
A Little Language for Surveys:
Constructing an Internal DSL in Ruby

H. Conrad Cunningham
Department of Computer and Information Science

University of Mississippi
University, MS 38677 USA

cunningham@cs.olemiss.edu

ABSTRACT
Using a problem domain motivated by Bentley’s“Little Lan-
guages” column [1], this paper explores the use of the Ruby
programming language’s flexible syntax, dynamic nature,
and reflexive metaprogramming facilities to implement an
internal domain-specific language (DSL) for surveys.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Specialized application languages

General Terms
Design, Languages

Keywords
Domain specific language, Ruby, reflexive metaprogramming

1. INTRODUCTION
Hudak defines a domain-specific language (or DSL) as “a

programming language tailored to a particular application
domain” [10]. DSLs are usually not general-purpose lan-
guages; they instead “trade generality for expressiveness in
a limited domain” [11]. Thus DSLs must be precise in cap-
turing the semantics of their application areas [10]. They are
usually small, declarative languages targeted at end users or
domain specialists who are not expert programmers [10, 16].

DSLs, often known as little languages, have long been im-
portant in the Unix operating systems community. For ex-
ample, in an influential 1986 column [1], Bentley describes
the little line-drawing language pic and its preprocessors
scatter (a language for drawing scatter plots of two-dimen-
sional data) and chem (a language for drawing molecular
structures). He also describes other well-known little lan-
guages that are used to implement pic: lex for specifying
lexical analyzers, yacc for specifying parsers, and make for
specifying build processes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SE ’08, March 28-29, 2008, Auburn, Alabama, USA
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Fowler classifies DSLs into two styles—external and inter-
nal [6]. An external DSL is a language that is different from
the main programming language for an application, but that
is interpreted by or translated into a program in the main
language. The little languages from the Unix platform are in
this category. The document preparation languages LATEX
and BibTeX, which the author is using to format this pa-
per, are also external DSLs. External DSLs may use ad hoc
techniques, such as hand-coded delimiter-directed or recur-
sive descent parsers [6], or may use parser-generation tools
such as lex and yacc or ANTLR [12].

What Fowler calls an internal DSL (and Hudak calls a
domain-specific embedded language [10]) transforms the main
programming language itself into the DSL. This is not a
new idea; usage of syntactic macros has been a part of the
Lisp tradition for several decades. However, the features of
a few contemporary languages offer new opportunities for
constructing internal DSLs.

The rise in popularity of the Ruby programming language
[14] and the associated Ruby on Rails web framework [15]
has simulated new interest in DSLs among practitioners. In
the Ruby environment, there is significant interest in devel-
oping internal DSLs [2, 8] that are made possible by the
extensive reflexive metaprogramming facilities of Ruby [3].
One interesting language of this nature is rake, a build lan-
guage implemented as a DSL in Ruby [5].

This paper takes a problem motivated by Bentley’s “Lit-
tle Languages” column [1], constructing a little language for
surveys, explores the DSL capabilities of the Ruby language,
and designs an internal DSL for specifying and executing
surveys. Section 2 describes the Ruby facilities for construct-
ing internal DSLs. Section 3 analyzes the survey problem
domain and designs a simple DSL based on the analysis. Sec-
tion 4 sketches the design and implementation of the survey
DSL processor. Sections 5 and 6 examine this work from a
broader perspective and conclude the paper.

2. RUBY’S INTERNAL DSL SUPPORT
Ruby is an interpreted, dynamically typed, object-oriented

application programming language with extensive metapro-
gramming facilities [3, 14]. Its features are convenient for
both defining and implementing DSLs. Although those tasks
are interrelated, it is useful to examine them separately.

Ruby has two groups of features that especially support
defining internal DSLs [2, 8]—its flexible syntax and its sup-
port for blocks (i.e., closures).

