wilt
be of use when developing a DSL for that domain [70]. Re-
verse engineering techniques may be used to distill domain
knowledge from such legacy systems - - an overview of such
techniques is provided by [16, 25].

6 DSL Implementation

The implementation steps (5) and (6) of the previous section
can be carried out using several approaches:

Interpretation or compilation This is the classical ap-
proach to implementing a new language. Standard compiler
tools [1, 7] can be used, or tools dedicated to the implementa-
tion of DSLs like Draco [58], ASF+SDF [23], Kephera [31],
Kodiyak [38], design by selection [62], or IrffoWiz [56].

The main advantage of building a compiler or interpreter
is that the implementation is completely tailored towards the
DSL and no concessions are necessary regarding notation,
primitives and the like. Also, error detection, static analy-

• sis, and optimizations can be done at the domain level, for
example using an effect system as in [13].

Clearly, an important problem is the cost of building such
a compiler or interpreter from scratch, and the lack of reuse
from other (DSL) implementations, although some DSL tool
sets (for example InfoWiz [56]) are particularly designed to
overcome such problems.

As an alternative to implementing a DSL from scratch,
a DSL can be implemented by extending a given base lan-
guage. For instance, [6] describes an extension of (a restricted
version of) a general-purpose language with domain-specific,
constructs. The main advantage of this approach is that all
features of the base language remain available and need not
be re-implemented.

When implementing domain-specific extensions of a base
language, the implementation of the base language can be
reused in three different ways:

Embedded languages / domain-specific libraries In this
approach, existing mechanisms such as definitions for func-
tions or operators with user-defined syntax are used to build
a library of domain-specific operations. The syntactic mech-
anisms of the base language are used to express the idiom of
the domain.

An advantage of this approach is that the compiler or in-
terpreter of the base language is reused as is for the DSL.
The main limitation is in the expressiveness of the syntactic
mechanisms in the base language. In many cases, the op-
timal domain-specific notation has to be compromised to fit
the limitations of the base language. Typical examples of
this approach are [61] (a robot control language embedded

ACM SIGPLAN Notices 28 V. 35(6) June 2000

in Haskell) and [44] (a PIC-like drawing language embedded
in ML). The concept of domain-specific embedded language
was coined by Hudak [40].

Preprocessing or macro processing In this approach the
new constructs are translated to statements in the base lan-
guage by a preprocessor. The main advantage of this approach
is simplicity. Its main disadvantage is that static checking and
optimization are not done at the domain level. Consequently,
generated code is error prone, and the user is provided with
feedback on these errors at the level of the base language, or
only at run-time.

Extensible compiler or interpreter This approach is sim-
ilar to the previous one, but the preprocessing phase is now
integrated in the compiler. The advantage is that more type
checking and better optimization is possible. This approach
is taken by [30, 74]. The Tcl [59] interpreter is also a prime
example: it has been extended for dozens of domains.

Apart from building a dedicated DSL compiler or inter-
preter, or reusing the implementation of an underlying base
language, other implementation techniques may be used. For
instance, in aspect-orientedprogramming [46] a DSL is used
to describe an aspect of a system's behavior that is orthogo-
nal to its main functionality. An aspect weaver is then used
to generate domain-specific code and merge it with the main
code.

7 Concluding Remarks

In this paper, we have given a survey of the literature on
domain-specific languages. We covered terminology, risks
and opportunities, example DSLs, and design and implemen-
tation issues, listing relevant references for each of these top-
ics. The references themselves are annotated with a summary
of the most important results discussed in each paper.

For up to date information on the topic of domain-specific
languages, we refer to the series of DSL conferences orga-
nized by USENIX [64, 27], which most likely will have suc-
cessors in the years to come.

Another valuable source of up to date information
may be the web. A searchable domain engineering
bibliography, with abstracts, is available at http://wvm.
iese. fhg. de/pubs_and llnks / spl/bibl iography/. An on-
line bibliography on the topic of generative programming
can be found at http://home.t-online.de/home/Ulrich.
Eisenecker/gpref .htm. Finally, http : //www. irisa, fr/
compose/dsl/ provides a survey of domain-specific lan-
guages in general.

Acknowledgments We would like to thank Jan Heering
from CWI for many useful remarks.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compiler: Princi-
ples, Techniques and Tools. Addison-Wesley, 1986.

Standard text on compiler construction.

[2] M. Antoniotti and A. G611ti. SHIFT and SMART-AHS:
A language for hybrid system engineering modeling and
simulation. In Ramming [64], pages 171-182.

Describes the language SHIFT for hybrid system simu-
lation. Main application area is traffic simulation. Im-
plemented by translation to C and a run-time library
with solvers for various kinds of differential equations.

[3] G. Arango. Domain analysis: From art form to engi-
neering discipline. In Fifth International Workshop on
Software Specification and Design, pages 152-159, May
1989. Appeared as ACM SIGSOFT Engineering Notes
14(3).

