
© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

www.computer.org/software

Architectural Mismatch: Why Reuse Is So Hard

David Garlan, Robert Allen, and John Ockerbloom

Vol. 12, No. 6

November 1995

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

* my isn’t there more

progress toward building systems

f+om existing parts? One ansueT

is that the assumptions of the

parts about their intended

environment are implicit and

either don’t match the actual

environment oy conflict with

those of other parts. The authors

explore these problems in the

context of their own experience

with a compositional approach.

IEEE SOFTWARE

Architectura
Mismatch:
Why Reuse
Is So Hard
DAVID GARLAN, ROBERT ALLEN, and JOHN OCKERBLOOM

Carnegie Mellon University

F uture breakthroughs in soft-
ware productivity may well depend on
the software community’s ability to
combine existing pieces of software to
produce new applications. The current
build-from-scratch techniques that
dominate most software production
must eventually give way to techniques
that emphasize construction from
reusable building blocks. If not, soft-
ware designers may hit a production
ceiling in generating large, high-quali-
ty software applications.

The last decade has seen increased
support for compositional approaches
to software. There is considerable
research and development in reuse;
industry standards like CORBA have
been created for component interac-
tion; and many domain-specific archi-

tectures, toolkits, application genera-
tors, and other related products that
support reuse and open systems have
been developed.

Yet the systematic construction of
large-scale software applications from
existing parts remains an elusive goal.
Why? Some of the blame can rightful-
ly be placed on the lack of pieces to
build on or the inability to locate the
desired pieces when they do exist.

But even when the components are
in hand, significant problems often
remain because the chosen parts do not
fit well together. In many cases these
mismatches may be caused by low-
level problems of interoperability, such
as incompatibilities in programming
languages, operating platforms, or
database schemas. These are hard

problems to overcome, but recent
research has been making good
progress in addressing many of them.

In this article, we describe a differ-
ent, and in many ways more pervasive,
class of problem, which we term archi-
tectural mismatch. Architectural mis-
match stems from mismatched
assumptions a reusable part makes
about the structure of the system it is
to be part of. These assumptions often
conflict with the assumptions of other
parts and are almost always implicit,
making them extremely difficult to
analyze before building the system.

To illustrate how the perspective of
architectural mismatch can clarify our
understanding of component integra-
tion problems, we describe our experi-
ence of building a family of software

design environments from existing
parts. On the basis of our experience,
we show how an analysis of architec-
tural mismatch exposes some funda-
mental, thorny problems for software
composition and suggests some possi-
ble research avenues needed to solve
them.

I’

AESOP SYSTEM

For the last five years, we have been
carrying out research in the ABLE
(Architecture-Based Languages anC
Environments) Project at Carnegie
Mellon University, which is aimed al
developing foundations for an engi-
neering discipline for software archi-
tecture. Part of this research is dedicat-

I

’ I
t

Style dexriphs
*

i.-e +e . . . e 1 Shared infrastructure

\---. ..

Aesop

7 %
Custom design environments

Style descriptions

flements of 0
custom design
enviranmoot

Pigxre 1. ‘lbe Aesop environment-generatmg system. tizven a set of arcbztec-
tural-style descriptions, Aesop produces a custom design environment. All envi-
ronments have the shared infrastructure provided by Aesop, and they have tbr
same organization: a collection of tools, one of which is a graphical user interface.
a database that contains architectural designs; and remote-procedure-call ant
event-broadcast mechanisms for communication between the tools and the design;
database.

ed to finding ways to build tools and
environments that will support archi-
tectural design and analysis. The box
on pp. 20-21 describes the motivation
for our work.

The Aesop system was envisioned as
the project’s implementation platform
for experimenting with architectural
development environments.’ It was to
be a kind of environment generator
that, when given a description of a set
of architectural styles, would produce
an environment tailored to the devel-
opment of systems in those styles. The
project team completed the first Aesop
prototype in August 1993 and has
recently built a second prototype.

Aesop provides a toolkit for con-
structing open, architectural design
environments that support architectur-
al styles. The basic idea is that Aesop
makes it easy to define new styles and
then use them to create architectural
designs. Thus, each Aesop environ-
ment is configured around a set of
styles that guide the designer in pro-
ducing architectural designs.

Figure 1 shows the Aesop system
and the structure of the environments
it generates. To produce an environ-
ment, Aesop combines a set of style
definitions with some shared infra-
structure. The shared infrastructure is
incorporated into each environment as
a set of basic support services for archi-
tectural design. The elements of a style
definition are a description of

+ an architectural design vocabu-
lary (as a set of object types),

+ visualizations of design elements
suitable for manipulation by a graphi-
cal editor, and

+ a set of architectural analysis
tools to be integrated into the environ-
ment.

For each design environment, the
set of basic support functions provided
by the shared infrastructure includes a
design database for storing and retriev-
ing designs; a graphical user interface
for modifying and creating new
designs; a tool-integration framework
that makes it easy to add new tools
(such as compilers, architectural analy-

18
Best Copy Available -__ ~~~~

NOVEMBER 1995

sis tools, and so on) to the environ-
ment; and a repository mechanism for
reusing fragments and patterns from
previous designs.