A flexible syntax is important for making DSLs read in a
natural way. Of special importance is the syntax for method

calls because methods are the primary means for adding
operators and declarators—the verbs—to an internal DSL.
Ruby method calls are flexible in three key ways: the paren-
theses enclosing argument lists are optional, methods may
have a variable number of arguments, and the use of hash
data structures in argument lists provides a mechanism simi-
lar to keyword arguments. The survey DSL exploits the first
two of these features. For example, the Ruby code

question "Male or female?"

calls method question with one argument, a string literal
giving the text for a survey question. The method question

is defined with a second, optional parameter giving the ex-
pected number of responses if greater than 1. If the optional
argument is given in a call, then it is separated from the first
argument by a comma.

Of course, a DSL must also identify the entities to be op-
erated upon—the nouns—and their attributes—the adjec-
tives. In some circumstances, the nouns may be identifiers
for host language variables or classes, but, in other circum-
stances, quoted string literals may need to be introduced.
Quoted strings, with their “noisy” pairs of quotation marks,
tend to make the DSL more difficult to read and write. Ruby
provides a less “noisy” alternative, the symbol. A symbol
is an identifier-like textual constant that is preceded by a
colon. For example, a programmer might combine the use
of symbols with “keyword parameters” in a call such as

question :text => "Male or female?", :nresp => 1

where the two “arguments” are collected as mappings in a
hash data structure passed as an argument to the method.

Any Ruby method call may have a block attached. A
block (also called a Ruby Proc or a closure) is group of exe-
cutable statements defined in the environment of the caller
and passed unevaluated as an implicit argument to the called
method. The called method may then execute the block zero
or more times, supplying any needed arguments for each call.
The block executes with access to the environment in which
it was defined. As an example, consider the Ruby code

response "Female" { @female = true }

that associates a parameterless block with the one-argument
method call response. When executed, the block sets in-
stance variable @female to the constant true. Blocks can
either be enclosed in a pair of braces, as above, or in a do-end
construct, which is better for multi-line blocks.

The block feature is useful for DSL construction in at
least two ways [2]. First, a block provides a structuring
mechanism for DSL statements. The execution of the Ruby
(or DSL) statements inside the block is controlled by the
called method. Second, a block enables deferred evaluation.
A block can be stored in a data structure or passed on as
an argument to other methods. The first way is useful in
defining DSLs. Both are useful in implementing DSLs.

Ruby’s extensive reflexive metaprogramming facilities are
especially important for implementing internal DSLs [2, 8].
Metaprogramming is the capability of a program to manipu-
late programs as data. Reflexive metaprogramming is the ca-
pability of a program to manipulate its own program struc-
tures [17]. Reflexive metaprogramming is possible primarily
because Ruby is an interpreted language whose interpreter

provides programmers with hooks into its internal state.
Ruby’s facilities include the ability to query an object to de-
termine its methods, instance variables, and class—features
that are available in mainstream languages such as Java—
and also more exotic facilities such as the ability to evaluate
strings as code, to intercept calls to undefined methods, to
define new classes and methods dynamically, and to react to
changes in classes and methods via callback methods. Such
features have long been a staple of languages such as Lisp
and Smalltalk, but the recent interest in Ruby has helped
renew interest in metaprogramming.

The implementation of the survey DSL uses the following
Ruby reflexive metaprogramming facilities [8, 14]:

obj.instance_eval(str) takes a string str and executes
it as Ruby code in the context of obj. This method
allows internal DSL code from a string or file to be
executed by the Ruby interpreter.

mod.class_eval(str) takes a string str and executes it as
Ruby code in the context of module mod. This enables
new methods and classes to be declared dynamically
in the running program.

obj.method_missing(sym,*args) is invoked when there is
an attempt to call an undefined method with the name
sym and argument list args on the object obj. This
enables the object to take appropriate remedial action.

obj.send(sym,*args) calls method sym on object obj with
argument list args. In Ruby terminology, this sends a
message to the object.

Now we examine how these language facilities can be used
to define an internal DSL for a nontrivial domain.

3. LITTLE LANGUAGE FOR SURVEYS
The problem domain addressed here is similar to the one

for Bentley’s “little language for surveys” [1]. We first ana-
lyze the domain systematically and then use the results to
design an appropriate DSL syntax and semantics.

The domain is a family of applications for administering
simple surveys. We analyze the domain using commonal-
ity/variability analysis [4] and produce four outputs.

Scope: the boundaries of the domain—what must we ad-
dress and what can we ignore.

