
The Kamin Interpreters in C++

Tim Budd

December 11, 2010

Abstract

This paper describes a series of interpreters for the languages used in the book
“Programming Languages: An Interpreter-Based Approach” by Samuel Kamin
(Addison-Wesley, 1989). Unlike the interpreters provided by Kamin, which are
written in Pascal, these interpreters are written in C++. It is my belief that
the use of inheritance in C++ better illustrates the unique features of each of
the several languages. In the Pascal versions of the interpreters the differences
between the various interpreters, although small, are scattered throughout the
code. In the C++ versions differences are produced using only the mechanism
of subclassing. This means that the vast majority of code remains the same,
and differences can be much more precisely isolated.

The chapters in this report correspond to the chapters in the original text.
Where motivational or background material is provided in that source it is
generally omitted here. A major exception is in those places (chiefly chapters
3, 7 and 8) where I have selected a syntax slightly different from that provided
by Kamin.

The use of an Object-Oriented language for the interpreters may seem a bit
incongruous, since Object-Oriented programming is not discussed until Chapter
7. Nevertheless, I think the benefits of programming the interpreters in C++
outweighs this problem.

Chapter 1

The Basic Interpreter

The structure of our basic interpreter1 differs somewhat from that described
by Kamin. Our interpreter is structured around a small main program which
manipulates three distinct types of data structures. The main program is shown
in Figure 1.1, and will be discussed in more detail in the next section. Each of the
three main data structures is represented by a C++ class, such is subclassed in
various ways by the different interpreters. The three varieties of data structures
are the following:

• Readers. Instances of this class prompt the user for input values, and
break the input into a structure of unevaluated components. A single
instance of either the class Reader or a subclass is created during the
initialization process for each interpreter. The base reader class is sub-
classed in those interpreters which introduce new syntactic elements (such
as quoted lists in Lisp or vectors in APL).

• Environments. An Environment is a data structure used to maintain a
collection of symbol-value pairs, such as the global run-time environment
or the values of arguments passed to a function. Values can be added to
an environment, and the existing binding of a symbol to a value can be
changed to a new value.

• Expressions. Expressions represent the heart of the system, and the
differences between the various interpreters is largely found in the various
different types of expressions they manipulate. Expressions know how to
“evaluate themselves” where the meaning of that expression is determined
by each type of expression. In addition expressions also know how to print
their value, and that, too, differs for each type of expression.

In subsequent sections we will explore in more detail each of these data
structures.

1It should be noted that our basic interpreter is not an interpreter for Basic.

1

main() {
Expr entered; // expression as entered by users

// common initialization
emptyList = new ListNode(0, 0);
globalEnvironment = new Environment(emptyList, emptyList, 0);
valueOps = new Environment(emptyList, emptyList, 0);
commands = new Environment(emptyList, emptyList, valueOps);

// language-specific initialization
initialize();

// the read-eval-print loop
while (1) {

entered = reader→promptAndRead();

// see if expression is quit
Symbol ∗ sym = entered()→isSymbol();
if (sym && (∗sym == "quit"))

break;

// nothing else, must just be an expression
entered.evalAndPrint(commands, globalEnvironment);
}

}

Figure 1.1: The Read-Eval-Print Loop for the interpreters

1.1 The Main Program

Figure 1.1 shows the main program,2 which defines the top level control for
the interpreters. The same main program is used for each of the interpreters.
Indeed, the vast majority of code remains constant throughout the interpreters.

The structure of the main program is very simple. To begin, a certain
amount of initialization is necessary. There are four global variables found in all
the interpreters. The variable emptyList contains a list with no elements. (We
will return to a discussion of lists in Section 1.4.4). The three environments
globalEnvironment, valueOps and commands represent the top-level context for
the interpreters. The globalEnvironment contains those symbols that are acces-
sible at the top level. The valueOps are those operations that can be performed
at any level, but which are not symbols themselves that can be manipulated by

2I have omitted the “include” directives and certain global declarations from this figure.
The complete code can be found elsewhere (where?).

2

the user. Finally commands are those functions that can be invoked only at the
top level of execution. That is, commands cannot be executed within function
definitions.

Following the common initialization the function initialize is called to provide
interpreter-specific initialization. This chiefly consists of adding values to the
three environments. This function is changed in each of the various interpreters.

The heart of the system is a single loop, which executes until the user types
the directive quit.3 The reader (which must be defined as part of the interpreter-
specific initialization) requests a value from the user. After testing for the the
quit directive, the entered expression is evaluated. We will defer an explaination
of the evalAndPrint method until Section 1.4, merely noting here that it evaluates
the expression the user has entered and prints the result. The read-eval-print
cycle then continues.

1.2 Readers

Readers are implemented by instances of class Reader, shown in Figure 1.2.
The only public function performed by this class is provided by the method
promptAndRead, which prints the interpreter prompt, waits for input from the
user, and then parses the input into a legal, but unevaluated, expression (usually
a symbol, integer or list-expression). These actions are implemented by a variety
of utility routines, which are declared as protected so that they may be made
available to later subclasses.

The code that implements this data structure is relatively straight-forward,
and most of it will not be presented here. The main method is the single public-
accessible routine promptAndRead, which is shown in Figure 1.3. This method
loops until the user enters an expression. The method fillInputBuffer places the
instance pointer p at the first non-space character (also stripping out comments).
Thus lines containing only spaces, newlines, or comments are handled quickly
here, and cause no further action. Also, as have noted previously, an end-of-
input indication is caught by the method fillInputBuffer, which then places the
quit command in the input buffer. The method readExpression (Figure 1.4) is
the parser used to break the input into an unevaluated expression. This method
is declared virtual, and thus can be redefined in subclasses. The base method
recognizes only integers, symbols, and lists. The routine to read a list recursively
calls the method to read an expression.

3The reader data structure will trap end-of-input signals, and if detected acts as if the user
had typed the quit directive.

3

class Reader {
public:

Expression ∗ promptAndRead();

protected:
char buffer[1000]; // the input buffer
char ∗ p; // current location in buffer

// general functions
void printPrimaryPrompt();
void printSecondaryPrompt();
void fillInputBuffer();
int isSeparator(int);
void skipSpaces();
void skipNewlines();

// functions that can be overridden
virtual Expression ∗ readExpression();

// specific types of expressions
int readInteger();
Symbol ∗ readSymbol();
ListNode ∗ readList();

};

Figure 1.2: Class Description of the reader class

4

Expression ∗ Reader::promptAndRead()
{

// loop until the user types something
do {

printPrimaryPrompt();
fillInputBuffer();
} while (! ∗p);

// now that we have something, break it apart
Expression ∗ val = readExpression();

// make sure we are at and of line
skipSpaces();
if (∗p) {

error("unexpected characters at end of line:", p);
}

// return the expression
return val;

}

Figure 1.3: The Method promptandRead from class Reader

1.3 Environments

As we have noted already, the Environment data structure is used to maintain
symbol-value pairings. In addition to the global environments defined during
initialization, environments are created for argument lists passed to functions,
and in various other contexts by some of the later interpreters. Environments
can be linked together, so that if a symbol is not found in one environment
another can be automatically searched. This facilitates lexical scoping, for ex-
ample.