Outlines a frameworlcsto synthesize domain analysis
methods, and to compare between different methods. The
paper advocates an incremental, evolving approach to-
wards developing domain models.

[4] D. Atkins, T. Ball, G. Bruns, and K. Cox. Mawl: A
domain-specific language for form-based services. In
DSL-IEEE [28], pages 334--346. An earlier version ap-
peared in [64].

Describes the language Mawl that is intended for im-
plementing form-based information services for differ-
ent devices (web browser, interactive voice response ser-
vice). The main contributions of this language are: (1)
separation of user-interface code and service logic, (2)
static type checking, (3) device-independence, (4) auto-
matic generation of low-level CGI code, (5) automatic
generation of HTML templates, and (6) automatic gen-
eration of usage statistics.

[5] D. R. Barstow. Domain-specific automatic program-
ming. IEEE Transactions on Software Engineering, SE-
11(11): 1321-36, November 1985.

Envisions a framework for stepwise synthesis of domain-
specific applications from informal specifications. The
framework applies search techniques to explore possible
refinements of an initial specification, given a base of
domain and programming knowledge ((facts and heuris-
tics).

[6] A. Basu, M. Hayden, G. Morrisett, and T. von Eicken.
A language-based approach to protocol construction. In
Kamin [43], pages 1-15.

Reports on the design and implementation of
Promela++, a DSL for protocol construction and
validation. Promela+ + adds domain-specific constructs
to restricted C, and supports validation and optimization
on the domain-level.

ACM SIGPLAN Notices 29 V. 35(6) June 2000

[7] J. L. Bentley. Programming pearls: Little languages.
Communications of the ACM, 29(8):711-721, August
1986.

Demonstrates and advocates the use of "little lan-
guages". Takes PIC as an example, as well as a number
of little languages from which PIC input is generated
(SCATTER, CHEM), and little languages that were used
to implement PIC (LEX, YACC, Make). Contrasts three
approaches: interactive systems, subroutine libraries,
and little languages. Discusses DSL design principles.

[8] J. A. Bergstra, J. Heering, and P. Klint, editors. Alge-
braic Specification. ACM Press/Addison-Wesley, 1989.

Introduces the Syntax Definition Formalism SDF, the Al-
gebraic Specification Formalism ASF, and their combi-
nation, ASF+SDF, which can be used to describe the
syntax and semantics of (domain-specific) languages.
Contains several language definition case studies. See
also [12, 23].

[9] J.A. Bergstra and P. Klint. The discrete time TOOL-
Bos - - a software coordination architecture. Science of
Computer Programming, 31:205-229, 1998.

Describes how a language based on process algebra
is used in the TOOLBUS coordination architecture for
building heterogeneous, distributed software systems.
See also [10].

[10] E Bertrand and M. Augeraud. BDL: A specialized lan-
guage for per-object reactive control. In DSL-iEEE [28],
pages 347-362. An earlier version appeared in [64].

Many object-oriented languages contain only implicit
constraints on the order of application of the methods in
a class. This paper introduces the Behaviour Descrip-
tion Language (BDL) which uses a process-oriented no-
tation to describe this ordering. BDL is translated to C,
with ESTEREL as intermediary. The resulting C code is
linked with a C+ + program and acts as controller for
the execution of C++ classes. See also [91.

[11] D. Bonachea, K. Fisher, A. Rogers, and F. Smith. Hail-
cock: A language for processing very large-scale data.
In DSL-99 [27], pages 163-176.

Describes the language Hancock that is intended for
signature computations on the data collected from tele-
phone calls. A signature is a user profile with applica-
tions ranging from fraude detection to marketing. Typ-
ical issues are the large volume of data, the complex
traversal patterns of these data and the different lev-
els of precision for signatures. Hancock is translated to
C combined with several run-time libraries. The major
benefit of this DSL is a separation of concerns (traversal
patterns, efficiency, signature computations). As a result
programmers can concentrate on the signature compu-
tation, since the other concerns are taken care of by the

DSL compiler. The major reason to design a DSL (as op-
posed to using a library) were the traversal patterns that
cannot be captured in a library. The paper concludes
with a description of the design process used.

[12] M. van den Brand, A. van Deursen, E Klint, S. Klusener,
and E. van der Meulen. Industrial applications of
ASF+SDF. In M. Wirsing and M. Nivat, editors, Al-
gebraic Methodology and Software Technology (AMAST
'96), volume 1101 of Lecture Notes in Computer Sci-
ence, pages 9-18. Springer-Verlag, 1996.

Provides an overview of some industrial applications of
the language prototyping environment ASF+SDE The
RISLA case study, involving a language for describing
financial products, is discussed in considerable detail,
covering pure RISLA, modular RISLA, and RISQUEST,
a language for generating questionnaires used when
composing new products. From a modular RISLA prod-
uct description, COBOL code is g~erated for access-
ing a library of COBOL functions providing operations
on cash flows, balances, intervals, and the like. See
also [22, 241.