Terminology: definitions for the specialized terms, or con-
cepts, relevant to the domain.

Commonalities: the aspects of the family of applications
that do not change from one instance to another.

Variabilities: the aspects of the family of applications that
may change from one instance to another.

The scope focuses on the definition of a simple survey and
its presentation to individuals in various forms. We do not
address issues related to tabulation of the survey results.

Within this scope, we identify several specialized terms.
These include survey, title, question, and response related to
the survey’s structure. To have a scope similar to Bentley’s
surveys [1]), we need the concepts of conditional question,
which may be omitted under some conditions, and silent

question, whose result is calculated from previous responses.
We also have the concept of execution of the survey and its
presentation to a respondent.

The commonalities we identify include:

1. A survey has a title.

2. A survey consists of a sequence of questions that are
to be presented to the respondents.

3. Each question has a sequence of responses that can be
chosen by the respondent.

4. A conditional question may be omitted based on the
responses to questions earlier in the sequence.

5. The response to a silent question is calculated based
on the responses to questions earlier in the sequence.

6. Execution of the survey results in presentation of the
appropriate questions and the possible responses to the
respondent and the collection of his or her choices.

The variabilities we identify include the:

1. actual texts displayed for the title, questions, and re-
sponses

2. number and order of questions within the sequence

3. number of responses required or allowed for a question

4. number and order of responses within a question

5. condition under which a question may be omitted

6. method for calculating the results of a silent question

7. source of the survey specification

8. manner in which the questions are displayed and the
responses collected during execution.

We use the analysis above to guide our choices for ele-
ments of the DSL design [11, 13]. The terminology and com-
monalities suggest the DSL statements and constructs. The
commonalities also suggest the semantics of the constructs
and the nature of the underlying computational model. The
variabilities represent syntactic elements to which the survey
programmer can assign values.

To avoid unnecessary language elements, we do not intro-
duce a construct for the survey itself. Instead, we define a
survey as the content of one DSL “file”. The syntax of this
file consists of one title statement (commonality 1) and a
sequence of questions. The title statement has the syntax

title TEXT

where title is a keyword and TEXT is the user-supplied title
text (variability 1). Syntactically, this is a call of the Ruby
method title with one argument.

According to commonality 2 and variability 2, the body of
the survey consists of a user-defined sequence of questions.
We thus introduce a question statement to denote the basic
survey question. It has the syntax

question TEXT, NUM_RESPONSES do

QUEST_BODY

end

where the argument TEXT gives the text of the question
(variability 1) and optional argument NUM_RESPONSES (vari-
ability 3) gives the number of responses expected, with a
default value of 1. This construct defines a question in the
survey at that point in the sequence (variability 2). Syntacti-
cally, this is a Ruby method call with one required argument,
one optional argument, and an attached do-end block.

The QUEST_BODY must be structured according to com-
monality 3 and variabilities 1 and 4. That is, the block
consists of a sequence of possible responses. However, suffi-
cient data must be captured to enable commonalities 4 and 5
and variabilities 5 and 6 to be implemented. We thus struc-
ture the QUEST_BODY as a sequence consisting of an optional
condition statement, some number of response statements,
and an optional action statement. It has the syntax:

condition COND_BLOCK

response TEXT RESP_BLOCK

...
action ACTION_BLOCK

The statements above are Ruby method calls with blocks
attached. When the system executes the survey, if a condi-

tion statement is present and its COND_BLOCK evaluates to
false, the question is omitted (commonality 4). Otherwise,
the system presents the response texts in the order given
(commonality 3). When the respondent selects one or more
of these (up to the number given on the question state-
ment), the system executes the corresponding RESP_BLOCK s.

To respond to commonality 5 and variability 6 for silent
questions, we introduce the statement result at the same
syntactic level as question. However, the result body de-
fines a sequence of alternative statements (commonality
3) that, when executed, will be selected based on the previ-
ous responses. The result has the following syntax, which
also responds to variabilities 1 and 3 for questions:

result TEXT, NUM_RESPONSES do

condition COND_BLOCK

alternative TEXT GUARD_BLOCK

...
action ACTION_BLOCK

end

The condition and action statements are the same as for
QUEST_BODY . The alternative statements execute in the
given sequence. If a GUARD_BLOCK is omitted or evaluates to
true, then that alternative is chosen.

