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* my isn’t there more 

progress toward building systems 

f+om existing parts? One ansueT 

is that the assumptions of the 

parts about their intended 

environment are implicit and 

either don’t match the actual 

environment oy conflict with 

those of other parts. The authors 

explore these problems in the 

context of their own experience 

with a compositional approach. 
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F uture breakthroughs in soft- 
ware productivity may well depend on 
the software community’s ability to 
combine existing pieces of software to 
produce new applications. The current 
build-from-scratch techniques that 
dominate most software production 
must eventually give way to techniques 
that emphasize construction from 
reusable building blocks. If not, soft- 
ware designers may hit a production 
ceiling in generating large, high-quali- 
ty software applications. 

The last decade has seen increased 
support for compositional approaches 
to software. There is considerable 
research and development in reuse; 
industry standards like CORBA have 
been created for component interac- 
tion; and many domain-specific archi- 

tectures, toolkits, application genera- 
tors, and other related products that 
support reuse and open systems have 
been developed. 

Yet the systematic construction of 
large-scale software applications from 
existing parts remains an elusive goal. 
Why? Some of the blame can rightful- 
ly be placed on the lack of pieces to 
build on or the inability to locate the 
desired pieces when they do exist. 

But even when the components are 
in hand, significant problems often 
remain because the chosen parts do not 
fit well together. In many cases these 
mismatches may be caused by low- 
level problems of interoperability, such 
as incompatibilities in programming 
languages, operating platforms, or 
database schemas. These are hard 



problems to overcome, but recent 
research has been making good 
progress in addressing many of them. 

In this article, we describe a differ- 
ent, and in many ways more pervasive, 
class of problem, which we term archi- 
tectural mismatch. Architectural mis- 
match stems from mismatched 
assumptions a reusable part makes 
about the structure of the system it is 
to be part of. These assumptions often 
conflict with the assumptions of other 
parts and are almost always implicit, 
making them extremely difficult to 
analyze before building the system. 

To illustrate how the perspective of 
architectural mismatch can clarify our 
understanding of component integra- 
tion problems, we describe our experi- 
ence of building a family of software 

design environments from existing 
parts. On the basis of our experience, 
we show how an analysis of architec- 
tural mismatch exposes some funda- 
mental, thorny problems for software 
composition and suggests some possi- 
ble research avenues needed to solve 
them. 

I’ 

AESOP SYSTEM 

For the last five years, we have been 
carrying out research in the ABLE 
(Architecture-Based Languages anC 
Environments) Project at Carnegie 
Mellon University, which is aimed al 
developing foundations for an engi- 
neering discipline for software archi- 
tecture. Part of this research is dedicat- 
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database. 

ed to finding ways to build tools and 
environments that will support archi- 
tectural design and analysis. The box 
on pp. 20-21 describes the motivation 
for our work. 

The Aesop system was envisioned as 
the project’s implementation platform 
for experimenting with architectural 
development environments.’ It was to 
be a kind of environment generator 
that, when given a description of a set 
of architectural styles, would produce 
an environment tailored to the devel- 
opment of systems in those styles. The 
project team completed the first Aesop 
prototype in August 1993 and has 
recently built a second prototype. 

Aesop provides a toolkit for con- 
structing open, architectural design 
environments that support architectur- 
al styles. The basic idea is that Aesop 
makes it easy to define new styles and 
then use them to create architectural 
designs. Thus, each Aesop environ- 
ment is configured around a set of 
styles that guide the designer in pro- 
ducing architectural designs. 

Figure 1 shows the Aesop system 
and the structure of the environments 
it generates. To produce an environ- 
ment, Aesop combines a set of style 
definitions with some shared infra- 
structure. The shared infrastructure is 
incorporated into each environment as 
a set of basic support services for archi- 
tectural design. The elements of a style 
definition are a description of 

+ an architectural design vocabu- 
lary (as a set of object types), 

+ visualizations of design elements 
suitable for manipulation by a graphi- 
cal editor, and 

+ a set of architectural analysis 
tools to be integrated into the environ- 
ment. 

For each design environment, the 
set of basic support functions provided 
by the shared infrastructure includes a 
design database for storing and retriev- 
ing designs; a graphical user interface 
for modifying and creating new 
designs; a tool-integration framework 
that makes it easy to add new tools 
(such as compilers, architectural analy- 
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sis tools, and so on) to the environ- 
ment; and a repository mechanism for 
reusing fragments and patterns from 
previous designs. 