Every Aesop environment has the
same structure: As Figure 1 shows,
each is an open collection of tools that
access an architectural-design database.
The database stores architectural
designs and provides tools with a high-
level, object-oriented interface to
architectural designs. The database
also manages concurrent access to
shared data and enforces the architec-
tural design constraints specified by
the architectural styles.

The tools run as separate processes
and access the database through a
remote-procedure-call mechanism that
lets them invoke methods on objects in
the database. (The tools may also
access databases and file systems out-
side the Aesop environment, but such
access is not relevant here and so is not
shown.) Additionally, the environment
includes a tool-integration mechanism
based on event broadcast.* With this
mechanism, tools can register to be
notified about changes to database
objects and announce significant
events to other tools. Typical tools
include a graphical editor for creating
and browsing architectural designs as
well as style-specific tools for carrying
out architectural analyses, such as
checking for architectural consistency,
generating code, and interacting with
component repositories.

WISHFUL THINKING

We faced two important challenges
in building Aesop:

+ Designing the notations and
mechanisms to support style defini-
tion.

+ Creating the infrastructure for
the environment-support functions,
such as the design manager and tool-
integration framework.

In this article we focus on the sec-
ond challenge.

Viewed abstractly, the infrastruc-

ture required by Aesop environments
is hardly novel. Indeed, it is now com-
monplace to construct environments
in this fashion, as open, loosely inte-
grated collections of tools that access
shared data. Moreover, graphical edi-
tors are common components of
drawing packages, . _
computer-aided soft-
ware-engineering
tools, and other user
interfaces. We were
therefore optimistic
that we could obtain
most of the infrastruc-
ture needed for Aesop
by building on existing
software. Specifically

which provides event-based tool
integration.5

+ Mach RPC Interface Generator
(or MIG), an RPC stub generator,
developed at the Carnegie Mellon
University, that was well-suited to our
host operating system.6

All we had to do was put

WE ENCOUNTFRFI
SIX MAIN f’RbtrLtM
IN INTEGRATING THI
FOUR SUBSYSTEM

3
the subsystems together.

LI\L It did not appear to be a
nnl rljs diCIiX$:ahSekb;;f;;!;d$

,,,I were written in either

‘IS, C++ or C, all had been
used in many projects,

VIRTUALLY ALL OF . and all had’ a;ailable

THEM CAUSED BY
source code. We esti-
mated the work would

we wanted to reuse
four standard pieces: m ARCHITECTURE. take six months and one

I
person-year.

+ an object-orient-
ed database,

+ a toolkit for constructing graphi-
cal user interfaces,

+ an event-based tool-integration
mechanism, and

4 an RPC mechanism.
We had numerous candidates for

each piece. In making our selections
we picked systems that seemed to have
promise for working well together and
within our development environment.
In particular, we wanted to be sure that
we could process the systems using the
same compilers, that each piece had
been used successfully in several devel-
opment projects, and that each piece
was compatible with the operating sys-
tem (in this case, Mach) and machine
platforms (in this case, Sun machines)
on which we were running.

Our choices for the four subsystems
were

+ OBST, a public-domain object-
oriented database.

+ Interviews, a toolkit for con-
structing graphical user interfaces,3
developed at Stanford University,
which we used with Unidraw, a
reusable framework for creating draw-
ing editors that was also produced by
the Interviews developers.4

+ SoftBench, an event-broadcast
mechanism from Hewlett-Packard,

HARSH REALITY

Two years and nearly five person-
years later, we managed to get the
pieces working together in our first
Aesop prototype. But even then, the
system was huge (even though we had
contributed only a small portion of our
own code to the system), the perfor-
mance was sluggish, and many parts of
the system were difficult to maintain
without detailed, low-level under-
standing of the implementations.

Integration problems. We encountered
six main difficulties in integrating the
four software subsystems:

+ Excessive code. The binary code of
our user interface alone was more than
3 Mbytes after stripping. The binary
code of our database server was 2.3
Mbytes after stripping. Even small
tools (of, say, 20 lines of code) interact-
ing with our system were more than
600,000 lines after stripping! In an
operating system without shared
libraries, running the central compo-
nents plus the supporting tools (such as
external structure editors, specification
checkers, and compilers) overwhelmed
the resources of a midsize workstation.

+ Poor performance. The system

IEEE SOFTWARE 19

operated much more slowly than we
wished. Some of the problems
occurred because of overhead from
tool-to-database communication. For
example, saving the state of a simple
architectural diagram (containing, say,
20 design objects) took several minutes
when we first tried it out. Even with
performance tuning, it still took many
seconds to perform such an operation.

The excessive code also contributed
to the performance problem. Under
the Andrew File System, which we
were using, files are cached at the local
workstation in total when they are
opened. When tools are large, the
start-up overhead is also large. For
example, the start-up time of an Aesop

environment with even a minimal tool
configuration took approximately three
minutes.