The blocks on the action and response statements con-
sist of Ruby code that creates and modifies instance vari-
ables in the environment in which the survey is executed.
These instance variables can then be used in the “boolean”
blocks on the condition and alternative statements to al-
low commonalities 4 and 5 to be realized, in accordance with
the flexibility needed for variabilities 5 and 6.

Commonality 6 defines the basic computational model for
execution of a survey program; variabilities 7 and 8 define
flexible aspects that must exist in the implementation. Now
we look at the implementation of this internal DSL in Ruby.

4. INTERNAL DSL IMPLEMENTATION
The survey DSL could be implemented with a processor

that executes each question-level statement immediately af-
ter it has been parsed. This single-pass approach would,

def question(txt,*args) # txt, ns, block

if @context.level==:survey_level && block_given?

@context.level = :question_level

@context.qtype = :question_type

ns = 1

ns = args[0].to_i if args.size > 0

@context.question=QuestionNode.new(txt.to_s,ns)

yield # execute block on DSL question call

@context.survey.add_question(@context.question)

@context.level = :survey_level

@context.qtype = :no_type

else

output appropriate error messages

end

@context.question = nil

end#question

Figure 1: Method SurveyDSL#question

however, strongly couple the evaluation logic with the pars-
ing logic and make support for variabilities 7 and 8 difficult.

In most cases the use of a two-pass architecture is a better
technique. The first pass reads the input, parses it, generates
any needed error messages, and builds the corresponding ab-
stract syntax tree (AST) [6, 12]. The AST is a tree-like data
structure that represents the input expressions in an ab-
stract form. The second pass takes the AST, presents the
questions to the respondent in the required order, and col-
lects the responses (commonality 6). This approach allows
any first-pass processor to be configured with any second-
pass processor, thus supporting variabilities 7 and 8. In this
section, we look at the design and implementation of the
AST, first-pass, and second-pass classes.

4.1 DSL Parsing
The Ruby implementation of the survey DSL uses several

classes to implement the AST. At the top (survey) level, the
class SurveyRoot represents the entire survey as specified in
a DSL input file. It holds the survey title from the title

statement and a sequence of question-level nodes.
At the second (question) level are the “abstract” class

QuestionLevelNode and its two subclasses QuestionNode

and ResponseNode. The subclasses represent the question

and result statements in the survey DSL. They store the
question text, the guarding condition (if any) from the as-
sociated condition statement, the action (if any) from the
associated action statement, and a sequence of “responses”
from the associated response or alternative statements.

The third (response) level consists of the “abstract” class
ResponseLevelNode and its two subclasses ResponseNode

and AlternativeNode. The subclasses represent the DSL’s
response and alternative statements.

The first-pass parser classes are structured according to
Fowler’s Object Scoping DSL pattern [6] using an approach
Buck calls sandboxing [2]. The “abstract” class SurveyDSL

implements the DSL statements as methods. Its subclass
SurveyBuilder “evaluates” the DSL statements from a DSL
input file using its superclass’s methods. This evaluation
parses the DSL input and builds the AST using the node
classes described above. Figure 1 shows the question method.

The read_DSL method of class SurveyBuilder reads the
DSL input from a file and evaluates it by calling the method
instance_eval described in Section 2. The safety of the
program is maintained by encapsulating the relatively unsafe

def action(&action)

if @context.level==:question_level && block_given?

&& @context.question.action == nil

@context.question.action = action

else

output appropriate error messages

end

end#action

Figure 2: Method SurveyDSL#action

instance_eval method call within the “sandbox” provided
by a SurveyBuilder object.

In this design, the SurveyDSL class uses the Memento de-
sign pattern [9]. It uses an object of class DSLContext to
store the state of the DSL parser (i.e., SurveyDSL object) so
that it can be saved and restored. This is also what Fowler
calls the Context Variable DSL pattern [6].