Every Aesop environment has the 
same structure: As Figure 1 shows, 
each is an open collection of tools that 
access an architectural-design database. 
The database stores architectural 
designs and provides tools with a high- 
level, object-oriented interface to 
architectural designs. The database 
also manages concurrent access to 
shared data and enforces the architec- 
tural design constraints specified by 
the architectural styles. 

The tools run as separate processes 
and access the database through a 
remote-procedure-call mechanism that 
lets them invoke methods on objects in 
the database. (The tools may also 
access databases and file systems out- 
side the Aesop environment, but such 
access is not relevant here and so is not 
shown.) Additionally, the environment 
includes a tool-integration mechanism 
based on event broadcast.* With this 
mechanism, tools can register to be 
notified about changes to database 
objects and announce significant 
events to other tools. Typical tools 
include a graphical editor for creating 
and browsing architectural designs as 
well as style-specific tools for carrying 
out architectural analyses, such as 
checking for architectural consistency, 
generating code, and interacting with 
component repositories. 

WISHFUL THINKING 

We faced two important challenges 
in building Aesop: 

+ Designing the notations and 
mechanisms to support style defini- 
tion. 

+ Creating the infrastructure for 
the environment-support functions, 
such as the design manager and tool- 
integration framework. 

In this article we focus on the sec- 
ond challenge. 

Viewed abstractly, the infrastruc- 

ture required by Aesop environments 
is hardly novel. Indeed, it is now com- 
monplace to construct environments 
in this fashion, as open, loosely inte- 
grated collections of tools that access 
shared data. Moreover, graphical edi- 
tors are common components of 
drawing packages, . _ 
computer-aided soft- 
ware-engineering 
tools, and other user 
interfaces. We were 
therefore optimistic 
that we could obtain 
most of the infrastruc- 
ture needed for Aesop 
by building on existing 
software. Specifically 

which provides event-based tool 
integration.5 

+ Mach RPC Interface Generator 
(or MIG), an RPC stub generator, 
developed at the Carnegie Mellon 
University, that was well-suited to our 
host operating system.6 

All we had to do was put 
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four standard pieces: m  ARCHITECTURE. take six months and one 

I 
person-year. 

+ an object-orient- 
ed database, 

+ a toolkit for constructing graphi- 
cal user interfaces, 

+ an event-based tool-integration 
mechanism, and 

4 an RPC mechanism. 
We had numerous candidates for 

each piece. In making our selections 
we picked systems that seemed to have 
promise for working well together and 
within our development environment. 
In particular, we wanted to be sure that 
we could process the systems using the 
same compilers, that each piece had 
been used successfully in several devel- 
opment projects, and that each piece 
was compatible with the operating sys- 
tem (in this case, Mach) and machine 
platforms (in this case, Sun machines) 
on which we were running. 

Our choices for the four subsystems 
were 

+ OBST, a public-domain object- 
oriented database. 

+ Interviews, a toolkit for con- 
structing graphical user interfaces,3 
developed at Stanford University, 
which we used with Unidraw, a 
reusable framework for creating draw- 
ing editors that was also produced by 
the Interviews developers.4 

+ SoftBench, an event-broadcast 
mechanism from Hewlett-Packard, 

HARSH REALITY 

Two years and nearly five person- 
years later, we managed to get the 
pieces working together in our first 
Aesop prototype. But even then, the 
system was huge (even though we had 
contributed only a small portion of our 
own code to the system), the perfor- 
mance was sluggish, and many parts of 
the system were difficult to maintain 
without detailed, low-level under- 
standing of the implementations. 

Integration problems. We encountered 
six main difficulties in integrating the 
four software subsystems: 

+ Excessive code. The binary code of 
our user interface alone was more than 
3 Mbytes after stripping. The binary 
code of our database server was 2.3 
Mbytes after stripping. Even small 
tools (of, say, 20 lines of code) interact- 
ing with our system were more than 
600,000 lines after stripping! In an 
operating system without shared 
libraries, running the central compo- 
nents plus the supporting tools (such as 
external structure editors, specification 
checkers, and compilers) overwhelmed 
the resources of a midsize workstation. 

+ Poor performance. The system 
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operated much more slowly than we 
wished. Some of the problems 
occurred because of overhead from 
tool-to-database communication. For 
example, saving the state of a simple 
architectural diagram (containing, say, 
20 design objects) took several minutes 
when we first tried it out. Even with 
performance tuning, it still took many 
seconds to perform such an operation. 