+ Need to mod& external packages.
Even though the reusable packages
seemed to run “out of the box” in our
initial tests, we discovered that once we
combined them in a complete system
they needed major modifications to
work together at all. For example, we
had to significantly modify the
SoftBench client-event loop (a critical
piece of the functionality) for it to
work with the Interviews event mech-
anism. We also had to reverse-engi-
neer the memory-allocation routines
for OBST to communicate object han-
dles to external tools.

+ Need to reinvent existingfivzctions.
In some cases, modifying the packages
was not enough. We also had to aug-
ment the packages with different ver-
sions of the functions they already sup-
plied. For example, we were forced to
bypass Interviews’ support for hierar-
chical data structures because it did not
allow direct, external access to hierar-
chically nested subvisualizations.
Similarly, we ended up building our
own separate transaction mechanism
that acted as a server on top of a ver-
sion of the OBST database software,
even though the original version sup-
ported transactions. We did this so
that we could share transactions across
multiple address spaces, a capability

SOFTWARE ARCHITECTURE

.I critical aspect of any complex
software system is its architecture.
There is currently no single, univer-
sally accepted definition of software
architecture, but typically a system’s
architectural design is concerned with
describing its decomposition into com-
putational elements and their interac-
tions. Frequently these descriptions are
presented as informal box and line dia-
grams depicting the gross organiza-
tional structure of a system, and they
are often described using idiomatic
characterizations such as client-server
organization, layered system, or black-
board architecture.

Design tasks at this level include
organizing the system as a composition
of components; developing global con-
trol structures; selecting protocols for
communication, synchronization, and
data access; assigning functionality to
design elements; physically distributing
the components; scaling the system and
estimating performance; defining the
expected evolutionary paths; and
selecting among design alternatives.

Moliucltioa. Architectural design is
important for at least two reasons.
First, an architectural description
makes a complex system intellectually

tmctable by characterizing it at a high
level of abstraction. In particular,
architectural design exposes top-level
design decisions and lets the designer
reason about how to satisfy system
requirements in assigning Functionalin
to design elements. For example, if
data throughput is a key issue, an
appropriate architectural design would
let the designer make systemwide esti-
mates that are based on the values of
the throughputs for the individual
components.

Second, architectural design lets
designers exploit recurring organiza-
tional patterns. Such patterns - or
architectural styles - ease the design
process by providing routine solutions
for certain classes of problems, by sup-
porting the reuse of underlving imple-
mentations, and by permitting special-
ized analyses. Consider, for example,
an architectural design that uses a pipe-
and-filter style. When mapped to a
Unix implementation, the system can
take advantage of the rich collection of
existing filters and the operating sys-
tem support for pipe communication.
Another example is the traditional
decomposition of a compiler together
with supporting development tools,
which has made it possible for under-

graduates to build a nontrivial system
in a semester conrse.

Hot research areas. \\hile at present,
architectural-design practice is largely
ad hoc, the topic is receiving increasing
attention from researchers and practi-
tioners. Particularly ,rctive areas are

l .-tl.c.hire‘.tcf,i71 dest-ripion. Re-
searchers have proposed several new
latquages for architectural descrip-
tion.‘,’ Among their novel features are
the ability to characterize architectural
glue (or connectors) as first-class ab-
stractions, the ability to describe pat-
terns of structure and interaction, and
the introduction of new forms of sys-
tem analysis.

l Fwm11 uutlerpillnlngs. Several
researchers are attempting to provide a
sound semantic basis for architectural
description and ‘rnnl!sis. Alost efforts
have adapted existing formalisms to the
problems of software architecture.
Representative formal models include
process algebras,’ partially ordered
sets,’ the Chemical Abstract ,Machine,’
and Z.3

o Design grlihce. A key issue for
architectural design is the ability to
codify and disseminate expertise.
Ideally, there would be a handbook of

!
20 Best Copy Available NOVEMBER 1995

the original version did not permit.
+ Unnecessarily complicated tools.

Many of the architectural tools we
wanted to develop on top of the infra-
structure were logically simple sequen-
tial programs. However, in many cases
it was difficult to build them as such
because the standard interface to their
environment required them to handle
multiple, independent threads of com-
putation simultaneously.

+ Error-prone construction process. As
we built the system, modifications
became increasingly costly. The time
to recompile a new version of the sys-
tem became quite long and seemingly
simple modifications (such as the
introduction of a new procedure call)

software architecture. Among the more
recent developments in this area are
initial steps toward a description of
architectural styles’ and catalogs of
object-oriented design patterns.j Other
steps are embodied in recent prototype
tools for architectural guidance. One of
these is our Aesop system, which helps
designers conform to stylistic rules.
Another is Tom Lane’s design assistant
for user interfaces.”