For reasons having to do with memory management, the Environment data
structure, shown in Figure 1.5, is declared as a subclass of the class Expression.
Unlike other expressions, however, environments are never directly manipulated
by the user. Also for memory management reasons, there is a class Env declared
which can maintain a pointer to an environment. The two methods defined in
class Env set and return this value. Anytime a pointer is to be maintained
for any period of time, such as the link field in an environment, it is held in a
variable declared as Env rather than as a pointer directly. Finally the overridden
virtual methods isEnvironment and free in class Environment are also related to
memory management, and we will defer a discussion of these until the next
section.

5

Expression ∗ Reader::readExpression()
{

// see if it’s an integer
if (isdigit(∗p))

return new IntegerExpression(readInteger());

// might be a signed integer
if ((∗p == '-') && isdigit(∗(p+1))) {

p++;
return new IntegerExpression(− readInteger());
}

// or it might be a list
if (∗p == '(') {

p++;
return readList();
}

// otherwise it must be a symbol
return readSymbol();

}

ListNode ∗ Reader::readList()
{

// skipNewlines will issue secondary prompt
// until a valid character is typed
skipNewlines();

// if end of list, return empty list
if (∗p == ')') {

p++;
return emptyList;
}

// now we have a non-empty character
Expression ∗ val = readExpression();
return new ListNode(val, readList());

}

Figure 1.4: The method readExpression and readList

6

class Environment : public Expression {
private:

List theNames;
List theValues;
Env theLink;

public:
Environment(ListNode ∗, ListNode ∗, Environment ∗);

// overridden methods
virtual Environment ∗ isEnvironment();
virtual void free();

// new methods
Expression ∗ lookup(Symbol ∗);
void add(Symbol ∗, Expression ∗);
void set(Symbol ∗, Expression ∗);

};

class Env : public Expr {
public:

operator Environment ∗ ();
void operator = (Environment ∗ r);

};

Figure 1.5: The Environment data structure

7

Expression ∗ Environment::lookup(Symbol ∗ sym)
{

ListNode ∗ nameit = theNames;
ListNode ∗ valueit = theValues;

while (! nameit→isNil()) {
if (∗sym == nameit→head())

return valueit→head();
nameit = nameit→tail();
valueit = valueit→tail();
}

// otherwise see if we can find it on somebody elses list
Environment ∗ link = theLink;
if (link) return link→lookup(sym);

// not found, return nil value
return 0;

}

Figure 1.6: The method lookup in class Environment

The three methods used to manipulate environments are lookup, add and set.
The first attempts to find the value of the symbol given as argument, returning
a null pointer if no value exists. The method add adds a new symbol-value pair
to the front of the current environment. The method set is used to redefine an
existing value. If the symbol is not found in the current environment and there
is a valid link to another environment the linked environment is searched. If the
link field is null (that is, there is no next environment), the symbol and valued
are added to the current environment.

Environments are implemented using the List data structure, a form of Ex-
pression we will describe in more detail in Section 1.4.4. Two parallel lists
contain the symbol keys and their associated values. For the moment it is only
necessary to characterize lists by four operations. A list is composed of list nodes
(elements of class ListNode). Each node contains an expression (the head) and,
recursively, another list. The special value emptyList, which we have already
encountered, terminates every list. The operation head returns the first element
of a list node. When provided with an argument, the operation head can be
used to modify this first element. The operation tail returns the remainder of
the list. Finally the operation isNil returns true if and only if the list is the
empty list.

Figure 1.6 shows the method lookup, which is defined in terms of these four
operations. The while loop cycles over the list of keys until the end (empty list)

8

is reached. Each key is tested against the argument key, using the equality test
provided by the class Symbol. Once a match is found the associated value is
returned.

If the entire list of names is searched with no match found, if there is a link
to another environment the lookup message is passed to that environment. If
there is no link, a null value is returned.

The routine to add a new value to an environment (Figure 1.7) merely at-
taches a new name and value to the beginning of the respective lists. Note by
attaching to be beginning of a list this will hide any existing binding of the
name, although such a situation will not often occur. The method set searches
for an existing binding, replacing it if found, and only adding the new element
to the final environment if no binding can be located.

1.4 Expressions

The class Expression is a root for a class hierarchy that contains the majority
of classes defined in these interpreters. Figure 1.8 shows a portion of this class
hierarchy. We have already seen that environments are a form of expression, as
are integers, symbols, lists and functions.

1.4.1 The Abstract Class

The major purposes of the abstract class Expression (Figure 1.9) are to perform
memory management functions, to permit conversions from one type to another
in a safe manner, and to define protocol for evaluation and printing of expression
values. The latter is easist to dismiss. The virtual methods eval and print provide
for evaluation and printing of values. The eval method takes as argument a
target expression to which the evaluated expression will be assigned, as well
as two environments. The first environment contains the list of legal value-ops
for the expression, while the second is the more general environment in which
the expression is to be evaluated. The default method for eval merely assigns
the current expression to the target. This suffices for objects, such as integers,
which yield themselves no matter how many times they are evaluated. The
default method print, on the other hand, prints an error message. Thus this
method should always be overridden in subclasses.

Memory Management

For long running programs it is imperative that memory associated with unused
expressions be recovered by the underlying operating system. This is accom-
plished in these interpreters through the mechanism of reference counts. Every
expression contains a reference count field, which is initially set to zero by the
constructor in class Expression. The integer value maintained in this field repre-
sents the number of pointers that reference the object. When this count becomes

9

void Environment::add(Symbol ∗ s, Expression ∗ v)
{

theNames = new ListNode(s, (ListNode ∗) theNames);
theValues = new ListNode(v, (ListNode ∗) theValues);

}

void Environment::set(Symbol ∗ sym, Expression ∗ value)
{

ListNode ∗ nameit = theNames;
ListNode ∗ valueit = theValues;

while (! nameit→isNil()) {
if (∗sym == nameit→head()) {

valueit→head(value);
return;
}

nameit = nameit→tail();
valueit = valueit→tail();
}

// see if we can find it on somebody elses list
Environment ∗ link = theLink;
if (link) {

link→set(sym, value);
return;
}

// not found and we’re the end of the line, just add
add(sym, value);