[13] D. Bruce. What makes a good domain-specific lan-
guage? APOSTLE, and its approach tO parallel discrete
event simulation. In Kamin [43], pages 17-35,

Discusses the design of a DSL for parallel discrete event
simulation. On the basis of this experience a number of
observations are made regarding DSL design principles,
Most notably, the use of a strong effect system is advo-
cated to do static checking on the domain level, and to
determine applicability of optimizations.

[14] L. Cardelli and R. Davies. Service combinators for web
computing. In DSL-IEEE [28], pages 309-316. An ear-
lier version appeared in [64].

Access to the resources of the World-V~de Web is usu-
ally obtained though manual browsers. Service combi-
nators are intended for writing programs that reproduce
human browsing behaviour, including reactions to slow
transmission rates and various kinds of failure. Based on
a concurrent programming model, the paper gives both
an informal and formal treatment of a DSL for Web com-
puting.

[15] S. Chandra,, B. Richards, and J. R. Larus. Teapot: A
domain-specific language for Writing cache coherence
protocols. In DSL-IEEE [28], pages 317-333, An earlier
version appeared in [64].

The problem of cache coherence occurs when local
replica of shared data are made in a distributed sys-
tem in order to improve its scalability and performance.
Writing the code to support coherence protocols is error-
prone. This paper describes experience with the lan-
guage Teapot for describing these protocols. Teapot pro-
grams can be translated to (1) C code that implements

ACM SIGPLAN Notices 30 V. 35(6) June 2000

the protocol, or (2) input for an automatic verifier Two
case studies and overall experience with this approach
are discussed.

[16] E.J. Chikofsky and J.H. Cross. Reverse engineering and
design recovery: A taxonomy. IEEE Software, 7(1): 13-
17, 1990.

Overview of reverse engineering techniques, which also
can be used to distill domain knowledge from legacy sys-
tem. See also [25, 70].

[17] J. C. Cleaveland. Building application generators. IEEE
Software, pages 25-33, July 1988.

Uses the term "application generators" to refer to DSL
compilers. Gives a compiler generator architecture di-
agram. Describes relationships between roles of cus-
tomers, domain engineers and system engineers. Lists
pros and cons of application generators. Describes
"Stage", an application-generator development tool.
Describes a .methodology for building an application
generator.

[18] J. Coplien, D. Hoffman, and D. Weiss. Commonality
and variability in software engineering. IEEE Software,
pages 37-45, November/December 1998.

A software family is a set of similar systems with possi-
bly many different variations. Scope, commonality, and
variability (SCV) analysis gives software engineers a
systematic way of thinking about and ident~ying the
product family they are creating. The paper describes the
Family-Oriented Abstraction, Specification, and Trans-
lation (FAST) approach, which has been used with im-
mediate payoff in over 25 domains at Lucent Technolo-
gies.

[19] R. E Crew. ASTLOG: A language for examining ab-
stract syntax trees. In Ramming [64], pages 229-242.

Introduces a Prolog-based query language for analyzing
abstract syntax trees of C/C+ + programs.

[20] K. Czarnecki and U. Eisenecker. Generative Program-
ming: Methods, Techniques and Applications. Addison-
Wesley, 1999. To appear.

Gives a comprehensive discussion of a range of pro-
gramming techniques that involve some sort of code gen-
eration step, such as aspect-oriented, subject-oriented,
and adaptive programming, composition filters, and
domain-specific languages. Chapter 3 of this book pro-
vides a survey of domain-engineering methods.

[21] J.-M. DeBaud and K. Schmid. A systematic approach to
derive the scope of software product lines. In 21st Inter-
national Conference on Software Engineering, ICSE-99,
pages 34--43. ACM, 1999.

Argues that economic motives should be used for stop-

ing software product lines, rather than more tradi-
tional domain engineering methods. The paper proposes
PULSE, which iteratively refines business objectives to-
wards more operational evaluation criteria.

[22] A. van Deursen. Domain-specific languages versus
object-oriented frameworks: A financial engineering
case study. In Smalltalk and Java in Industry and
Academia, STJA'97, pages 35-39. Ilmenau Technical
University, 1997.

Contrasts domain-specific languages with object-
oriented frameworks by comparing two projects in the
financial engineering domain: RISLA (DSL) and the
ET + + SwapsManager (OO framework). See also [12].

[23] A. van Deursen, J. Heering, and E Klint, editors. Lan-
guage Prototyping: An Algebraic Specification Ap-
proach, volume 5 of AMAST Series in Computing.
World Scientific Publishing Co., ! 996.