+ Dovmin-specijc m-cbitectme. Several
development projects have realized sig-
nificant improvements by tailoring
architectures to an application domain
or a product family.’ Typically, these
projects have developed notations and
tools that allow specialists in the appli-
cation domain (as opposed to the soft-
ware domain) to develop components
and systems from high-level descrip-
tions of the desired system behavior.

e Architecture in context. Some
researchers have begun to examine the
role of software architecture in the
broader engineering context of soft-
ware development processes for archi-
tecture, the relationship between archi-
tecture and requirements specification,
and the use of architectures in software
acquisition.8-9

+ Role of tools and environments. As

would break the automated build rou- anyone who has tried to compose simi-
tines. The recompilation time was due lar kinds of software, and not everyone
in part to the code size. But more sig- can be a poor system builder.
nificantly, it was also because of inter- Therefore, the root causes must lie at a
locking code dependencies that deeper systemic level.
required minor changes to propagate
(in-the form of required recom$la- ~
tions) throughout most of the system. UNDERSTANDING

ARCHITECTURAL M ISMATCH
Underlying cause. The creators of the

reusable subsystems we imported were
neither lazy, stupid, nor malicious.
Nor were we using the pieces in ways
inappropriate to their advertised scope
of application. So what went wrong?
One possibility is simply that we were
poor systems builders, but we suspect
our problems are not unfamiliar to

Indeed, when we began to analyze
our problems through an architectural
lens, we realized that we could
attribute virtually all our problems to
what we now call architectural mis-
match, specifically to conflicting
assumptions among the parts.

To understand the nature of archi-

architectural design emerges as a disci-
pline within softvvare engineering, it
will hecome increasingly important to
support architectural description and
analysis with tools and environments.
Indeed, we are already seeing a protif-
eration of environments oriented
around specific architectural styles.
These environments typically provide
tools to support particular architectural
design paradigms and their associated
development methods. Esamples
include architectures based on data-
flow, object-oriented design, black-
board shells, and control systems.

L~nfortunately, each such environ-
ment is built as an independent, hand-
crafted effort. Although development
efforts may exploit emerging software
environment infrastructures (including
persistent object bases, tool-integration
frameworks, and user-interface toolk-
its), the architectural aspects are typi-
cally redesigned and reimplemented
from scratch for each new style. The
cost of such efforts can be quite high.
Moreover, once built, each environ-
ment typically stands in isolation, sup-
porting a single architectural style tai-
lored to a particular product domain.
The Aesop system illustrates one
approach to solving this problem.

IEEE SOFTWARE Best Copy Available 21

tectural mismatch, it is helpful to view
the system as a configuration of com-
ponents and connectors.‘!* The compo-
nent~ are the primary computational
and storage entities of the system:
tools, databases, filters, servers, and so
on. The connectof’s determine the inter-
actions between the
components: client-
server protocols, pipes,
RPC links, and so on.
These abstractions are
typically expressed
informally as box and
line drawings, although
formal notations for
architectural descrip-
tion have begun to
emerge, as the box on
pp. 20-2 1 describes.

In terms of compo-
nents and connectors,
we identified four main

ONE OF OUR MOST
SERIOUS PROBLEMS
WAS DUE TO THE
ASSUMPTIONS
MADE ABOUT WHAT
SOFTWARE PART
HELD THE MAIN
THREAD OF CONTROL.

ing a schema; an event-broadcast
mechanism is instantiated, in part, by
providing a set of events and registra-
tions. In such cases the building blocks
frequently make assumptions about the
order in which pieces are instantiated
and combined in a system.

categories of assumptions that can con-
tribute to architectural mismatch.
These categories form a taxonomy for
understanding how conflicting
assumptions arise.

+ Nature of components. This catego-
ry includes assumptions about the sub-
strate on which the component is built
(infrastructure), about which compo-
nents will control the computation
sequencing (control model) and about
the way the environment will manipu-
late data managed by a component
(data model).

+ Nature of the connectors. This cate-
gory contains assumptions about the
patterns of interaction characterized by
a connector (protocols) and about the
kind of data communicated (data
model).

+ Global architectural stmccture. This
category includes assumptions about
the topology of the system communi-
cations and about the presence or
absence of particular components and
connectors.

l Constrmction process. In many cases
the components and connectors are
produced by instantiating a generic
building block. For example, a data-
base is instantiated, in part, by provid-

CONFLICTING
ASSUMPTIONS

Using the definitions
just given for compo-
nents and connectors,
the main components of
an Aesop environment
are the collection of
tools and the architec-
tural-design database
(which consists primarily
of a persistent object
base). The main connec-

tors are the communication links of
the RPC and event-broadcast mecha-
nism. The parts that we attempted to
import provide an implementation
basis for two components - the data-
base (via OBST) and the graphical user
interface (via Interviews) - and two
connectors - RPC (via MIG) and
event broadcast (via SoftBench).