}

Figure 1.7: Methods used to Insert into an environment

10

Expression Function��
List

�
�
�
Symbol

�
�
�
��
Integer

A
A
AEnvironment

BinaryFunction��
UnaryFunction

�
�
�
BeginStatement

�
�
�
��
SetStatement

�
�
�
�
�
�
WhileStatement

�
�
�
�
�
�
��
IfStatement

�
�
�
�
�
�
�
�
�
DefineStatement

@@UserFunction

IntegerBinaryFunction

Figure 1.8: The Expression class Hierarchy in Chapter 1

class Expression {
private:

friend class Expr;
int referenceCount;

public:
Expression();

virtual void free();

// basic object protocol
virtual void eval(Expr &, Environment ∗, Environment ∗);
virtual void print();

// conversion tests
virtual Expression ∗ touch();
virtual IntegerExpression ∗ isInteger();
virtual Symbol ∗ isSymbol();
virtual Function ∗ isFunction();
virtual ListNode ∗ isList();
virtual Environment ∗ isEnvironment();
virtual APLValue ∗ isAPLValue();
virtual Method ∗ isMethod();

};

Figure 1.9: The Class Expression

11

class Expr {
private:

Expression ∗ value;

protected:
Expression ∗ val()

{ return value; }

public:
Expr(Expression ∗ = 0);

Expression ∗ operator ()()
{ return val(); }

void operator = (Expression ∗);

void evalAndPrint(Environment ∗, Environment ∗);
};

Figure 1.10: The class Expr

zero, no pointers refer to the object and the memory associated with it can be
recovered.

The maintenance of reference counts if peformed by the class Expr (Fig-
ure 1.10). As with the class Env we have already encountered, the class Expr is
a holder class, which maintains an expression pointer. A value can be inserted
into an Expr either through construction or the assignment operator. A value
can be retrieved either though the protected method val or, as a notational con-
venience, through the parenthesis operator. The method evalAndPrint, as have
noted already, merely passes the eval message on to the underlying expression
and prints the resulting value.

Figure 1.4.1 gives the implementation of the constructor and assignment
operator for class Expr. The constructor takes an optional pointer to an expres-
sion, which may be a null expression (the default). If the expression is non-null,
the reference count for the expression is incremented. Similarly, the assignment
operator first increments the reference count of the new expression. Then it
decrements the reference count of the existing expression (if non-null), and if
the reference count reaches zero, the memory is released, using the system func-
tion delete. Immediately prior to destruction, the virtual method free is invoked.
Classes can override this method to provide any necessary class-specific main-
tenance. For example, the class Environment (Figure 1.5) assigns null values to
the structures theNames, theValues and theLink, thereby possibly triggering the
release of their storage as well.

12

Expr::Expr(Expression ∗ val)
{

value = val;
if (val) value→referenceCount++;

}

void Expr::operator = (Expression ∗ newvalue)
{

// increment right hand side of assignment
if (newvalue) {

newvalue→referenceCount++;
}

// decrement left hand side of assignment
if (value) {

value→referenceCount−−;
if (value→referenceCount = 0) {

value→free();
delete value;
}

}

// then do the assignment
value = newvalue;

}

13

Type Conversion

A common difficulty in a statically typed language such as C++ is the container
problem. Elements placed into a general purpose data structure, such as a list,
must have a known type. Generally this is accomplished by declaring such
elements as a general type, such as Expression. But in reality such elements are
usually instances of a more specific subclass, such as an integer or a symbol.
When we remove these values from the list, we would like to be able to recover
the original type.

There are actually two steps in the solution of this problem. The first step
is testing the type of an object, to see if it is of a certain form. The second step
is to legally assign the object to a variable declared as the more specific class.
In these interpreters the mechanism of virtual methods is used to combine these
two functions. In the abstract class Expression a number of virtual functions are
defined, such as isInteger and isEnvironment. These are declared as returning a
pointer type. The default behavior, as provided by class Expression, is to return
a null pointer. In an appropriate class, however, this method is overridden so
as to return the current element. That is, the class associated with integers
overrides isInteger, the class associated with symbols overrides isSymbol, and so
on. Figure 1.11 shows the two definitions of isEnvironment, the first from class
Expression and the second from class Environment. By testing whether the result
of this method is non-null or not, one can not only test the type of an object
but one can assign the value to a specific class pointer without compromising
type safety. An example bit of code is provided in Figure 1.11 that illustrates
the use of these functions.

The method touch presents a slightly different situation. It is defined in the
abstract class to merely return the object to which the message is sent. That is,
it is a null-operation. In Chapter 5, when we introduce delayed evaluation, we
will define a type of expression which is not evaluated until it is needed. This
expression will override the touch method to force evaluation at that point.

1.4.2 Integers

Internally within the interpreters integers are represented by the class IntegerEx-
pression (Figure 1.12). The actual integer value is maintained as a private value
set as part of the construction process. This value can be accessed via the
method val. The only overridden methods are the print method, which prints
the integer value, and the isInteger method, which yields the current object.

1.4.3 Symbols

Symbols are used to represent uninterpreted character strings, for example iden-
tifier names. Instances of class Symbol (Figure 1.13) maintain the text of their
value in a private instance variable. This character pointer can be recovered via

14

Environment ∗ Expression::isEnvironment()
{

return 0;
}

Environment ∗ Environment::isEnvironment()
{

return this;
}

Expression ∗ a = new Symbol("test");
Expression ∗ b = new Environment(emptyList, emptyList, 0);

Environment ∗ c = a→isEnvironment(); // will yield null
Environment ∗ d = b→isEnvironment(); // will yield the environment

if (c)
printf("c is an environment"); // won’t happen

if (d)
printf("d is an environment"); // will happen

Figure 1.11: Type safe object test and conversion

class IntegerExpression : public Expression {
private:

int value;
public:

IntegerExpression(int v)
{ value = v; }

virtual void print();
virtual IntegerExpression ∗ isInteger();

int val()
{ return value; }

};

Figure 1.12: The class IntegerExpression

15

class Symbol : public Expression {
private:

char ∗ text;

public:
Symbol(char ∗);

virtual void free();
virtual void eval(Expr &, Environment ∗, Environment ∗);
virtual void print();
virtual Symbol ∗ isSymbol();

int operator == (Expression ∗);
int operator == (char ∗);
char ∗ chars() { return text; }

};

void Symbol::eval(Expr & target, Environment ∗ valueops, Environment ∗ rho)
{

Expression ∗ result = rho→lookup(this);
if (result)

result = result→touch();
else

result = error("evaluation of unknown symbol: ", text);
target = result;

}

Figure 1.13: The class Symbol

the method chars. Storage for this text is allocated as part of the construction
process, and deleted by the virtual method free. The equality testing operators
return true if the current symbol matches the text of the argument.

Figure 1.13 also shows the implementation of the method eval in the class
Symbol. When a symbol is evaluated it is used as a key to index the current
environment. If found the (possibly touched) associated value is assigned to the
target. If it is not found an error message is generated. The routine error always
yields a null expression.