The first-pass design separates the DSL implementation
methods and the parser state from the class that executes
the DSL input. This, along with the filename of the DSL
source being a parameter of the read_DSL method, provides
the flexibility needed for variability 7.

Because the survey DSL input is just Ruby code, much of
the work of parsing the DSL is done by the Ruby interpreter.
The DSL parser must verify that the DSL program is syntac-
tically correct and generate the corresponding AST. In ad-
dition to what DSL method has been called in SurveyDSL,
the parser state can be characterized by four primary at-
tributes: (1) survey, which is a reference to the partially
constructed AST, (4) question, which is a reference to the
QuestionLevelNode object currently being constructed, (3)
qtype, which gives the current type of question-level state-
ment (none, question, or result) being parsed, and (2)
level, which identifies the current level of the DSL syntax
(survey, question, or response) being parsed.

Suppose the following question statement appears in the
DSL input:

question "What is your gender?" do

response "Female" { @female = true }

response "Male" { @female = false }

action { @male = if @female then false

else true end }

end

The read_DSL method of class SurveyBuilder reads this
text and evaluates it as Ruby code by calling instance_eval.
This causes the question method in class SurveyDSL (Fig-
ure 1) to be called with a string argument and an attached
block. The “optional” second argument (i.e., number of re-
sponses to be given) is set to the default value of 1.

If the parser is in the proper state, the question method
processes the DSL statement to create a new question node.
It changes the parser level to question-level and the parser
qtype to question-type and creates a new QuestionNode to
put in the AST. It then invokes the attached do-end block
using the Ruby yield statement. When control returns from
the yield, the question method stores the new node in the
AST, resets the parser level to survey-level, and returns
control to the executing instance_eval call.

The execution of the block attached to the question state-
ment invokes the response method in SurveyDSL twice and
the action method once. The response method calls cre-
ate the two response-level nodes in the AST. The action

def accept(survey_visitor)

@env.survey_title = @title # used by DSL block

@env.survey_answers = [] # used by DSL block

@env.question_num = 1 # used by DSL block

survey_visitor.execute_title(@env,self)

questions.each do |q|

q.accept(@env,survey_visitor)

end

end#accept

Figure 3: Method SurveyRoot#accept

def accept(env,survey_visitor)

env.question_text = @text # used by DSL

env.question_num_to_sel = @num_to_sel # block

survey_visitor.execute_question(env,self)

env.question_text = nil

env.question_num_to_sel = nil

end#accept

Figure 4: Method QuestionNode#accept

method call sets the QuestionNode’s action attribute to the
given block. Figure 2 shows the code for the action method.

The blocks attached to the response and action state-
ments are not executed. Instead, the blocks themselves
(i.e., the closures) are stored in the AST node for execu-
tion in the second pass. If the question statement included
a condition statement, it would be processed similarly to
the action statement. This technique of storing blocks uses
what Fowler calls the Deferred Evaluation DSL pattern [6].

4.2 DSL Interpretation
The interactions between the second pass and AST must

support variability 8, enabling different “interpreters” in the
second-pass to be configured into the system. Because the
little survey language has a straightforward syntax and se-
mantics, the prototype design uses the Visitor design pat-
tern [9] to structure this interaction. A complex language
may require more sophisticated tree-walking logic [12].

To implement the Visitor pattern, each AST class must
provide a method accept that takes a SurveyVisitor ob-
ject. This method must call the appropriate visit operations
on the Visitor object and pass the object to next lower level
of the AST as needed. Figures 3 and 4 show the accept

methods of the top-level AST node SurveyRoot and second-
level AST node QuestionNode, respectively.

The Visitor class must extend the “abstract” superclass
SurveyVisitor and override methods execute_question and
execute_result and, if the default behavior is not appro-
priate, override method execute_title. The execute_*

methods represent the Visitor pattern’s visit operations for
the various AST nodes. The prototype provides the con-
crete Visitor class SurveyInteractiveText that implements
an interactive, textual user interface using the standard in-
put and output streams. Figure 5 shows the visit operation
execute_question from that class.