The excessive code also contributed 
to the performance problem. Under 
the Andrew File System, which we 
were using, files are cached at the local 
workstation in total when they are 
opened. When tools are large, the 
start-up overhead is also large. For 
example, the start-up time of an Aesop 

environment with even a minimal tool 
configuration took approximately three 
minutes. 

+ Need to mod& external packages. 
Even though the reusable packages 
seemed to run “out of the box” in our 
initial tests, we discovered that once we 
combined them in a complete system 
they needed major modifications to 
work together at all. For example, we 
had to significantly modify the 
SoftBench client-event loop (a critical 
piece of the functionality) for it to 
work with the Interviews event mech- 
anism. We also had to reverse-engi- 
neer the memory-allocation routines 
for OBST to communicate object han- 
dles to external tools. 

+ Need to reinvent existingfivzctions. 
In some cases, modifying the packages 
was not enough. We also had to aug- 
ment the packages with different ver- 
sions of the functions they already sup- 
plied. For example, we were forced to 
bypass Interviews’ support for hierar- 
chical data structures because it did not 
allow direct, external access to hierar- 
chically nested subvisualizations. 
Similarly, we ended up building our 
own separate transaction mechanism 
that acted as a server on top of a ver- 
sion of the OBST database software, 
even though the original version sup- 
ported transactions. We did this so 
that we could share transactions across 
multiple address spaces, a capability 

SOFTWARE ARCHITECTURE 

.I critical aspect of any complex 
software system is its architecture. 
There is currently no single, univer- 
sally accepted definition of software 
architecture, but typically a system’s 
architectural design is concerned with 
describing its decomposition into com- 
putational elements and their interac- 
tions. Frequently these descriptions are 
presented as informal box and line dia- 
grams depicting the gross organiza- 
tional structure of a system, and they 
are often described using idiomatic 
characterizations such as client-server 
organization, layered system, or black- 
board architecture. 

Design tasks at this level include 
organizing the system as a composition 
of components; developing global con- 
trol structures; selecting protocols for 
communication, synchronization, and 
data access; assigning functionality to 
design elements; physically distributing 
the components; scaling the system and 
estimating performance; defining the 
expected evolutionary paths; and 
selecting among design alternatives. 

Moliucltioa. Architectural design is 
important for at least two reasons. 
First, an architectural description 
makes a complex system intellectually 

tmctable by characterizing it at a high 
level of abstraction. In particular, 
architectural design exposes top-level 
design decisions and lets the designer 
reason about how to satisfy system 
requirements in assigning Functionalin 
to design elements. For example, if 
data throughput is a key issue, an 
appropriate architectural design would 
let the designer make systemwide esti- 
mates that are based on the values of 
the throughputs for the individual 
components. 

Second, architectural design lets 
designers exploit recurring organiza- 
tional patterns. Such patterns - or 
architectural styles - ease the design 
process by providing routine solutions 
for certain classes of problems, by sup- 
porting the reuse of underlving imple- 
mentations, and by permitting special- 
ized analyses. Consider, for example, 
an architectural design that uses a pipe- 
and-filter style. When mapped to a 
Unix implementation, the system can 
take advantage of the rich collection of 
existing filters and the operating sys- 
tem support for pipe communication. 
Another example is the traditional 
decomposition of a compiler together 
with supporting development tools, 
which has made it possible for under- 

graduates to build a nontrivial system 
in a semester conrse. 

Hot research areas. \\hile at present, 
architectural-design practice is largely 
ad hoc, the topic is receiving increasing 
attention from researchers and practi- 
tioners. Particularly ,rctive areas are 

l .-tl.c.hire‘.tcf,i71 dest-ripion. Re- 
searchers have proposed several new 
latquages for architectural descrip- 
tion.‘,’ Among their novel features are 
the ability to characterize architectural 
glue (or connectors) as first-class ab- 
stractions, the ability to describe pat- 
terns of structure and interaction, and 
the introduction of new forms of sys- 
tem analysis. 

l Fwm11 uutlerpillnlngs. Several 
researchers are attempting to provide a 
sound semantic basis for architectural 
description and ‘rnnl!sis. Alost efforts 
have adapted existing formalisms to the 
problems of software architecture. 
Representative formal models include 
process algebras,’ partially ordered 
sets,’ the Chemical Abstract ,Machine,’ 
and Z.3 

o Design grlihce. A key issue for 
architectural design is the ability to 
codify and disseminate expertise. 
Ideally, there would be a handbook of 

! 
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the original version did not permit. 
+ Unnecessarily complicated tools. 