Nature of components. Within this
assumption category are three main
subcategories: infrastructure, control
model, and data model.

hfras~ructure. One kind of assumption
packages make about components is
the nature of the underlying support
they need to perform their operations.
This support takes the form of addi-
tional infrastructure that the package
either provides or expects to use. In
our case, each package assumed it had
to provide considerable infrastructure,
much of which we did not need. The
unwanted infrastructure was part of
why we had excessive code.

For example, OBST provided an
extensive library of standard object
classes to make general-purpose pro-
gramming easier. However, we needed

only a few of these classes because we
have a constrained, special-purpose
data model.’

Additionally, some packages made
assumptions about the kind of compo-
nents that would exist in the final sys-
tem, and therefore used infrastructure
that did not match our needs. For
example, the SoftBench Broadcast
Message Server expected all the com-
ponents to have a GUI and therefore
used the X library to provide commu-
nication primitives. This meant that
even tools that did not have their own
user interface (such as compilers or
design-manipulation utilities) had to
include the X library in their exe-
cutable code.

Controlmodel. One of our most serious
problems was due to the assumptions
made about what part of the software
held the main thread of control. Three
of the packages, SoftBench,
Interviews, and MIG, use an event
loop to deal with communication
events. The event loop encapsulates
the details of the communication sub-
strate, which lets the developer struc-
ture a component’s interactions with
its environment around a set of call-
back modules.

Unfortunately, each package uses a
different event loop. SoftBench bases
its main thread of control on the X
Intrinsics package. Interviews pro-
vides its own, object-based abstraction
of an event loop, implemented direct-
ly in terms of Xlib routines. MIG has
a handcrafted loop for the server to
wait for Mach messages. Each of these
control loops is incompatible with the
others.

Because the event loops were oper-
ating in the same process, we could not
use simple event gateways to bridge
different event-control regimes. This
meant that we had to reverse-engineer
the Interviews event loop and modify
it to poll for SoftBench events before
we could have the user interface
respond to events. In the time we had
available for the project, we were
unable to modify the MIG control

22 NOVEMBER 1995

loop so that the server could receive
events, although we had originally seen
this as an important way to provide
modular control over the design data.

Duto mode/. The packages also assume
certain things about the nature of the
data they will be manipulating. For
example, Unidraw provides a hierar-
chical model for its visualization
objects. One object can be part of
another object, and any manipulation
of the parent object (such as changing
its position on the screen) results in a
corresponding change in the child
object. The critical assumption of
Unidraw, however, is that all manipu-
lations will be of top-level objects. In
other words, the user could not change
a child object except to have the parent
object manipulate it. This was not
acceptable. Although the data we
wanted to present and manipulate was
strongly hierarchical, we wanted the
user to have direct control over both
parent and child objects. Thus, we had
two alternatives: modify Unidraw to
support the direct manipulation of
children, or create a flat Unidraw data
structure and build our own, parallel
hierarchy to support the correspon-
dences we wanted. It turned out to be
less costly to reimplement the hierar-
chy from scratch.

Nature of connectors. Within this
assumption category are two subcate-
gories: protocols and data model.

Protocols. When we began the project,
we expected to have two kinds of tool
interactions. The first, a pure event
broadcast, involves one tool informing
others about the state of the world. For
example, the database broadcasts that a
particular data object has changed.
The second interaction, a request/
reply pair, provides a simple means for
multiple tools to cooperate in perfom-
ing a complex manipulation. This con-
nector follows the model of a proce-
dure call in that the requesting tool
cannot generally continue until the
receiving tool completes its task.

The SoftBench Broadcast Message
Server provides both these kinds of
interaction through different kinds of
messages. The notzjj message handles
the first kind of interaction. The
change is announced and then forgot-
ten by the announcing tool. The
request and reply messages work togeth-
er to handle the second kind of inter-
action.

Unfortunately, SoftBench attempts
to handle both kinds of interaction
uniformly. To receive any message, a
tool registers a callback procedure for
that message. When the message
arrives, the SoftBench client library
invokes the callback procedure. This
callback technique is used for all three
message types (notify, request, and
reply). This means that when a tool
makes a request, it does not simply
make the request, wait for the reply,
and then continue - as you would
expect. Instead, it must divide its
manipulation into two callback rou-
tines, one to be done before the call
and one to be done after receiving the
reply. This breaks up the natural struc-
ture of the tool and
makes it difficult to
understand. N A TRANSLATION

tion overhead on every
call to the database,
which caused the most

Moreover, if the
server receives any
other messages (such as
a notify) before the
reply message, it deliv-
ers those to the tool
and invokes its callback
procedure before the
tool can process the
reply. This means, in
effect, that if a tool

I
OVERHEAD ON significant performance
EVERY CALLTO THE ~~;lenececk; i- CL- n-7” 11 L11L >yr

_-- _ - ..- problem

DATABA! jE CAUSED occurred even though

THE BIGGE --ST
we were working in C
and C++ exclusively and

nrnrnnrr A wr rtfu-uwvw~~u
had compatible data
models in all the compo-

BOTTLENECK. nents we developed.