The second pass starts execution by calling the accept

method of the AST’s root, passing a SurveyInteractiveText
instance. In Figures 3 and 4, we see that this method calls
the exectute_title operation and then calls the accept op-
erations for each of the question-level nodes, which, in turn,
call the execute_question operation. In Figure 5, we see
the implementation of the desired survey question semantics.
First, the method checks whether the associated condition is

def execute_question(env,q)

if q.condition == nil || q.condition.call

display_question(env.question_num,q.text)

resp = {}; label = ’a’ # labels from ’a’

q.responses.each do |r|

display_response(label,r.text)

resp[label] = [r.action,r.text]

label = label.succ

end

answers = get_answers(q.num_to_sel,’a’...label)

env.survey_answers << [env.question_num,answers]

answers.each do |a| # evaluate selected actions

env.response_label = a # used by

env.response_text = resp[a][1] # DSL block

act = resp[a][0]

act.call unless act == nil

env.response_label = nil

env.response_text = nil

end

q.action.call unless q.action == nil # eval

else

env.survey_answers << [env.question_num,[]]

end

env.question_num += 1

end#execute_question

Figure 5: SurveyInteractiveText#execute_question

satisfied. If it is not satisfied, then the question is skipped.
If it is satisfied, then the method displays the question text
and the possible responses and gathers the selections from
the respondent.

A key aspect of the execute_question call is the eval-
uation of the blocks (i.e., Ruby Procs or closures) stored
in the QuestionNode for the conditions and actions. These
are groups of Ruby statements whose executions have been
deferred from the first to the second pass. The blocks are in-
voked using the Proc’s call method. These stored blocks are
parameterless, but they can create new instance variables in
the SurveyBuilder object in which they are defined.

The Visitor’s execute_* methods must also make the ques-
tion number, response label, and the previous responses
available to the executing condition and action blocks. The
second-pass code uses the missing_method callback in the
SurveyBuilder class to dynamically create the needed writer
and reader methods. This method traps calls to undefined
writer methods and uses Ruby’s class_eval facility to cre-
ate what is needed. It then uses Ruby’s send method to
re-dispatch the writer call to the new method.

Of course, class SurveyInteractiveText is only one pos-
sible Visitor class. Others could be implemented to provide
a GUI user interface or to print a listing of the survey. Thus
the design of the second pass supports variability 8.

5. DISCUSSION
Drawing on the experience in designing and evolving the

JMock DSL, Freeman and Pryce make four recommenda-
tions for constructing a DSL in Java [7]. Although Ruby
provides better support for DSL construction than Java,
these ideas are still relevant to the Survey DSL.

Freeman and Pryce’s first recommendation is to “separate
syntax and interpretation into layers” [7]. The survey DSL
work finds this approach to be beneficial. The first pass uti-

lizes various unusual Ruby features (e.g., reflexive metapro-
gramming) to express and process the little language for
surveys. Except for the execution of the closures, the sec-
ond pass is more conventional, using the Visitor pattern to
execute the survey stored in the AST. The first pass im-
plementation is relatively complex; the second pass more
straightforward. As with JMock, the oddball aspects are
separated from the more routine aspects.

The second recommendation is to “use, and abuse, the
host language” [7] to enable the writing of readable DSL pro-
grams. The survey DSL uses the flexible syntax of Ruby—
optional parentheses in method calls, variable-length param-
eter lists, and blocks—to express the survey programs in a
readable, mostly declarative syntax. The DSL is defined so
that its execution as Ruby code gives a shell of a recursive
descent parser for the language. The DSL parser then lever-
ages the dynamic, reflexive metaprogramming features of
Ruby to recognize the syntax. Similarly, storing closures for
execution in the second pass makes the implementation of
the interpreter challenging. Ruby internal DSLs use the dis-
tinctive features of Ruby and perhaps flirt a bit with danger
by using the reflexive metaprogramming facilities.

Freeman and Pryce’s third recommendation is “don’t trap
the user” in the internal DSL [7]. The survey DSL implemen-
tation addresses this issue in a preliminary way. The use of
the Visitor pattern in the second pass enables users to write
visitors for other purposes. In the first pass, new subclasses
can also be implemented for SurveyDSL or SurveyBuilder

to extend the DSL. However, because the prototype is a
relatively course-grained whitebox framework, a program-
mer wishing to extend these classes must have considerable
knowledge of the current implementation. The tight cou-
pling of the parser classes with the concrete DSLContext class
may also cause some complications. Clearly, enabling users
to extend the survey DSL is an area for future work.