Many of the architectural tools we 
wanted to develop on top of the infra- 
structure were logically simple sequen- 
tial programs. However, in many cases 
it was difficult to build them as such 
because the standard interface to their 
environment required them to handle 
multiple, independent threads of com- 
putation simultaneously. 

+ Error-prone construction process. As 
we built the system, modifications 
became increasingly costly. The time 
to recompile a new version of the sys- 
tem became quite long and seemingly 
simple modifications (such as the 
introduction of a new procedure call) 

software architecture. Among the more 
recent developments in this area are 
initial steps toward a description of 
architectural styles’ and catalogs of 
object-oriented design patterns.j Other 
steps are embodied in recent prototype 
tools for architectural guidance. One of 
these is our Aesop system, which helps 
designers conform to stylistic rules. 
Another is Tom Lane’s design assistant 
for user interfaces.” 

+ Dovmin-specijc m-cbitectme. Several 
development projects have realized sig- 
nificant improvements by tailoring 
architectures to an application domain 
or a product family.’ Typically, these 
projects have developed notations and 
tools that allow specialists in the appli- 
cation domain (as opposed to the soft- 
ware domain) to develop components 
and systems from high-level descrip- 
tions of the desired system behavior. 

e Architecture in context. Some 
researchers have begun to examine the 
role of software architecture in the 
broader engineering context of soft- 
ware development processes for archi- 
tecture, the relationship between archi- 
tecture and requirements specification, 
and the use of architectures in software 
acquisition.8-9 

+ Role of tools and environments. As 

would break the automated build rou- anyone who has tried to compose simi- 
tines. The recompilation time was due lar kinds of software, and not everyone 
in part to the code size. But more sig- can be a poor system builder. 
nificantly, it was also because of inter- Therefore, the root causes must lie at a 
locking code dependencies that deeper systemic level. 
required minor changes to propagate 
(in-the form of required recom$la- ~ 
tions) throughout most of the system. UNDERSTANDING 

ARCHITECTURAL M ISMATCH 
Underlying cause. The creators of the 

reusable subsystems we imported were 
neither lazy, stupid, nor malicious. 
Nor were we using the pieces in ways 
inappropriate to their advertised scope 
of application. So what went wrong? 
One possibility is simply that we were 
poor systems builders, but we suspect 
our problems are not unfamiliar to 

Indeed, when we began to analyze 
our problems through an architectural 
lens, we realized that we could 
attribute virtually all our problems to 
what we now call architectural mis- 
match, specifically to conflicting 
assumptions among the parts. 

To understand the nature of archi- 

architectural design emerges as a disci- 
pline within softvvare engineering, it 
will hecome increasingly important to 
support architectural description and 
analysis with tools and environments. 
Indeed, we are already seeing a protif- 
eration of environments oriented 
around specific architectural styles. 
These environments typically provide 
tools to support particular architectural 
design paradigms and their associated 
development methods. Esamples 
include architectures based on data- 
flow, object-oriented design, black- 
board shells, and control systems. 

L~nfortunately, each such environ- 
ment is built as an independent, hand- 
crafted effort. Although development 
efforts may exploit emerging software 
environment infrastructures (including 
persistent object bases, tool-integration 
frameworks, and user-interface toolk- 
its), the architectural aspects are typi- 
cally redesigned and reimplemented 
from scratch for each new style. The 
cost of such efforts can be quite high. 
Moreover, once built, each environ- 
ment typically stands in isolation, sup- 
porting a single architectural style tai- 
lored to a particular product domain. 
The Aesop system illustrates one 
approach to solving this problem. 
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tectural mismatch, it is helpful to view 
the system as a configuration of com- 
ponents and connectors.‘!* The compo- 
nent~ are the primary computational 
and storage entities of the system: 
tools, databases, filters, servers, and so 
on. The connectof’s determine the inter- 
actions between the 
components: client- 
server protocols, pipes, 
RPC links, and so on. 
These abstractions are 
typically expressed 
informally as box and 
line drawings, although 
formal notations for 
architectural descrip- 
tion have begun to 
emerge, as the box on 
pp. 20-2 1 describes. 

In terms of compo- 
nents and connectors, 
we identified four main 

ONE OF OUR MOST 
SERIOUS PROBLEMS 
WAS DUE TO THE 
ASSUMPTIONS 
MADE ABOUT WHAT 
SOFTWARE PART 
HELD THE MAIN 
THREAD OF CONTROL. 

ing a schema; an event-broadcast 
mechanism is instantiated, in part, by 
providing a set of events and registra- 
tions. In such cases the building blocks 
frequently make assumptions about the 
order in which pieces are instantiated 
and combined in a system. 

categories of assumptions that can con- 
tribute to architectural mismatch. 
These categories form a taxonomy for 
understanding how conflicting 
assumptions arise. 