1.4.4 Lists

We have already encountered the behavior of the List data structure (Fig-
ure 1.14) in the discussion of environments. As with expressions and envi-
ronments, lists are represented by a pair of classes. The first, class ListNode,

16

maintains the actual list data. The second, class List, is merely a pointer to a
list node, and exists only to provide memory management operations.

Only one feature of the latter class deserves comment; rather than overload-
ing the parenthesis operator the class List defines a conversion operator which
permits instances of class List to be converted without comment to ListNodes.
Thus in most cases a List can be used where a ListNode is expected, and the
conversion will be implicitly defined. We have seen this already, without hav-
ing noted the fact, in several places where the variable emptyList (an instance
of class List) was used in situations where an instance of class ListNode was
required.

The actual list data is maintained in the instance variables h and t, which
we have already noted can be retrieved (and, in the case of the h, set) by the
methods head and tail. The method length returns the length of a list, and the
method at permits a list to be indexed as an array, starting with zero for the
head position.

The majority of methods, such as length, at, print, are simple recursive rou-
tines, and will not be discussed. Only one method is sufficiently complex to
deserve comment, and this is the procedure used to evaluate a list. A list is
interpreted as a function call, and thus the evaluation of a list involves finding
the indicated function and invoking it, passing as arguments the remainder of
the list. These actions are performed by the method eval shown in Figure 1.15.
An empty list always evaluates to itself. Otherwise the first argument to the
list is examined. If it is a symbol, a test is performed to see if it is one of the
value-ops. If it is not found on the value-op list the first element is evaluated,
whether or not it is a symbol. Generally this will yield a function value. If so,
the method apply, which we will discuss in the next section, is used to invoke
the function. If the first argument did not evaluate to a function an error is
indicated.

1.5 Functions

If expressions are the heart of the interpreter, then functions are the muscles
that keep the heart working. All behavior, statements, valueops, as well as user-
defined functions, are implemented as subclasses of class Function (Figure 1.16).
As we noted in the last section, when a function (written as a list expression)
is evaluated the method apply in invoked. This method takes as argument the
target for the evaluation and a list of unevaluated arguments. The default be-
havior in class Function is to evaluate the arguments, using the simple recursive
routine evalArgs, then invoke the method applyWithArgs.

Both the methods apply and applyWithArgs are declared as virtual, and can
thus be overridden in subclasses. Those function that do not evaluate their
arguments, such as the functions implementing the control structures of Chapter
1, override the apply method. Function that do evaluate their arguments, such

17

class ListNode : public Expression {
protected:

Expr h; // the head field
Expr t; // the tail field

public:
ListNode(Expression ∗, Expression ∗);

// overridden methods
virtual void free();
virtual void eval(Expr &, Environment ∗, Environment ∗);
virtual void print();
virtual ListNode ∗ isList();

// list specific methods
int isNil();
int length();
Expression ∗ at(int);
virtual Expression ∗ head();
void head(Expression ∗ x);
ListNode ∗ tail();

};

class List : public Expr {
public:

operator ListNode ∗();
void operator = (ListNode ∗ r);

};

Figure 1.14: The classes List and ListNode

18

void ListNode::eval(Expr & target, Environment ∗ valueops, Environment ∗ rho)
{

// an empty list evaluates to nil
if (isNil()) {

target = this;
return;
}

// if first argument is a symbol, see if it is a valueop
Expression ∗ firstarg = head();
Expression ∗ fun = 0;
Symbol ∗ name = firstarg→isSymbol();
if (name)

fun = valueops→lookup(name);

// otherwise evaluate it in the given environment
if (! fun) {

firstarg→eval(target, valueops, rho);
fun = target();
}

// now see if it is a function
Function ∗ theFun = 0;
if (fun) theFun = fun→isFunction();
if (theFun) {

theFun→apply(target, tail(), rho);
}

else {
target = error("evaluation of unknown function");
return;
}

}

Figure 1.15: The method eval from class List

19

class Function : public Expression {
public:

virtual Function ∗ isFunction();

virtual min.log

void apply(Expr &, ListNode ∗, Environment ∗);
virtual void applyWithArgs(Expr &, ListNode ∗, Environment ∗);
virtual void print();

// isClosure is recognized only by functions
virtual int isClosure();

};

static ListNode ∗ evalArgs(ListNode ∗ args, Environment ∗ rho)
{

if (args→isNil())
return args;

Expr newhead;
Expression ∗ first = args→head();
first→eval(newhead, valueOps, rho);
return new ListNode(newhead(), evalArgs(args→tail(), rho));
newhead = 0;

}

void Function::apply(Expr & target, ListNode ∗ args, Environment ∗ rho)
{

List newargs = evalArgs(args, rho);
applyWithArgs(target, newargs, rho);
newargs = 0;

}

Figure 1.16: The class Function and the method apply

20

as the majority of value-Ops, override the applyWithArgs method.
Two subclasses of Function deserve mention. The class UnaryFunction over-

rides apply to test that only one argument has been provided. Similarly the class
BinaryFunction tests for exactly two arguments. The remaining major subclass
of Function is the class UserFunction. We will defer a discussion of this until we
examine the implementation of the define statement.

1.6 The Basic Evaluator

We are now in a position to finally describe the characteristics that are unique
to the basic evaluator of chapter one. This interpreter recognizes one command
(the define statement), several built-in statements (if, while, set, and begin), and
a number of value-ops. All are implemented internally as functions. What syn-
tactic category a symbol is associated with is determined by what environment
it is placed on, and not by the structure of the function.

1.6.1 The define statement

The define statement is implemented as the single instance of the class De-
fineStatement (Figure 1.17), entered with the key “define” in the commands
environment. The class overrides the virtual method apply, since it must access
its arguments before they are evaluated. It tests that the arguments are exactly
three in number, and that the first is a symbol and the second a list. If no errors
are detected, an instance of the class UserFunction is created and and set in the
current (always global) environment.

The class UserFunction created by the define statement is similarly a subclass
of class Function (Figure 1.18). User functions maintain in instance variables
the list of argument names, the body of the function, and the lexical context
in which they are to execute. These values are set by the constructor when the
function is defined, and freed by the virtual method free when no longer needed.

User functions always work with evaluated arguments, and thus they override
the method applyWithArgs. The implementation of this method is also shown
in Figure 1.18. This method checks that the number of arguments supplied
matches the number in the function definition, then creates a new environment
to match the arguments and their values. The expression which represents the
body of the function is then evaluated. By passing the new context as argument
to the evaluation, symbolic references to the arguments will be matched with
the appropriate values.