Global architectural structure.
wishes to delegate any part of its pro- As it turned out, OBST assumes that
cessing, then it must be able to deal the communications in the system
with multiple threads of control simul- form a star with the database at the
taneously, one for each message that center. Specifically, OBST assumes
might be delivered before a reply is that all the tools are completely inde-
received. Thus, SoftBench’s handling pendent of each other. In other words,
of the request/reply protocol forces it assumes that there is no direct inter-
tools to handle concurrency even if it action between tools, and it views any
would be simpler to construct and concurrency among tools as conflict,
understand them as sequential pro- not cooperation. To protect against
grams. For this reason, we ended up this “conflict,” OBST selects on a tool-
using Mach RPC instead of SoftBench by-tool basis, a mechanism that blocks

for the database interaction because the
tool-database path is the most critical
and heavily used path in our system.

Duto model. Just as the packages make
assumptions about the kind of data the
components will manipulate, so also do
they make assumptions about the data
that will be communicated over the
connectors. The two communication
mechanisms we used, Mach RPC and
SoftBench, make different assumptions
about the data. Mach RPC supports
integration between arbitrary C pro-
grams, and so provides a C-based
model: data passed through procedure
calls is based on C constructs and
arrays. SoftBench, on the other hand,
assumes that most communication will
be about files and the data contained in
them, and so all data to be communi-
cated by SoftBench is represented as
ASCII strings. Because our tools
manipulate primarily database and C++
object pointers, we had to develop
translation routines and intermediate
interfaces between the different mod-
els. The result was that we had transla-

IEEE SOFTWARE 23

(ode specific
to the application

(depends on)
.

, Generic pockoge code

Figure 2. Assumed structure of th
leieendencies in the system-constr-hctior
wocess. Each layer in the figure yepre,
‘ents part of the software ensembl,
.&at must come together to instantiat(
I generic package: infrastructure tha
he package depends on; generic code 9
-he package itself and code that spe
ializes the package to the particula:
application.

_-
softBelKh MIG OBV

Figure 3. Actual structure of th
dependencies in the system-constructio
process. The three subsystems ay
instances of the stf%cture in Figure 2
but rather than existing as indepen
dent stacks, the three stacks hav
interstack dependencies that afiect tE
order in which the pieces must be corn
piled and combined.

transactions. Because the tools in E
Aesop environment can coordinal
their efforts by delegating part of the
computation to other tools, this mod
was totally unacceptable for our pu
poses. Either cooperating tools wou
deadlock by holding conflicting lock
or conflicting tools would crea

i nconsistencies when a tool attempted
t :o release the database to a cooperating
t ~001. To solve this problem, we built
()ur own transaction manager as a serv-
L :r on top of OBST.

Construction process. Several of our
3ackages assume that there are three
categories of code being combined in
the system:

+ the existing infrastructure (such
as the X libraries and the package’s
own runtime libraries), which would
not change;

+ the application code developed in
a generic programming language,
which would use the infrastructure but
otherwise be self-contained; and

+ the code developed using the
notations specific to the reuse package,
which would control and integrate the
rest of the application.

e

72

.e
)
‘7
8..

‘e

le

!-

Figure 2 shows the assumed depen-
dency structure for building an applica-
tion from a package. This structure dic-
tated that we should first build the
generic parts of the application, then
possibly specify them for the package’s
build tool, and finally preprocess, com-
pile, and link the package-specif ic sec-
tions. Generally, a change to the inter-
face of the generic section meant that we
had to both respecify and rebuild the
package-specif ic section. This made
sense for each package in isolation,
because we think of the packages as pro-
viding glue code to integrate the parts of
the generic application. For example,
MIG assumes that the rest of the code is
a flat collection of C procedures, and
that its specification describes the signa-
ture (name, parameters, and return type>
of all these procedures.

m
te
:ir
el

;i
s,
te

In our case, however, more than
one package was making these kinds ol
assumptions. This meant that there
were in fact four categories of code
the three previous categories plus the
code generated from the other pack-
ages. The integration of the code gen-
erated by different packages presentec
the most difficulty in the process o
building the system. We had to take
the generated code and make it 1001

1 ike whatever generic structure the
C bther packages were expecting.

E

t
5
a
C

;

t

c

I

I

(

(
!

1

1

i
(

Figure 3 shows what the build-
n-ocess dependencies actually were.
There are three instances of the struc-
ure in Figure 2 - one each for
;oftBench, MIG, and OBST. However,
1s the figure shows, there were depen-
lencies between the instances, which
lictated the order in which each must
)e compiled and combined. To follow
hese dependencies, we had to, for
:xample, take the output of the OBST
n-eprocessor and specify the resulting
lrocedure calls in MIG’s notation, run
LUG to generate a server version of the
latabase, and then rebuild all the tools
‘including rebuilding and linking the
;oftBench wrapper code) to recognize
he new client interface.

The two sets of conflicting assump-
:ions about the build process resulted
n t ime-consuming and complicated
:onstmction.

IHE WAY FORWARD?