The fourth recommendation is to “map error reports to
the syntax layer” [7] rather than to the interpretation layer,
which is invisible to the DSL user. Although this paper
does not describe the error-reporting facilities, the survey
DSL parser does report error messages linked closely to the
input statements. Giving specific error messages is not triv-
ial given that the Ruby interpreter does much of the parsing.
The current design does not provide error messages during
execution that tie back to the syntactic components. How-
ever, the straightforward mapping from DSL statements to
AST nodes should enable such an approach. This, too, is an
area for future work.

6. CONCLUSION
This paper relates some of the author’s experiences in the

systematic analysis of the survey domain and the use of the
analysis to design and implement a novel domain-specific
language (DSL) for expressing survey programs. The lan-
guage is designed as an internal DSL in Ruby and imple-
mented using Ruby’s distinctive metaprogramming features.
Ruby and the analysis, design, and implementation tech-
niques employed prove to be effective in this instance. How-
ever, further research is needed to delineate more rigorous
techniques for analyzing the domain and using the analysis
results to motivate a Ruby internal DSL design. In addition,
future work should seek to formulate guidelines for achiev-
ing effective and safe Ruby implementations of the resulting
DSL designs.

7. ACKNOWLEDGMENTS
The author thanks Chuck Jenkins, Yi Liu, Pallavi Tade-

palli, and Jian Weng for their helpful suggestions.

8. REFERENCES
[1] J. Bentley. Programming pearls: Little languages.

Communications of the ACM, 29(8):711–721, August
1986.

[2] J. Buck. Writing domain specific languages.
http://weblog.jamisbuck.org, April 2006.

[3] L. Carlson and L. Richardson. Ruby Cookbook.
O’Reilly, 2006.

[4] J. Coplien, D. Hoffman, and D. Weiss. Commonality
and variability in software engineering. IEEE
Software, 15(6):37–45, November 1998.

[5] M. Fowler. Using the rake build language.
http://martinfowler.com/articles/rake.html,
August 2005.

[6] M. Fowler. Domain specific languages.
http://martinfowler.com/dslwip/, Work in progress
2007.

[7] S. Freeman and N. Pryce. Evolving an embedded
domain-specific language in Java. In Companion to the
Conference on Object-Oriented Programming
Languages, Systems, and Applications, pages 855–865.
ACM SIGPLAN, October 2006.

[8] J. Freeze. Creating DSLs with Ruby. Artima
Developer: Ruby Code and Style, March 2006.
http://www.artima.com/rubycs/articles/

ruby_as_dsl.html.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[10] P. Hudak. Modular domain specific languages and
tools. In P. Devanbu and J. Poulin, editors, Proceeding
of the 5th International Conference on Software Reuse
(ICSR’98), pages 134–142. IEEE, 1998.

[11] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain specific languages. ACM
Computing Surveys, 37(4):316–344, December 2005.

[12] T. Parr. The Definitive ANTLR Reference: Building
Domain-Specific Languages. Pragmatic Bookshelf,
2007.

[13] S. Thibault, R. Marlet, and C. Consel.
Domain-specific languages: From design to
implementation—Application to video device drivers
generation. IEEE Transactions on Software
Engineering, 25(3):363–377, May/June 1999.

[14] D. Thomas, C. Fowler, and A. Hunt. Programming
Ruby: The Pragmatic Programmers’ Guide. Pragmatic
Bookshelf, second edition, 2005.

[15] D. Thomas and D. Heinemeier Hansson. Agile
Development with Rails. Pragmatic Bookshelf, second
edition, 2006.

[16] A. van Deursen, P. Klint, and J. Visser. Domain
specific languages: An annotated bibliography.
SIGPLAN Notices, 35(6):26–36, June 2000.

[17] Wikipedia, The Free Encyclopedia.
Metaprogramming. http://en.wikipedia.org/wiki
/Metaprogramming, Accessed 22 February 2008.