+ Nature of components. This catego- 
ry includes assumptions about the sub- 
strate on which the component is built 
(infrastructure), about which compo- 
nents will control the computation 
sequencing (control model) and about 
the way the environment will manipu- 
late data managed by a component 
(data model). 

+ Nature of the connectors. This cate- 
gory contains assumptions about the 
patterns of interaction characterized by 
a connector (protocols) and about the 
kind of data communicated (data 
model). 

+ Global architectural stmccture. This 
category includes assumptions about 
the topology of the system communi- 
cations and about the presence or 
absence of particular components and 
connectors. 

l Constrmction process. In many cases 
the components and connectors are 
produced by instantiating a generic 
building block. For example, a data- 
base is instantiated, in part, by provid- 

CONFLICTING 
ASSUMPTIONS 

Using the definitions 
just given for compo- 
nents and connectors, 
the main components of 
an Aesop environment 
are the collection of 
tools and the architec- 
tural-design database 
(which consists primarily 
of a persistent object 
base). The main connec- 

tors are the communication links of 
the RPC and event-broadcast mecha- 
nism. The parts that we attempted to 
import provide an implementation 
basis for two components - the data- 
base (via OBST) and the graphical user 
interface (via Interviews) - and two 
connectors - RPC (via MIG) and 
event broadcast (via SoftBench). 

Nature of components. Within this 
assumption category are three main 
subcategories: infrastructure, control 
model, and data model. 

hfras~ructure. One kind of assumption 
packages make about components is 
the nature of the underlying support 
they need to perform their operations. 
This support takes the form of addi- 
tional infrastructure that the package 
either provides or expects to use. In 
our case, each package assumed it had 
to provide considerable infrastructure, 
much of which we did not need. The 
unwanted infrastructure was part of 
why we had excessive code. 

For example, OBST provided an 
extensive library of standard object 
classes to make general-purpose pro- 
gramming easier. However, we needed 

only a few of these classes because we 
have a constrained, special-purpose 
data model.’ 

Additionally, some packages made 
assumptions about the kind of compo- 
nents that would exist in the final sys- 
tem, and therefore used infrastructure 
that did not match our needs. For 
example, the SoftBench Broadcast 
Message Server expected all the com- 
ponents to have a GUI and therefore 
used the X library to provide commu- 
nication primitives. This meant that 
even tools that did not have their own 
user interface (such as compilers or 
design-manipulation utilities) had to 
include the X library in their exe- 
cutable code. 

Controlmodel. One of our most serious 
problems was due to the assumptions 
made about what part of the software 
held the main thread of control. Three 
of the packages, SoftBench, 
Interviews, and MIG, use an event 
loop to deal with communication 
events. The event loop encapsulates 
the details of the communication sub- 
strate, which lets the developer struc- 
ture a component’s interactions with 
its environment around a set of call- 
back modules. 

Unfortunately, each package uses a 
different event loop. SoftBench bases 
its main thread of control on the X 
Intrinsics package. Interviews pro- 
vides its own, object-based abstraction 
of an event loop, implemented direct- 
ly in terms of Xlib routines. MIG has 
a handcrafted loop for the server to 
wait for Mach messages. Each of these 
control loops is incompatible with the 
others. 

Because the event loops were oper- 
ating in the same process, we could not 
use simple event gateways to bridge 
different event-control regimes. This 
meant that we had to reverse-engineer 
the Interviews event loop and modify 
it to poll for SoftBench events before 
we could have the user interface 
respond to events. In the time we had 
available for the project, we were 
unable to modify the MIG control 
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loop so that the server could receive 
events, although we had originally seen 
this as an important way to provide 
modular control over the design data. 

Duto mode/. The packages also assume 
certain things about the nature of the 
data they will be manipulating. For 
example, Unidraw provides a hierar- 
chical model for its visualization 
objects. One object can be part of 
another object, and any manipulation 
of the parent object (such as changing 
its position on the screen) results in a 
corresponding change in the child 
object. The critical assumption of 
Unidraw, however, is that all manipu- 
lations will be of top-level objects. In 
other words, the user could not change 
a child object except to have the parent 
object manipulate it. This was not 
acceptable. Although the data we 
wanted to present and manipulate was 
strongly hierarchical, we wanted the 
user to have direct control over both 
parent and child objects. Thus, we had 
two alternatives: modify Unidraw to 
support the direct manipulation of 
children, or create a flat Unidraw data 
structure and build our own, parallel 
hierarchy to support the correspon- 
dences we wanted. It turned out to be 
less costly to reimplement the hierar- 
chy from scratch. 