1.6.2 Built-In Statements

The built-in statements if, while, set and begin are each defined by functions
entered in the valueOps environment. With the exception of begin, these must

21

class DefineStatement : public Function {
public:

virtual void apply(Expr &, ListNode ∗, Environment ∗);
};

void DefineStatement::apply(Expr & target, ListNode ∗ args, Environment ∗ rho)
{

if (args→length() != 3) {
target = error("define requires three arguments");
return;
}

Symbol ∗ name = args→at(0)→isSymbol();
if (! name) {

target = error("define missing name");
return;
}

ListNode ∗ argNames = args→at(1)→isList();
if (! argNames) {

target = error("define missing arg names list");
return;
}

rho→set(name, new UserFunction(argNames, args→at(2), rho));

// yield as value the name of the function
target = name;

};

Figure 1.17: Implementation of the define statement

22

class UserFunction : public Function {
protected:

List argNames;
Expr body;
Env context;

public:
UserFunction(ListNode ∗, Expression ∗, Environment ∗);
virtual void free();
virtual void applyWithArgs(Expr &, ListNode ∗, Environment ∗);
virtual int isClosure();

};

void UserFunction::applyWithArgs(Expr& target, ListNode∗ args, Environment∗
rho)
{

// number of args should match definition
ListNode ∗an = argNames;
if (an→length() != args→length()) {

error("argument length mismatch");
return;
}

// make new environment
Env newrho;
newrho = new Environment(an, args, context);

// evaluate body in new environment
Expression ∗ bod = body();
if (bod)

bod→eval(target, valueOps, newrho);
else

target = 0;

newrho = 0; // force memory recovery
}

Figure 1.18: The class UserFunction and method of application

23

class IfStatement : public Function {
public:

virtual void apply(Expr &, ListNode ∗, Environment ∗);
};

void IfStatement::apply(Expr & target, ListNode ∗ args, Environment ∗ rho)
{

if (args→length() != 3) {
target = error("if statement requires three arguments");
return;
}

Expr cond;
args→at(0)→eval(cond, valueOps, rho);
if (isTrue(cond()))

args→at(1)→eval(target, valueOps, rho);
else

args→at(2)→eval(target, valueOps, rho);
cond = 0;

}

int isTrue(Expression ∗ cond)
{

IntegerExpression ∗ival = cond→isInteger();
if (ival && ival→val() == 0)

return 0;
return 1;

}

Figure 1.19: The implementation of the If statement

capture their arguments before they are evaluated and thus, like define, they
override the method apply.

The If statement

The If statement (Figure 1.19) first insures it has three arguments. It then
evaluates the first argument. Using the auxiliary function isTrue (which will
vary over the different interpreters as our definition of “true” changes) the truth
or falsity of the first expression is determined. Depending upon the outcome,
either the second or third argument is evaluated to determine the result. In the
Chapter 1 interpreter the value 0 is false, and all other values (integer or not)
are considered to be true.

24

void WhileStatement::apply(Expr & target, ListNode ∗ args, Environment ∗ rho)
{ Expr stmt;

if (args→length() != 2) {
target = error("while statement requires two arguments");
return;
}

// grab the two pieces of the statement
Expression ∗ condexp = args→at(0);
Expression ∗ stexp = args→at(1);

// then start the execution loop
condexp→eval(target, valueOps, rho);
while (isTrue(target())) {

// evaluate body
stexp→eval(stmt, valueOps, rho);
// but ignore it (and force memory reclamation)
stmt = 0;
// then reevaluate condition
condexp→eval(target, valueOps, rho);
}

}

Figure 1.20: The implementation of the While statement

The while statement

The function that implements the while statement is shown in Figure 1.20.
Although the while statement requires two arguments, it nevertheless cannot
usefully be made a subclass of class BinaryFunction, since it must access its ar-
guments before they are evaluated. The implementation of the while statements
loops until the first argument evaluates to a true condition, using the same test
for true method used by the if statement. The results returned by evaluating
the body of the while statement are ignored, as the body is executed just for
side effects.

The set statement

The implementation of the set statement is shown in Figure 1.21. The function
insures the first argument is a symbol, evaluates the second argument, then sets
the binding of the symbol to value in the current environment.

25

void SetStatement::apply(Expr & target, ListNode ∗ args, Environment ∗ rho)
{

if (args→length() != 2) {
target = error("set statement requires two arguments");
return;
}

// get the two parts
Symbol ∗ sym = args→at(0)→isSymbol();
if (! sym) {

target = error("set commands requires symbol for first arg");
return;
}

// set target to value of second argument
args→at(1)→eval(target, valueOps, rho);

// set it in the environment
rho→set(sym, target());

}

Figure 1.21: The implementation of the set statement

The begin statement

Unlike the other statements, the begin statement does what to evaluate each
of its arguments. Thus it overrides the method applyWithArgs, instead of the
method apply. It merely assigns to the target variable the value of the last
expression (Figure 1.22).

1.6.3 The value-Ops

The Value-ops are functions placed in the valueop global environment. They can
be divided into two categories; there are those that take two integer arguments
and produce an integer result (+, −, ∗, /, =, < and >) and those that take a
single argument (print).

The implementation of the integer binary functions is simplified by the in-
troduction of an intermediate class IntegerBinaryFunction, a subclass of Binary-
Function (Figure 1.23). The private state for each instance of this class holds
a pointer to a function that takes two integer values and generates an integer
result. The applyWithArgs method in this class decodes the two integer argu-
ments, then invokes the stored function to produce the new integer value. To
implement each of the seven binary integer functions (the relational functions
generate 0 and 1 values for true and false, remember) it is only necessary de-

26

void BeginStatement::applyWithArgs(Expr& target, ListNode∗ args,
Environment∗ rho)
{

int len = args→length();

// yield as result the end of the list
if (len < 1)

target = error("begin needs at least one statement");
else

target = args→at(len − 1);
}

Figure 1.22: The implementation of the begin statement

fine an appropriate function and pass it as argument to the constructor during
initialization of the interpreter. This can be seen in Figure 1.24.

The print function is implemented by a subclass of UnaryFunction that merely
invokes the method print on the argument. All expressions will respond to this
method.

1.7 Initializing the Run-Time Environment

Figure 1.24 shows the initialization routine for the interpreters of chapter one.
In chapter one there are no global variables defined at the start of execution.
There is one command, the statement define, and a number of value-ops.