Describes the use of ASF+SDF as a meta-language for
the specification of syntax and semantics. After introduc-
ing ASF+SDE a number of language specification case
studies are presented, and various styles for writing lan-
guage specifications are illustrated. Moreover, different
techniques for generating tools from these are presented.
See also [8].

[24] A. van Deursen and E Klint. Little languages: Little
maintenance? Journal of Software Maintenance, 10:75-
92, 1998.

Domain-specific languages (DSLs) have the potential
to make software maintenance simpler: domain-experts
can directly use the DSL to make required routine mod-
ifications. At the negative side, however, more substan-
tial changes may become more difficult: such changes
may involve altering the domain-specific language. This
will require compiler technology knowledge, which not
every commercial enterprise has easily available. The
paper describes and uses the experience of the RISLA
language for interest rate products to discuss the role of
DSLs in software maintenance, the opportunities intro-
duced by using them, and techniques for controlling the
risks involved. See also [12].

[25] A. van Deursen, E Klint, and C. Verhoef. Research
issues in software renovation. In J.-E Finance, edi-
tor, Fundamental Approaches to Software Engineering,
FASE99, volume 1577 of Lecture Notes in Computer
Science, pages 1-23. Springer-Verlag, 1999.

Overview of parsing, transformation, and program un-
derstanding techniques that can be used when searching
for domain knowledge in legacy systems. See also [16,
70].

[26] T. B. Dinesh, M. Haveraaen, and J. Heering. An al-
gebraic programming style for numerical software and

ACM SIGPLAN Notices 31 V. 35(6) June 2000

its optimization. Technical Report SEN-R9844, CWI,
1998. ACM CoRR Preprint Server cs.SE/9903002
(March 1999). Submitted to Scientific Programming.

Discusses a domain-specific programming style for the
domain of partial differential equations, using an ex-
pression style directly obtained from the underlying al-
gebraic theory. The use of this style permits optimiza-
tions beyond the scope of current compiler optimiza-
tions.

[27] Proceedings of the second USENIX Conference on
Domain-Specific Languages. USENIX Association, Oc-
tober 3-5 1999.

[28] Special issue on domain-specific languages. IEEE
Transactions on Software Engineering, 25(3), May/June
1999.

[29] C. Elliott. An embedded modeling language approach
to interactive 3D and multimedia animation. In DSL-
IEEE [28], pages 291-308. An earlier version appeared
in [64].

Describes a multi-media extension for Haskell and dis-
cusses the merits of Haskell as basis for domain-specific
extensions.

[30] D. R. Engler. Interface compilation: Steps toward
compiling program interfaces as languages. In DSL-
IEEE [28], pages 387---400. An earlier version appeared
in [64].

Describes the extensible ANSI C compiler framework
MAGIK, which allows the dynamic incorporation of
user-defined compiler extensions. The extensions can
transform, optimize or inspect the generated interme-
diate representation. The approach gives safe access
to compiler internals and supports full optimization of
application-specific language extensions. Implemented
on top of lcc. See also [74].

[31] R. E. Faith, L. S. Nyland, and J. E Prins. Khepera: A
system for rapid implementation of domain specific lan-
guages. In Ramming [64], pages 243-55.

Presents Khepera, a tool kit for rapid implementa-
tion and long-term maintenance of DSLs via source-
to-source transformation separated into three phases:
parsing, AST transformation, and pretty-printing.

[32] M. E. Fayad and D. C. Schmidt. Object-oriented ap-
plication frameworks. Communications of the ACM,
40(10):32-38, 1997.

Introduction to a special issue on (domain-specific)
object-oriented frameworks, which are defined as
reusable, semi-complete applications that can be spe-
cialized to produce custom applications. Covers classifi-
cation, strengths and weaknesses, and future trends. See
also [661.

[33] M. Fermindez, D. Suciu, and I. Tatarinov. Declarative
specification of data-intensive web sites. In DSL-99
[27], pages 135-148.

Covers a query language to describe data-intensive
web sites. Three programming tasks are distinguished
to build such sites: accessing and integrating the
data available in the site, building the site's structure,
and generating the HTML representation of the site.
The solution proposed is a declarative query language
(StruQL) to define the site's content and structure, a tem-
plate language to define the HTML representation and
an extension of the query language with functions to de-
scribe dynamic behaviour and to promote reusability of
queries. Reengineering an existing AT&T web site using
this approach has resulted in less, more maintainable,
code with more functionality. Th~ inttial learning curve
of the new language is more than compensated for by the
advantages gained.

[34] M. Fromherz, V. Gupta, and V. Saraswat. cc - - A
generic framework for domain-specific languages. In
Kamin [43], pages 89-96.

Proposes cc, a family of languages for concurrent con-
straint programming, as a framework for DSL construc-
tion. Two approaches are explained by example: build-
ing a DSL on top of cc, and extending cc with domain-
specific constructs.

[35] M. Fuchs. Domain specific languages for ad hoc dis-
tributed applications. In Ramming [64], pages 27-36.