Nature of connectors. Within this 
assumption category are two subcate- 
gories: protocols and data model. 

Protocols. When we began the project, 
we expected to have two kinds of tool 
interactions. The first, a pure event 
broadcast, involves one tool informing 
others about the state of the world. For 
example, the database broadcasts that a 
particular data object has changed. 
The second interaction, a request/ 
reply pair, provides a simple means for 
multiple tools to cooperate in perfom- 
ing a complex manipulation. This con- 
nector follows the model of a proce- 
dure call in that the requesting tool 
cannot generally continue until the 
receiving tool completes its task. 

The SoftBench Broadcast Message 
Server provides both these kinds of 
interaction through different kinds of 
messages. The notzjj message handles 
the first kind of interaction. The 
change is announced and then forgot- 
ten by the announcing tool. The 
request and reply messages work togeth- 
er to handle the second kind of inter- 
action. 

Unfortunately, SoftBench attempts 
to handle both kinds of interaction 
uniformly. To receive any message, a 
tool registers a callback procedure for 
that message. When the message 
arrives, the SoftBench client library 
invokes the callback procedure. This 
callback technique is used for all three 
message types (notify, request, and 
reply). This means that when a tool 
makes a request, it does not simply 
make the request, wait for the reply, 
and then continue - as you would 
expect. Instead, it must divide its 
manipulation into two callback rou- 
tines, one to be done before the call 
and one to be done after receiving the 
reply. This breaks up the natural struc- 
ture of the tool and 
makes it difficult to 
understand. N A TRANSLATION 

tion overhead on every 
call to the database, 
which caused the most 

Moreover, if the 
server receives any 
other messages (such as 
a notify) before the 
reply message, it deliv- 
ers those to the tool 
and invokes its callback 
procedure before the 
tool can process the 
reply. This means, in 
effect, that if a tool 

I 
OVERHEAD ON significant performance 
EVERY CALLTO THE ~~;lenececk; i- CL- n-7” 11 L11L >yr 

_-- _ - ..- problem 

DATABA! jE CAUSED occurred even though 

THE BIGGE --ST 
we were working in C 
and C++ exclusively and 

nrnrnnrr A wr rtfu-uwvw~~u 
had compatible data 
models in all the compo- 

BOTTLENECK. nents we developed. 

Global architectural structure. 
wishes to delegate any part of its pro- As it turned out, OBST assumes that 
cessing, then it must be able to deal the communications in the system 
with multiple threads of control simul- form a star with the database at the 
taneously, one for each message that center. Specifically, OBST assumes 
might be delivered before a reply is that all the tools are completely inde- 
received. Thus, SoftBench’s handling pendent of each other. In other words, 
of the request/reply protocol forces it assumes that there is no direct inter- 
tools to handle concurrency even if it action between tools, and it views any 
would be simpler to construct and concurrency among tools as conflict, 
understand them as sequential pro- not cooperation. To protect against 
grams. For this reason, we ended up this “conflict,” OBST selects on a tool- 
using Mach RPC instead of SoftBench by-tool basis, a mechanism that blocks 

for the database interaction because the 
tool-database path is the most critical 
and heavily used path in our system. 

Duto model. Just as the packages make 
assumptions about the kind of data the 
components will manipulate, so also do 
they make assumptions about the data 
that will be communicated over the 
connectors. The two communication 
mechanisms we used, Mach RPC and 
SoftBench, make different assumptions 
about the data. Mach RPC supports 
integration between arbitrary C pro- 
grams, and so provides a C-based 
model: data passed through procedure 
calls is based on C constructs and 
arrays. SoftBench, on the other hand, 
assumes that most communication will 
be about files and the data contained in 
them, and so all data to be communi- 
cated by SoftBench is represented as 
ASCII strings. Because our tools 
manipulate primarily database and C++ 
object pointers, we had to develop 
translation routines and intermediate 
interfaces between the different mod- 
els. The result was that we had transla- 
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, Generic pockoge code 

Figure 2. Assumed structure of th 
leieendencies in the system-constr-hctior 
wocess. Each layer in the figure yepre, 
‘ents part of the software ensembl, 
.&at must come together to instantiat( 
I generic package: infrastructure tha 
he package depends on; generic code 9 
-he package itself and code that spe 
ializes the package to the particula: 
application. 