27

class IntegerBinaryFunction : public BinaryFunction {
private:

int (∗fun)(int, int);
public:

IntegerBinaryFunction(int (∗afun)(int, int));
virtual void applyWithArgs(Expr &, ListNode ∗, Environment ∗);
virtual int value(int, int);

};

void IntegerBinaryFunction::applyWithArgs(Expr& target, ListNode args,
Environment∗ rho)

{
Expression ∗ left = args→at(0);
Expression ∗ right = args→at(1);
if ((! left→isInteger()) || (! right→isInteger())) {

target = error("arithmetic function with nonint args");
return;
}

target = new IntegerExpression(
fun(left→isInteger()→val(), right→isInteger()→val()));

}

int PlusFunction(int a, int b) { return a + b; }
int MinusFunction(int a, int b) { return a − b; }
int TimesFunction(int a, int b) { return a ∗ b; }
int DivideFunction(int a, int b)
{

if (b != 0)
return a / b;

error("division by zero");
return 0;

}
int IntEqualFunction(int a, int b) { return a == b; }
int LessThanFunction(int a, int b) { return a < b; }
int GreaterThanFunction(int a, int b) { return a > b; }

Figure 1.23: Implementation of the Arithmetic Functions

28

initialize()
{

// create the reader/parser
reader = new Reader;

// initialize the commands environment
Environment ∗ cmds = commands;
cmds→add(new Symbol("define"), new DefineStatement);

// initialize the value-ops environment
Environment ∗ vo = valueOps;
vo→add(new Symbol("if"), new IfStatement);
vo→add(new Symbol("while"), new WhileStatement);
vo→add(new Symbol("set"), new SetStatement);
vo→add(new Symbol("begin"), new BeginStatement);
vo→add(new Symbol("+"), new IntegerBinaryFunction(PlusFunction));
vo→add(new Symbol("-"), new IntegerBinaryFunction(MinusFunction));
vo→add(new Symbol("*"), new IntegerBinaryFunction(TimesFunction));
vo→add(new Symbol("/"), new IntegerBinaryFunction(DivideFunction));
vo→add(new Symbol("="), new IntegerBinaryFunction(IntEqualFunction));
vo→add(new Symbol("<"), new IntegerBinaryFunction(LessThanFunction));
vo→add(new Symbol(">"), new

IntegerBinaryFunction(GreaterThanFunction));
vo→add(new Symbol("print"), new PrintFunction);

}

Figure 1.24: Initialization of the Basic Evaluator

29

Chapter 2

The Lisp Interpreter

The interpreter for Lisp differs only slightly from that of Chapter one. The
reader/parser is modified so as to recognize quoted constants, two new global
variables (T and nil) are added, and a number of new value-ops are defined. In
all other respects it is the same. Figure 2.1 shows the class hierarchy for the
expression classes added in chapter 2.

2.1 The Lisp reader

The Lisp reader is created by subclassing from the base class Reader (Figure 2.2).
The only change is to modify the method readExpression to check for leading
quote marks. If no mark is found, execution is as in the default case. If a quote
mark is found, the character pointer is advanced and the following expression
is turned into a quoted constant. Note that no checking is performed on this
expression. This permits symbols, even separators, to be treated as data. That
is, ’; is a quoted symbol, even though the semicolon itself is not a legal symbol.

To create quoted constants it is necessary to introduce a new type of expres-
sion. When an instance of class QuotedConst is evaluated, it simply returns its
(unevaluated) data value.

Expression Function
@@QuotedConstant

BinaryFunction�
�
�
��
UnaryFunction BooleanUnary

��
IntegerBinaryFunction

@@BooleanBinaryFunction

Figure 2.1: Classes added in Chapter Two

30

class QuotedConst : public Expression {
private:

Expr theValue;
public:

QuotedConst(Expression ∗ val)
{ theValue = val; }

virtual void free();
virtual void eval(Expr &, Environment ∗, Environment ∗);
virtual void print();

};

class LispReader : public Reader {
protected:

virtual Expression ∗ readExpression();
};

void QuotedConst::eval(Expr &target, Environment ∗, Environment ∗)
{

target = theValue();
}

void QuotedConst::print()
{

printf("'"); theValue()→print();
}

Expression ∗ LispReader::readExpression()
{

// if quoted constant, return it,
if ((∗p == '\'') || (∗p == '‘')) {

p++;
return new QuotedConst(readExpression());
}

// otherwise simply return what we had before
return Reader::readExpression();

}

Figure 2.2: The Lisp reader/parser

31

2.2 Value-ops

In addition to adding a number of new value-ops, the Lisp interpreter modifies
the meaning of a few of the Chapter 1 functions. For example the relational
operators must now return the values T or nil, and not 1 and 0 values. Similarly
the meaning of true and false used by the if and while statements is changed.
Finally the equality testing function (=) must now recognize both symbols and
integers.

2.2.1 Relationals

Figure 2.3 shows the revised definition of the equality testing function, which
now must be prepared to handle symbols and well as integers.

Implementation of the boolean binary functions is simplified by the intro-
duction of a class BooleanBinaryFunction (Figure 2.4). This class decodes the
two integer arguments and invokes a further method to determine the boolean
result. Based on this result either the value of the global symbol representing
true or the symbol representing false is returned.

Finally Figure 2.4 shows the revised function used by if and while statements
to determine the truth or falsity of their condition. Unlike in Chapter 1, where
0 and 1 were used to represent true and false, here nil is used as the only false
value.

2.2.2 Car, Cdr and Cons

Car and cdr are implemented as simple unary functions (Figure 2.5), and cons is
a simple binary function that creates a new ListNode out of its two arguments.1

2.2.3 Predicates

The implementation of the predicates number?, symbol?, list? and null? is sim-
plified by the creation of a class BooleanUnary (Figure 2.6), subclassing Unary-
Function. As with the integer functions implemented in chapter 1, instances of
BooleanUnary maintain as part of their state a function that takes an expression
and returns an integer (that is, boolean) value. Thus for each predicate it is
only necessary to write a function which takes the single argument and returns
a true/false indication.

1A matter for debate is whether Cons should give an error if the second argument is not
a list. Real Lisp doesn’t care; but also uses a different format for printing such lists. Our
interpreter prints such as lists exactly as if the second argument had been a list containing
the element.

32

class EqualFunction : public BinaryFunction {
public:

virtual void applyWithArgs(Expr&, ListNode ∗, Environment ∗);
};

void EqualFunction::applyWithArgs(Expr& target, ListNode ∗ args,
Environment ∗rho)

{
Expression ∗ one = args→at(0);
Expression ∗ two = args→at(1);

// true if both numbers and same number
IntegerExpression ∗ ione = one→isInteger();
IntegerExpression ∗ itwo = two→isInteger();
if (ione && itwo && (ione→val() == itwo→val())) {

target = true();
return;
}

// or both symbols and same symbol
Symbol ∗ sone = one→isSymbol();
Symbol ∗ stwo = two→isSymbol();
if (sone && stwo && (∗sone == stwo)) {

target = true();
return;
}

// or both lists and both nil
ListNode ∗ lone = one→isList();
ListNode ∗ ltwo = two→isList();
if (lone && ltwo && lone→isNil() && ltwo→isNil()) {

target = true();
return;
}

// false otherwise
target = false();

}

Figure 2.3: The revised Definition of the equality function

33

class BooleanBinaryFunction : public BinaryFunction {
private:

int (∗fun)(int, int);
public:

BooleanBinaryFunction(int (∗thefun)(int, int)) { fun = thefun; }
virtual void applyWithArgs(Expr&, ListNode∗, Environment∗);
virtual int value(int, int);

};

void BooleanBinaryFunction::applyWithArgs(Expr& target, ListNode∗ args,
Environment∗ rho)

{
Expression ∗ left = args→at(0);
Expression ∗ right = args→at(1);
if ((! left→isInteger()) || (! right→isInteger())) {

target = error("arithmetic function with nonint args");
return;
}

if (value(left→isInteger()→val(), right→isInteger()→val()))
target = true();

else
target = false();

}

int LessThanFunction::value(int a, int b) { return a < b; }
int GreaterThanFunction::value(int a, int b) { return a > b; }

int isTrue(Expression ∗ cond)
{

// the only thing false is nil
ListNode ∗nval = cond→isList();
if (nval && nval→isNil())

return 0;
return 1;

}

Figure 2.4: Returning boolean results from relationals

34

void CarFunction(Expr & target, Expression ∗ arg)
{

ListNode ∗ thelist = arg→isList();
if (! thelist) {

target = error("car applied to non list");
return;
}

target = thelist→head()→touch();
}

void CdrFunction(Expr & target, Expression ∗ arg)
{

ListNode ∗ thelist = arg→isList();
if (! thelist) {

target = error("car applied to non list");
return;
}

target = thelist→tail()→touch();
}

void ConsFunction(Expr & target, Expression ∗ left, Expression ∗ right)
{

target = new ListNode(left, right);
}

Figure 2.5: Implementation of Car, Cdr and Cons

35

class BooleanUnary : public UnaryFunction {
private:

int (∗fun)(Expression ∗);
public:

BooleanUnary(int (∗thefun)(Expression ∗);
virtual void applyWithArgs(Expr& target, ListNode∗ args, Environment∗);

};

void BooleanUnary::applyWithArgs(Expr & target, ListNode ∗ args, Environment
∗)
{

if (fun(args→head()))
target = true();

else
target = false();

}

int NumberpFunction(Expression ∗ arg)
{

return 0 != arg→isInteger();
}

int SymbolpFunction(Expression ∗ arg)
{

return 0 != arg→isSymbol();
}

int ListpFunction(Expression ∗ arg)
{

ListNode ∗ x = arg→isList();
// list? doesn’t return true on nil
if (x && x→isNil()) return 0;
if (x) return 1;
return 0;

}

int NullpFunction(Expression ∗ arg)
{

ListNode ∗ x = arg→isList();
return x && x→isNil();

}

Figure 2.6: The class Boolean Unary

36

2.3 Initialization of the Lisp Interpreter

Figure 2.7 shows the initialization method for the Lisp interpreter.

37

initialize()
{

// create the reader/parser
reader = new LispReader;

// initialize the global environment
Symbol ∗ truesym = new Symbol("T");
true = truesym;
false = emptyList();
Environment ∗ genv = globalEnvironment;
// make T evaluate to T always
genv→add(truesym, truesym);
genv→add(new Symbol("nil"), emptyList());

// initialize the commands environment
Environment ∗ cmds = commands;
cmds→add(new Symbol("define"), new DefineStatement);

// initialize the value-ops environment
Environment ∗ vo = valueOps;
vo→add(new Symbol("if"), new IfStatement);
vo→add(new Symbol("while"), new WhileStatement);
vo→add(new Symbol("set"), new SetStatement);
vo→add(new Symbol("begin"), new BeginStatement);
vo→add(new Symbol("+"), new IntegerBinaryFunction(PlusFunction));
vo→add(new Symbol("-"), new IntegerBinaryFunction(MinusFunction));
vo→add(new Symbol("*"), new IntegerBinaryFunction(TimesFunction));
vo→add(new Symbol("/"), new IntegerBinaryFunction(DivideFunction));
vo→add(new Symbol("="), new BinaryFunction(EqualFunction));
vo→add(new Symbol("<"), new BooleanBinaryFunction(LessThanFunction));
vo→add(new Symbol(">"), new

BooleanBinaryFunction(GreaterThanFunction));
vo→add(new Symbol("cons"), new BinaryFunction(ConsFunction));
vo→add(new Symbol("car"), new UnaryFunction(CarFunction));
vo→add(new Symbol("cdr"), new UnaryFunction(CdrFunction));
vo→add(new Symbol("number?"), new BooleanUnary(NumberpFunction));
vo→add(new Symbol("symbol?"), new BooleanUnary(SymbolpFunction));
vo→add(new Symbol("list?"), new BooleanUnary(ListpFunction));
vo→add(new Symbol("null?"), new BooleanUnary(NullpFunction));
vo→add(new Symbol("print"), new UnaryFunction(PrintFunction));

}

Figure 2.7: Initialization of the Lisp interpreter

38

Chapter 3

The APL Interpreter

My version of the APL interpreter differs somewhat from that provided by
Kamin:

• My version will recognize arbitrary rank (dimension) arrays, not simply
scalar, vector and two dimensional arrays. (Although currently it is only
able to print those three types).

• The C++ version of the interpreter recognizes vector constants without
the necessity for quoting them, as in (resize (3 4) (indx 12)).

• I have eliminated the if and while statements, thus forcing programmers
into a more “APL” style of thought.

• My version of catenation works now for values of arbitrary dimensionality.
(Transpose and print are the only two functions that limit the dimension-
ality of their arguments).

Despite the APL interpreter being larger than any other interpreter, I think
that the addition of a few more functions could give the student an even better
feel for the language, as well as providing a smooth transition to functional
programming. Specifically, I think reduction should be defined as a functional,
and inner and outer products added as operations. I have not done this as yet,
however.

Figure 3.1 shows the class hierarchy for the classes introducted in this chap-
ter.

3.1 APL Values

The APL interpreter manipulates APL values, which are defined by the data
type APLValue (Figure 3.2). An APL value represents a integer rectilinear array.

39

Expression Function
A
A
AAPLValue

A
A
ABinaryFunction APLBinaryFunction

�
�
�
UnaryFunction APLUnaryFunction RavelFunction��

ShapeFunction
�
�
�
APLReduction

@@IndexFunction

�
�
�
��
TransposeFunction

RestructFunction��
CompressFunction

@@APLScalarFunction
A
A
ACatenationFunction

B
B
B
BBSubscriptionFunction

Figure 3.1: The APL interpreter class hierarchy

Internally, such a value is represented by a list that maintains the shape (extent
along each dimension) and a vector of integer values. The length of the shape
list provides the rank (dimensionality) of the data value. The product of the
values in the shape indicates the number of elements in the array, except in the
case of scalar values, which have an empty shape array.

APL values are stored in what is called ravel-order. This is what in some
other languages is called row-major order.