The current architecture of the Web is based on a
client~server model in which most of the computation is
done at the server side, while the client side is a browser
that only displays the results of server computations.
SGML/XML is used as meta-language for describing the
interactions between heterogeneous agents on the Web.
Essentially, a grammar is defined of all possible inter-
actions and this grammar steers the behaviour of each
agent. See [9]for a fully process-based approach to this
problem.

[36] R. Gray. Agent Tcl: A transportable agent system.
In J. Mayfield and T. Finnin, editors, Proceedings of
the CIKM Workshop on Intelligent Information Agents,
Fourth International Conference on Information and
Knowledge Management (CIKM'95), December 1995.

Describes an extension of Tcl [59]for mobile agents.

[37] S. Z. Guyer and C. Lin. An annotation language for
optimizing software libraries. In DSL-99 [27], pages
39-52.

A language is presented for annotating C libraries with
information that is exploited by an optimizing compiler.
Domain-specific information is conveyed by annotations
that in effect define (i) a dataflow analysis problem on

ACM SIGPLAN Notices 32 V. 35(6) June 2000

the various library procedures, and (ii) procedure spe-
cializations that are to be triggered by the outcome of
the analysis. The approach aims at giving libraries some
of the compiler support enjoyed by DSLs.

[38] R. M. Herndon and V. A. Berzins. The realizable bene-
fits of a language prototyping language. IEEE Transac-
tions on Software Engineering, SE- 14:803-809, 1988.

Discusses language prototyping tools (LPT) in general,
as well as the specific LPT Kodiyak. Lists application
areas of LPTs and benefits of applying them. Gives a
brief description of Kodiyak and reports on experience
with it.

[39] E. Horowitz, A. Kemper, and B. Narasimhan. A survey
of application generators. IEEE Software, pages 40-54,
January 1985.

Surveys a number of database query and update lan-
guages, as prime examples of application generators
(DSL compilers), and hypothesizes a 'generic' database
language. Discusses the possibilities of combining such
a language with a general purpose language. Outlines
AdaRel, an extension of Ada with relational database
programming constructs.

[40,] P. Hudak. Building domain-specific embedded lan-
guages. ACM Computing Surveys, 28(4es), December
1996.

Argues that a DSL is the "ultimate abstraction", captur-
ing precisely the semantics of the application domain,
but also that designing and implementing languages is
difficult and resists evolution. Proposes the notion of
embedded DSLs, which inherit the infrastructructure
from some other language, and discusses the importance.
of modular monadic interpreters, instrumentation, and
partial evaluation.

[41] J. Jennings and E. Beuscher. Verischemelog: Verilog
embedded in Scheme. In DSL-99 [27], pages 123-134.

Verilog, a digital hardware design language, is extended
with facilities for generating and manipulating hard-
ware descriptions by embedding it into the general pur-
pose language Scheme. The extended language features
early error detection and high customizability.

[42] R. E. Johnson and B. Foote. Designing reusable classes.
Journal of Object-Oriented Programming, 1(2):22-35,
1988.

Introduced the notion of object-oriented frameworks. A
framework is defined as a set of classes that embodies an
abstract design for solutions to a family of related prob-
lem& and supports reuse at a larger granularity than
classes. In a white-box framework, application-specific
behavior is obtained via method overriding or by adding
new methods to the framework's classes. In a black-box,

support for extensibility is provided by defining inter-
faces for components that can be plugged into the frame-
work via object composition, thus better hiding the im-
plementation details of the framework. See also [32, 66]

[43] S. Kamin, editor. DSL '97 - First ACM SIGPLAN
Workshop on Domain-Specific Languages, in Associa-
tion with POPL '97, Paris, France, January 1997. Uni-
versity of Illinois Computer Science Report.

[44] S. Kamin and D. Hyatt. A special-purpose language for
picture-drawing. In Ramming [64], pages 297-310.

Describes FPIC, a reconstruction of the original PIC
embedded in ML.

[45] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report CMU/SEI-
90-TR-21, Software, Engineering Institute, Carnegie
Mellon University, 1990.

FODA is a domain engineering approach emphasizing
feature analysis. A feature is defined as a prominent,
user-visible characteristic of a software system. FODA
aims at building up a feature model, consisting of a fea-
tures diagram (hierarchical decomposition of manda-
tory, alternative, or optional features), feature defini-
tions, composition rules for features, and a rationale for
features indicating the trade-offs. See also [20, 701

[46] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier,
C. Lopes, C. Maeda, and A. Mendhekar. Aspect ori-
ented programming. In Kamin [43], pages 75-88.