_- 
softBelKh MIG OBV 

--- 

Figure 3. Actual structure of th 
dependencies in the system-constructio 
process. The three subsystems ay 
instances of the stf%cture in Figure 2 
but rather than existing as indepen 
dent stacks, the three stacks hav 
interstack dependencies that afiect tE 
order in which the pieces must be corn 
piled and combined. 

transactions. Because the tools in E 
Aesop environment can coordinal 
their efforts by delegating part of the 
computation to other tools, this mod 
was totally unacceptable for our pu 
poses. Either cooperating tools wou 
deadlock by holding conflicting lock 
or conflicting tools would crea 

i nconsistencies when a tool attempted 
t :o release the database to a cooperating 
t ~001. To solve this problem, we built 
( )ur own transaction manager as a serv- 
L :r on top of OBST. 

Construction process. Several of our 
3ackages assume that there are three 
categories of code being combined in 
the system: 

+ the existing infrastructure (such 
as the X libraries and the package’s 
own runtime libraries), which would 
not change; 

+ the application code developed in 
a generic programming language, 
which would use the infrastructure but 
otherwise be self-contained; and 

+ the code developed using the 
notations specific to the reuse package, 
which would control and integrate the 
rest of the application. 

e 
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!- 

Figure 2 shows the assumed depen- 
dency structure for building an applica- 
tion from a package. This structure dic- 
tated that we should first build the 
generic parts of the application, then 
possibly specify them for the package’s 
build tool, and finally preprocess, com- 
pile, and link the package-specif ic sec- 
tions. Generally, a change to the inter- 
face of the generic section meant that we 
had to both respecify and rebuild the 
package-specif ic section. This made 
sense for each package in isolation, 
because we think of the packages as pro- 
viding glue code to integrate the parts of 
the generic application. For example, 
MIG assumes that the rest of the code is 
a flat collection of C procedures, and 
that its specification describes the signa- 
ture (name, parameters, and return type> 
of all these procedures. 

m 
te 
:ir 
el 

;i 
s, 
te 

In our case, however, more than 
one package was making these kinds ol 
assumptions. This meant that there 
were in fact four categories of code 
the three previous categories plus the 
code generated from the other pack- 
ages. The integration of the code gen- 
erated by different packages presentec 
the most difficulty in the process o 
building the system. We had to take 
the generated code and make it 1001 

1 ike whatever generic structure the 
C bther packages were expecting. 
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Figure 3 shows what the build- 
n-ocess dependencies actually were. 
There are three instances of the struc- 
ure in Figure 2 - one each for 
;oftBench, MIG, and OBST. However, 
1s the figure shows, there were depen- 
lencies between the instances, which 
lictated the order in which each must 
)e compiled and combined. To follow 
hese dependencies, we had to, for 
:xample, take the output of the OBST 
n-eprocessor and specify the resulting 
lrocedure calls in MIG’s notation, run 
LUG to generate a server version of the 
latabase, and then rebuild all the tools 
‘including rebuilding and linking the 
;oftBench wrapper code) to recognize 
he new client interface. 

The two sets of conflicting assump- 
:ions about the build process resulted 
n t ime-consuming and complicated 
:onstmction. 

IHE WAY FORWARD? 

We believe our experience is typical 
of any construction that involves 
assembling large-scale components 
into a new system. And although some 
problems encountered will be the 
result of issues such as language inter- 
operability, platform independence, 
and heterogeneous data manipulation, 
the really hard problems - the ones 
that result from architectural mismatch 
- do not go away once you solve these 
low-level problems. 

What can be done? We believe that 
two broad-based approaches are need- 
ed to improve the prospects for suc- 
cessful software composition. First, 
designers must change the way they 
build components that are intended to 
be part of a larger system. Second, the 
software community must provide new 
notations, mechanisms, and tools that 
will let designers accomplish this. 
There are at least four aspects of a 
long-term solution: 

+ Make architectural assumptions 
explicit. 
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* Construct large software pieces Use orthogonal subcomponents. Although 
using orthogonal subcomponents. most large reusable subsystems are 

+ Provide techniques for bridging themselves constructed out of smaller 
mismatches. subcomponents, it is extremely difficult 

+ Develop sources of architectural to separate the pieces or change the way 
design guidance. in which these subcomponents work 

We believe that each of these is ripe together. The software community has 
for further research and offer a brief known for some time that modules 
outline of possible directions. should hide certain design assumptions 

to increase their chance of reuse. 
Make assumptions explicit. One of the Unfortunately, the architectural design 

most significant problems is that the assumptions of most systems are spread 
architectural assumptions of a reusable throughout the constituent modules. 
component are never documented. Arsumptwns 