We believe our experience is typical
of any construction that involves
assembling large-scale components
into a new system. And although some
problems encountered will be the
result of issues such as language inter-
operability, platform independence,
and heterogeneous data manipulation,
the really hard problems - the ones
that result from architectural mismatch
- do not go away once you solve these
low-level problems.

What can be done? We believe that
two broad-based approaches are need-
ed to improve the prospects for suc-
cessful software composition. First,
designers must change the way they
build components that are intended to
be part of a larger system. Second, the
software community must provide new
notations, mechanisms, and tools that
will let designers accomplish this.
There are at least four aspects of a
long-term solution:

+ Make architectural assumptions
explicit.

24 NOVEMBER 1995

* Construct large software pieces Use orthogonal subcomponents. Although
using orthogonal subcomponents. most large reusable subsystems are

+ Provide techniques for bridging themselves constructed out of smaller
mismatches. subcomponents, it is extremely difficult

+ Develop sources of architectural to separate the pieces or change the way
design guidance. in which these subcomponents work

We believe that each of these is ripe together. The software community has
for further research and offer a brief known for some time that modules
outline of possible directions. should hide certain design assumptions

to increase their chance of reuse.
Make assumptions explicit. One of the Unfortunately, the architectural design

most significant problems is that the assumptions of most systems are spread
architectural assumptions of a reusable throughout the constituent modules.
component are never documented. Arsumptwns

True, the current software-design cul-
Ideally, designers would be able to

tinker with the architectural assump-
ture is one in which documentation is tions of a reused system by substituting infrastructure

generally lacking, but the problem different modules for the ones already
goes deeper. Software engineers have there. In reality, however, recombining Figure 4. Three-dimensional view of
neither the proper vocabulary nor the such building blocks will require much component interaction.
structure to help them express these more sophisticated processing than
assumptions. For example, although link editing, for example, as illustrated
good documentation of an abstract in work by Don Batory.’ nient interface to the rest of the sys-
data type may list preconditions for tern, and implements its interface by
calling its interface routines, there is Provide bridging techniques. Even with calls to the interface of the original
no comparable convention or theory good documentation and appropriate architectural element.
for documenting many of the architec- modularization, mismatches will In rapidly changing systems and
tural assumptions we described earlier. inevitably occur. Software engineers environments with many software

Moreover, an architectural view goes now use a number of techniques for components negotiated inter&es may be
beyond the notion of a single compo- dealing with such mismatches. In appropriate. Components and connec-
nent interface. One of the important implementing Aesop, we used several tors are built to handle a range of
features of reusable infrastructure is of these techniques. interaction styles, and different ele-
that it must live in a three-dimensional We tried modifying several compo- ments of the system decide dynamical-
world. As illustrated in Figure 4, the nents and connnectors to alleviate mis- ly what sort of communication is most
interface at the bottom documents matches. This technique, however, appropriate. Negotiated interfaces are
assumptions about lower level infra- may require a large investment in already common in low-level interac-
structure that the component must reverse-engineering and may be tions like modem protocols; we would
interact with. An interface at the top impractical or even impossible for like to see them at the architectural
concerns interactions with components legacy systems or programs, for which level as well.
that use the reused component as their source code is often not available. These mismatch-bridging tech-
infrastructure. Side interfaces describe Another technique is to install moye niques are not exhaustive, nor has the
interactions with other components at versatile components and connectors, software community successfully stan-
the same level of abstraction. Each of either to take over some of the tasks of dardized them. Over time, however,
these interfaces can be mismatched in the original architectural elements, or software engineers can expect to see
its assumptions about the control to art as mediatou between original ele- more detailed and comprehensive cat-
model, data model, protocol, and so on. ments. Mediation can take place either alogs of standard techniques, eventual-

Of course, documenting assump- via smart connectors (connectors that ly leading to tools that help implement
tions will not make mismatches disap- can translate data and communication them.
pear, but at least it will let designers in multiple protocols) or via mediator
detect problems early on. Some initial components that take over some of the Develop sources of design guidance.
steps toward this goal are emerging in computation. Developing good intuitions about what
recent work on architecture descrip- A special but somewhat common kinds of architectural components
tion languages and formal underpin- case of mediation involves putting a work well together is not easy.
nings for software architecture, as the wrapper around a component or con- Designers now rely on trial and error,
box on pp. 20-2 1 describes. nectar. The wrapper provides a conve- and it is many years before even skilled

IEEE SOFTWARE 25

designers acquire expertise at putting
systems together from parts - and
such expertise is typically confined to a
specific application domain, such as
management information systems or
signal processing. The software com-
munity must find ways to codify and
disseminate principles and rules for
software composition.

As we note in the box on pp. 20-2 1,
there is some progress in this area in
the form of handbooks for the reuse of
design patterns, the creation of archi-
tectural design environments, and the
development of design tools for certain
application domains.