Presents a novel programming technique, called aspect-
oriented programming (AOP). This technique consists in
describing each aspect (e.g. basic functionality, com-
munication, coordination) of a system's behaviour in
a (little) language that allows it to be expressed in its
most natural form. An aspect weaver merges these sepa-
rate aspect descriptions into a single, efficient program.
An important benefit of AOP is that it allows high-level
domain-specific programming for performance-critical
domains. See also [201

[47] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook,
A. Kotov, J. Lewis, D. P. Oliva, T. Sheard, I. Smith,
and L. Walton. A software engineering experiment in
software component generation. In Proceedings of the
18th International Conference on Software Engineering
ICSE-18, pages 542-553. IEEE, 1996.

Reports the results of an experiment in which a template-
based approach and a DSL approach to software gener-
ation were compared. Several subjects were monitored
while performing a number of development and mainte-
nance tasks using alternatively template technology and
DSL technology. Flexibility, productivity, reliability, and

ACM SIGPLAN Notices 33 V. 35(6) June 2000

usability were measured. The DSL approach scored bet-
ter on all counts.

[48] N. Klarlund and M. I. Schwartzbach. A domain-specific [53]
language for regular sets of strings and trees. In DSL-
IEEE [28], pages 378-386. An earlier version appeared
in [64].

Describes design and implementation of FIDO, a lan-
guage to express large finite-state automata on large al-
phabets. Typical application is in verification and model
checking.

[49] C. W. Krueger. Software reuse. ACM Computing Sur-
veys, 24(2): 131-183, June 1992.

Categorizes, describes and compares existing ap-
proaches to software reuse, among which DSLs (or
application generators). Compared to the other ap-
proaches DSLs reduce the intellectual effort required to
obtain an executable system from its specification. Lim- [54]
ited availability and difficulty of building DSLs of opti-
mal specificity~generality are listed as disadvantages of
DSLs.

[50] D. A. Ladd and J. C. Ramming. Two application lan-
guages in software production. In USENIX Very High [55]
Level Languages Symposium Proceedings, pages 169-
178, October 1994.

Describes how PRLS, an application-oriented, declara-
tive language used to maintain the integrity of databases
in the AT&T 5ESS telecommunications switch, evolved
from an earlier, imperative domain-specific language,
PRL, which in turn replaced a combination of English
and C. The constraint descriptions expressed in PRL5
can be used in more than one way, whereas a program to [56]
check constraints is useful only for performing that par-
ticular computation. A key lesson is that domain-specific
languages shouM not be designed to describe computa-
tion, but to express useful facts from which one or more
computations can be derived.

[51] D. Leijen and E. Meijer. Domain specific embedded
compilers. In DSL-99 [27], pages 109-122.

Explains how a DSL (SQL is taken as example) can be
embedded in Haskell by (i) coding an abstract syntax of
the DSL as a Haskell datatype (ii) writing a code gen-
erator in Haskell that maps the abstract syntax to the
concrete syntax, and (iii) making Haskell call an exter-
nal server which compiles and executes the generated
DSL code.

[52] F. van der Linden, editor. Development and Evolution
of Software Architectures for Product Families, volume
1429 of Lecture Notes in Computer Science. Springer-
Verlag, 1998.

Proceedings of a workshop originating from the ESPRIT

ARES project, which investigates software architectures
for families of embedded systems.

R. R. Macala, L. D. Sutckey, and D. C. Gross. Man-
aging domain-specific product-line development. IEEE
Software, 13, May 1996.

Describes recommendations and lessons learned from
managing a reusability project at Boeing in the area of
real-time training systems Jbr flight crews. Product-line
development separates the software-development pro-
cess into two separate life cycles: domain engineer-
ing, which aims to create reusable assets, and applica-
tion engineering, which fields systems using those assets.
Lessons learned include that product-line development
demands careful strategic planning, a mature develop-
ment process, and the ability to overcome ' ~;ganizational
resistance.

N. Medvidovic and D. S. Rosenblum. Domains of con-
cern in software architectures and architecture descrip-
tion languages. In Ramming [64], pages 199-212.

Gives a categorization of DSLs for describing software
architectures.

V. Menon and K. Pingali. A case for source-level trans-
formations in MATLAB. In DSL-99 [27], pages 53-66.

Three kinds of source-to-source transformations for op-
timizing MATLAB programs are proposed and shown to
be effective. The transformations yield performance ben-
efits additional to those obtained by (optimizing) compi-
lation, and may be useful for other DSLs that are high-
level, untyped, and interpreted.

L. Nakatani and M. Jones. Jargons and infocentrism. In
Kamin [43], pages 59-74.

Describes and advocates the development of DSLs as
jargons: domain-specific extensions of a tiny com-
mon base language. According to a new programming
paradigm (infocentrism) the application semantics for
these jargons can be programmed by providing actions
for the constructs specific to the jargon only; the traver-
sal semantics is inherited from the base language. Be-
cause all jargons share the base syntax and semantics, it
is easy to combine and reuse their definitions as well as
their tools. The InfoWiz technology which supports the
development of jargons is discussed.