True, the current software-design cul- 
Ideally, designers would be able to 

tinker with the architectural assump- 
ture is one in which documentation is tions of a reused system by substituting infrastructure 

generally lacking, but the problem different modules for the ones already 
goes deeper. Software engineers have there. In reality, however, recombining Figure 4. Three-dimensional view of 
neither the proper vocabulary nor the such building blocks will require much component interaction. 
structure to help them express these more sophisticated processing than 
assumptions. For example, although link editing, for example, as illustrated 
good documentation of an abstract in work by Don Batory.’ nient interface to the rest of the sys- 
data type may list preconditions for tern, and implements its interface by 
calling its interface routines, there is Provide bridging techniques. Even with calls to the interface of the original 
no comparable convention or theory good documentation and appropriate architectural element. 
for documenting many of the architec- modularization, mismatches will In rapidly changing systems and 
tural assumptions we described earlier. inevitably occur. Software engineers environments with many software 

Moreover, an architectural view goes now use a number of techniques for components negotiated inter&es may be 
beyond the notion of a single compo- dealing with such mismatches. In appropriate. Components and connec- 
nent interface. One of the important implementing Aesop, we used several tors are built to handle a range of 
features of reusable infrastructure is of these techniques. interaction styles, and different ele- 
that it must live in a three-dimensional We tried modifying several compo- ments of the system decide dynamical- 
world. As illustrated in Figure 4, the nents and connnectors to alleviate mis- ly what sort of communication is most 
interface at the bottom documents matches. This technique, however, appropriate. Negotiated interfaces are 
assumptions about lower level infra- may require a large investment in already common in low-level interac- 
structure that the component must reverse-engineering and may be tions like modem protocols; we would 
interact with. An interface at the top impractical or even impossible for like to see them at the architectural 
concerns interactions with components legacy systems or programs, for which level as well. 
that use the reused component as their source code is often not available. These mismatch-bridging tech- 
infrastructure. Side interfaces describe Another technique is to install moye niques are not exhaustive, nor has the 
interactions with other components at versatile components and connectors, software community successfully stan- 
the same level of abstraction. Each of either to take over some of the tasks of dardized them. Over time, however, 
these interfaces can be mismatched in the original architectural elements, or software engineers can expect to see 
its assumptions about the control to art as mediatou between original ele- more detailed and comprehensive cat- 
model, data model, protocol, and so on. ments. Mediation can take place either alogs of standard techniques, eventual- 

Of course, documenting assump- via smart connectors (connectors that ly leading to tools that help implement 
tions will not make mismatches disap- can translate data and communication them. 
pear, but at least it will let designers in multiple protocols) or via mediator 
detect problems early on. Some initial components that take over some of the Develop sources of design guidance. 
steps toward this goal are emerging in computation. Developing good intuitions about what 
recent work on architecture descrip- A special but somewhat common kinds of architectural components 
tion languages and formal underpin- case of mediation involves putting a work well together is not easy. 
nings for software architecture, as the wrapper around a component or con- Designers now rely on trial and error, 
box on pp. 20-2 1 describes. nectar. The wrapper provides a conve- and it is many years before even skilled 
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designers acquire expertise at putting 
systems together from parts - and 
such expertise is typically confined to a 
specific application domain, such as 
management information systems or 
signal processing. The software com- 
munity must find ways to codify and 
disseminate principles and rules for 
software composition. 

As we note in the box on pp. 20-2 1, 
there is some progress in this area in 
the form of handbooks for the reuse of 
design patterns, the creation of archi- 
tectural design environments, and the 
development of design tools for certain 
application domains. 

T 
he root causes of the software com- 
munity’s inability to achieve wide- 

spread reuse are not going to be solved 
by low-level improvements in compil- 

ing and linking software modules. 
Rather, the problems are of a deeper, 
systemic nature. As we have tried to 
illustrate, viewing assumptions in 
architectural terms reveals possible 
ways to explicitly document archi- 
tectural assumptions and incorporate 
principled techniques for detecting and 
bridging architectural mismatches. 

This approach opens a rich set of 
research dimensions, four of which we 
have outlined. Within the ABLE pro- 
ject, we are investigating many of these. 
In particular, our most recent imple- 
mentation of Aesop supports the ability 
to document certain classes of architec- 
tural assumptions. We are currently 
developing tools that use these annota- 
tions to automatically check and repair 
several of the kinds of architectural mis- 
match that we have described here. + 
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