T
he root causes of the software com-
munity’s inability to achieve wide-

spread reuse are not going to be solved
by low-level improvements in compil-

ing and linking software modules.
Rather, the problems are of a deeper,
systemic nature. As we have tried to
illustrate, viewing assumptions in
architectural terms reveals possible
ways to explicitly document archi-
tectural assumptions and incorporate
principled techniques for detecting and
bridging architectural mismatches.

This approach opens a rich set of
research dimensions, four of which we
have outlined. Within the ABLE pro-
ject, we are investigating many of these.
In particular, our most recent imple-
mentation of Aesop supports the ability
to document certain classes of architec-
tural assumptions. We are currently
developing tools that use these annota-
tions to automatically check and repair
several of the kinds of architectural mis-
match that we have described here. +

ACKNOWLEDGMENTS
Aesop embodies many ideas from collaborative work with fellow researchers. In particular, our

work was strongly influenced by Daniel Jackson, Mary Shaw, and Jeannette Wing, whom we gratefully
acknowledge. We also thank the students and staff who have contributed to the Aesop implementation
described here: Mike Baumann, Steven Fink, Doron Gan, Huifen Jiang, Curtis Scott, Brian Solganick,
and Peter Su. Finally, we thank Ralph Johnson and John VI&ides for their comments on a draft of this
article.

This article is based on a paper in Proceedings of the Seventeenth lntwnattonal Confewnce on Sofhuare
Engineering (IEEE CS Press, 1995). This research was sponsored by the National Science Foundation
under grant CCR-9357792, by the Wright Laboratory, Aeronautical Systems Center, US Air Force
Materiel Command and the Advanced Research Projects Agency under grant F33615-93-1-1330, and
by Siemens Corporate Research. The views and conclusions in this document are ours alone and should
not be interpreted as representing the official policies, either expressed or implied, of Wright
Laboratory, the US government, or Siemens Corp.

/ REFERENCES
1. D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting Style in Architectural Design Environments,”

Pm. St& ‘94, A C M Press, New York, 1994, pp. 179.185.

2. S. R&s, “Connecting Tools Using Message Passing in the Field Program Development
Environment,” IEEE .Sojiwrrre, July 1990, pp. 57.66.

3. M. Linton, J. X&sides, and P. Calder, “Composing User Interfaces with Interviews,” Compute,;
Feb. 1989, pp. 8-24.

4. J. VI&ides and M. Linton, “Unidraw: A Framework for Building Domain-Specific Graphical
Editors,“A C M Trims. Information .Jymm, July 1980, pp. 237-268.

5. C. Gerety, “HP SoftBench: A New Generation of Software Development Tools,” Tech. Report
SESD-89-25, Hewlett-Packard, Software Eng. Systems Div., Fort Collins, Co., 1989.

6. L.R. Walmer and M.R. Thompson, “A Programmers’ Guide to the Mach User Environment,” tech
report, School of Computer Science, Carnegie Mellon University, Pittsburgh, 1988.

7. D. Garlan and M. Shaw, “An Introduction to Software Architecture,” in Advances in Software Eng.
and Knowledge Eng., V. Ambriola and G. Tortora, eds., World Scientific Publishing Co., Singapore,
1993.

8. D. Perry and A. Wolf, “Foundations for the Study of Software Architecture,” .So$wa~e Eng. Notes,
Oct. 1992, pp. 40.52.

9. D. Batory et al., “Scalable Softw are L’b 1 raries,” Pn~c. .Sigq?, A C M Press, New York, 1993, pp. 191.
199.

mews. He is coauthor

with Mary Shaw of Softwaw Architectwe: Perqertives
on an Emmgixg Discipline (Prentice-Hall, to appear
1996). Garlan is head of the ABLE Project, which
focuses on the development of languages and envi-
ronments to support the construction of software
system architectures. Before joining the CMU facul-
ty, he worked in the Computer Research Laboratory
of Tektronix, Inc., where he developed formal,
architectural models of instrumentation software.

Garlan received a PhD in computer science
from Carnegie Mellon University. He is a member
of the IEEE and ACM.

Robert Allen is a gradu-
ate student of computer
science at Carnegie
Mellon University. His
primary research focus is
software architecture, par-
ticularly the formalization
of architectural descrip-
tions and exploitation of
stvle in the develoument
of families of systems.

Allen received a BS in computer science from
Will iams College and an M S in computer science

from Carnegie Mellon.

John Ockerbloom is a
graduate student in the
School of Computer
Science at Carnegie
Mellon University. His
primary research focus is
composable systems and
software architecture. His
current work is in support
for the distributed growth
of structured data types in

wide area information systems. He is a member of
the ABLE project and was active in the early imple-

mentation of Aesop.
Ockerbloom received a BS in computer science

from Yale University and an M S in computer sci-
ence from Carnegie Mellon University.

Address questions about this article to Garlan at
CS Dept., Carnegie Mellon University, 5000 Forbes
Ave., Pittsburgh, PA 152 13-3891; garlan@cs.cmu.edu.

26 NOVEMBER 1995