[57] L. H. Nakatani, M. A. Ardis, R. G. Olsen, and E M.
Pontrelli. Jargons for domain engineering. In DSL-99
[27], pages 15-24.

Discusses the use of jargons (see [561) in the domain of
configuration control.

[58] J. M. Neighbors. The Draco approach to constructing
software from reusable components. IEEE Transactions

ACM SIGPLAN Notices 34 V. 35(6) June 2000

on Software Engineering, SE-10(5):564-74, September
1984.

The Draco approach starts by capturing domain anal-
ysis information in a DSL. The objects and operations
of this DSL are refined into various DSLs of lower lev-
els of abstraction, and finally into executable languages.
These refinements capture design information (imple-
mentation decisions). The Draco system supports the
development and reuse of constellations of DSLs and
refinements. It offers tactics for refinement selection as
well as automatic consistency checking of the resulting
system specification.

[59] J. K. Ousterhout. Scripting: Higher level programming
for the 21st century. IEEE Computer, March 1998.

Discusses scripting languages, such as Perl, Tcl, and Vi-
sual Basic, which are designed for gluing applications,
assuming the existence of a set of components that just
need to be connected together. Emphasizes that scripting
languages should be typeless and interpreted.

[60] J. Peterson and G. Hager. Monadic robotics. In DSL-99
[27], pages 95-108.

Discusses the importance of monads in the implemen-
tation of tasks in Frob (see [611), which help to achieve
modularity and reusability.

[61] J. Peterson, P. Hudak, and C. EUiott. Lambda in motion:
Controlling robots with Haskell. In PADL'99, volume
1551 of LNCS, pages 91-105, 1999.

Describes two domain-specific extensions of Haskell:
Frob a language for robot control and Fran a language
for reactive animations.

[62] P. Pfahler and U. Kastens. Language design and imple-
mentation by selection. In Kamin [43], pages 97-108.

A language design system is presented which allows a
user to design a DSL by selecting language features from
menus. After selection, an implementation of the DSL
can be generated. The system relies on domain design-
ers to provide a definition of the design space, as well as
specification components for all possible language fea-
tures.

[63] C. Pu, A. Black, C. Cowan, J. Walpole, and C. Consel.
Microlanguages for operating system specialization. In
Kamin [43], pages 49-57.

Discusses the use of DSLs in the domain of operating
system specialization. A high-level DSL is envisioned to
describe application behavior, which will be compiled
into a low-level DSL describing customized operating
system behavior

[64] J. C. Ramming, editor. Proceedings of the USENIX Con-
ference on Domain-Specific Languages, Berkeley, CA,
October 15-17 1997. USENIX Association.

[65] J. Reichwein, G. Rothermel, and M. Burnett. Slicing
spreadsheets: An integrated methodology for spread-
sheet testing and debugging. In DSL-99 [27], pages 25-
38.

Building on techniques for dynamic program slicing and
program dicing, a fault localization technique for incre-
mental spreadsheet debugging is developed. Using vari-
ous kinds of visual clues, the technique is integrated into
a spreadsheet environment.

[66] D. Roberts and R. Johnson. Evolve frameworks into
domain-specific languages. In 3rd International Confer-
ence on Pattern Languages, Allerton Park, Ill., Septem-
ber 1996.

Discusses 9 stages of framework development. An
object-oriented framework evolves gradually, starting
from three examples, moving via a white-box framework,
component library, pluggable ~]Jjects, to a black-box
framework. The final, and most mature, stage is when
the domain knowledge is sufficiently stable to merit the
development of a domain-specific language or visual
builder to access the framework.

[67] EH. Salus, editor. Little Languages, volume III of Hand-
book of Programming Languages. MacMillan, 1998.

This book contains a collection of mostly reprints and
only a few original papers describing DSLs. It con-
tains, for instance, papers like Little Languages (Bent-
ley [7]), A system for typesettting mathematics: EQN
(Kernighan and Cherry), and an overview of the Doe-
umenter' s Workbench (Akkerhuis) covering TROFF and
several DSLs for describing graphics, chemical formu-
lae, and the like. Other chapters cover AWK, SED, SQL,
TCI_UfK, PERL and PYTHON. The most original papers
are a survey of DSLs and domain-specific extension lan-
guages by Hudak and an elaborate description of Little
Music Languages by Langston.

[68] T. Sheard, Z. Benaissa, and E. Pasalic. DSL implemen-
tation using staging and monads. In DSL-99 [27], pages
81-94.

Discusses how the use of staging (separating compile-
time computations from run time ones) and monads (for
capturing effects and actions of the target code) lead to a
simple, reusable, controlable, and correct DSL method-
ology.

[69] M. Simos. Organization domain modeling (ODM):
Formalizing the core domain modeling life cycle. In
M. Samadzeh and M. Zand, editors, Proceedings of the
Symposium on Software Reusability SSR'95, pages 196-
205, August 1995. ACM Software Engineering Notes.

Summarizes the key elements of the ODM domain en-
gineering methodology. The full description is given in
[701.

ACM SIGPLAN Notices 35 V. 35(6) June 2000

[70]

[71]

M. Simos, D. Creps, C. Klinger, L. Levine, and
D. Allemang. Organization domain modelling (ODM)
guidebook version 2.0. Technical Report STARS-VC-
A025/001/00, Synquiry Technologies, Inc, 1996.

A comprehensive description of the ODM approach to
domain engineering. The three main ODM steps are:
(1) plan the domain, selecting objectives, stakehold-
ers, and a set of boundary decisions to scope the do-
main. (2) model the domain, building a domain lexi-
con, and describing the concepts and features, as well
as their commonalities and variabilities. (3) (optional)
engineer an asset base of components by combining fea-
tures and customers in novel ways. ODM emphasizes ex-
isting (legacy) software systems as valuable sources of
domain knowledge. It takes the "domain as a set of sys-
tems" point of view, rather than the "domain as the real
world" viewpoint.

E. G. Sirer and B. N. Bershad. Using production gram-
mars in software testing. In DSL-99 [27], pages 1-14.

Describes lava, a DSL for specifying production gram-
mars. These are used to generate sentences over a lan-
guage, for the purpose of testing tools implementing
that language. Experience with lava demonstrates that
a special purpose language for production grammars
can bring high coverage, simplicity, manageability, and
structure to the testing effort. Observe that the produc-
tion grammar approach can also be used to for testing
DSL-tools.

[721 Y. Smaragdakis and D. Batory. DiSTiL: A transforma-
tion library for data structures. In Ramming [64], pages
257-270.

Describes DiSTiL, a DSL for describing container data
structures in C, implemented on top of MicroSoft's In-
tentional Programming (IP) system.

[73] D. E. Stevenson and M. M. Fleck. Programming lan-
guage support for digitized images or, the monsters in
the closet. In Ramming [64], pages 271-284.

Describes the image manipulation language Envision,
implemented as an extension of Scheme.

[74] J. M. Stichnoth and T. Gross. Code composition as an
implementation language for compilers. In Ramming
[64], pages 119-132.

Describes the ANSI C compiler framework Catacomb
that supports code composition. By providing user-
defined code templates (describing new language con-
structs such as parallel array assignment) and a fixed
code composition mechanism inside the compiler, new
constructs can be implemented in the same way as stan-
dard ones. See also [30].

[75] R. N. Taylor, W. Tracz, and L. Coglianese. Software de-
velopment using domain-specific software architectures.
ACM SIGSOFT Software Engineering Notes, 20(5):27-
37, 1995.

Provides the material used for a course on DSSA,
Domain-Specific Software Architectures, which aims at
the reduction in time and cost of producing specific ap-
plication systems within a supported domain. The pa-
per covers key examples, architecture representation for-
malisms, domain engineering, and the DSSA process.
See also [20, 70]

[76] S. A. Thibault, R. Marlet, and C. Consel. Domain-
specific languages: From design to implementation ap-
plication to video device drivers generation. In DSL-
IEEE [28], pages 363-377. An earlier version appeared
in [64].

A video card stores and displays.images on a computer
display. Each card is programmed by similar, but highly
vendor-specific, instructions. The authors exploit this
similarity by designing a DSL for specifying drivers for
video cards in the context of the XFree86 implementa-
tion of X windows. This Graphic Adaptor Language is
implemented in two stages: a C library provides a low
level abstract machine that is used by an interpreter for
the DSL. The Tempo partial evaluator for C is used to
eliminate the overhead of interpretation and of the gen-
erality of the abstract machine. Includes a discussion of
the merits of the DSL approach in this domain.

[77] D. C. Wang, A. W. Appel, J. L. Korn, and C. S. Serra.
The Zephyr abstract syntax description language. In
Ramming [64], pages 213-28.

Presents the Abstract Syntax Description Language
(ASDL). Reports the implementation of a tool that con-
verts ASDL descriptions into C, C++, Java, or ML code.
The generated code defines data-structures correspond-
ing to this abstract syntax as well as functions for read-
ing and writing abstract terms to a standard flattened
representation. ASDL has been used to respec~fy the
compiler intermediate format SUIE

[78] J. Withey. Investment analysis of software assets for
product lines. Technical Report CMU/SEI-96-TR-010,
Software Engineering Institute, 1996.

Presents a model for analyzing the expected benefits
from investing in domain-specific software product lines.
One of the key concepts is economy of scope, which is
a condition where fewer inputs (such as effort and time)
are needed to produce a greater variety of outputs. By
contrast, economy of scale is achieved where fewer in-
puts are needed to produce greater quantities of a single
output.

ACM SIGPLAN Notices 36 V. 35(6) June 2000