The methods defined for APL values can be used to determine the number of
elements contained in the structure (size), obtain the shape of the value (shape),
obtain the shape at any given dimension (shapeAt), obtain the value at any given
ravel-order position (at), and finally change the value at any position (atPut).

3.2 The APL Reader

The APL reader is modified so that individual scalar values and vectors of
integers are recognized as APL values. The class definition for APLreader is
shown in Figure 3.3, and the code for the two auxiliary functions in the next
figure.

3.3 APL Functions

The implementation of the APL functions is simplified by the addition of two
auxiliary classes, APLUnary and APLBinary. In addition to checking that the
right number of arguments are provided to a function application, these check
to insure that the arguments are APL values1 and invoke yet another virtual

1A largely gratuitous move, since the user has no way of creating anything other than an
APL value. Still, it doesn’t do any harm to be careful.

40

class APLValue : public Expression {
private:

List shapedata;
int ∗ data;

public:
APLValue(ListNode ∗, int);

// the overridden methods
virtual APLValue ∗ isAPLValue();
virtual void free();
virtual void print();

// methods unique to apl values
int size();
ListNode ∗ shape();
int shapeAt(int);
int at(int pos);
void atPut(int pos, int val);

};

Figure 3.2: The Representation for APL Values

function applyOp, to perform the actual calculation.

3.3.1 Scalar Functions

By far the largest class of APL functions are the so-called scalar functions.
These are the conventional arithmetic and logical functions, such as addition and
multiplication, extended in the natural way to arrays. The only complication
in the implementation of these values concerns what is called scalar extension.
That is, a scalar value can be used as either the left or right argument to a
scalar function, and it is treated as if it were an entire array of the correct
dimensionality to match the other argument. Since scalar extension can occur
with either the left or right argument, the code for scalar functions divides
naturally into three cases.

Scalar functions are implemented using a single class by making use, as we
have done before, of an instance variable that contains a pointer to a integer
function that generates an integer result. The class APLscalarFunction and the
method applyOp are shown in Figure 3.5. Note that the same functions used
in the previous interpreters can be used in the construction of the APL scalar
functions.

41

class APLreader : public LispReader {
protected:

virtual Expression ∗ readExpression();
private:

APLValue ∗ readAPLscalar(int);
APLValue ∗ readAPLvector(int);

};

Expression ∗ APLreader::readExpression()
{

// see if it is a scalar value
if ((∗p == '-') && isdigit(∗(p+1))) {

p++;
return readAPLscalar(− readInteger());
}

if (isdigit(∗p))
return readAPLscalar(readInteger());

// see if it is a vector constant
if (∗p == '(') {

p++;
skipNewlines();
if (isdigit(∗p))

return readAPLvector(0);
return readList();
}

// else default
return LispReader::readExpression();

}

Figure 3.3: The APL reader

42

APLValue ∗ APLreader::readAPLscalar(int d)
{

// read a scalar value, but make it an APL value
APLValue ∗ newval = new APLValue(emptyList, 1);
newval→atPut(0, d);
return newval;

}

APLValue ∗ APLreader::readAPLvector(int size)
{

skipNewlines();

// if at end of list, make new vector
if (∗p == ')') {

p++;
return new APLValue(

new ListNode(new IntegerExpression(size), emptyList()),
size);

}

// else we better have a digit, save it and get the rest
int sign = 1;
if (∗p == '-') { sign = −1; p++; }
if (! isdigit(∗p))

error("ill formed apl vector constant");
int val = sign ∗ readInteger();
APLValue ∗ newval = readAPLvector(size + 1);
newval→atPut(size, val);
return newval;

}

Figure 3.4: The APL reader functions

43

void APLScalarFunction::applyOp(Expr& target, APLValue∗ left, APLValue∗
right)
{

if (left→size() == 1) { // scalar extension of left
int extent = right→size();
APLValue ∗ newval = new APLValue(right→shape(), extent);
int lvalue = left→at(0);
while (−−extent >= 0)

newval→atPut(extent, fun(lvalue, right→at(extent)));
target = newval;
}

else if (right→size() == 1) { // scalar extension of right
int extent = left→size();
APLValue ∗ newval = new APLValue(left→shape(), extent);
int rvalue = right→at(0);
while (−−extent >= 0)

newval→atPut(extent, fun(left→at(extent), rvalue));
target = newval;
}

else { // conforming arrays
int extent = left→size();
if (extent != right→size()) {

target = error("conformance error on scalar function");
return;
}

for (int i = left→shape()→length(); −−i >= 0;)
if (left→shapeAt(i) != right→shapeAt(i)) {

target =
error("conformance error on scalar function");
return;
}

APLValue ∗ newval = new APLValue(left→shape(), extent);
while (−−extent >= 0)

newval→atPut(extent,
fun(left→at(extent), right→at(extent)));

target = newval;
}

}

Figure 3.5: APL Scalar Functions

44

3.3.2 Reduction

For each scalar function there is an associated reduction function.2 Reduction
in these interpreters always occurs along the last dimension. Thus to compute
the size of a new value is suffices to remove the last dimension value. This
also simplifies the generation of the new values, since the argument array can
be processed in units as long as the final dimension. As with the scalar func-
tions, there is one class defined for all the reductions, with each instance of this
class maintaining the particular scalar function being used for the reduction
operations. Figure 3.6 shows the code used in computing the APL reduction
function.

3.3.3 Compression

Compression, like reduction, operates on the last dimension of a higher order
array, changing its extent to that of the number of one elements in the left-
argument vector. The length of the left argument vector must match the extent
of the last dimension of the right argument. The compression function (Fig-
ure 3.7) first computes the number of one elements in the left argument, then
iterates over the right argument generating the new values.

3.3.4 Shape and Reshape

The shape function merely copies the size on its argument into a new APL
value. The reshape function (restruct) generates a new value with a size given
by the left argument, which must be a vector, using elements from the right
argument, recycling over the ravel ordering of the right argument multiple times
if necessary. The implementation of these functions is shown in Figure 3.8.

3.3.5 Ravel and Index

The ravel function (Figure 3.9) merely takes an argument of arbitrary dimen-
sionality and returns the values as a vector. The index function (called iota in
real APL) takes a scalar value and returns a vector of numbers from 1 to the
argument value.

3.3.6 Catenation

The catenation function joins two arrays along their last dimension. They must
match in all other dimensions. To build the new result first a row from the
first array is copies into the final array, then a row from the second array, then
another row from the first, followed by another row from the second, and so on
until all rows from each argument have been used.

2The statement is true of real APL. The Kamin interpreters do not implement reductions
with relational operators, which are, however, not particularly useful.

45

static int lastSize(ListNode ∗ sz)
{

int i = sz→length();
if (i > 0) {

IntegerExpression ∗ ie = sz→at(i−1)→isInteger();
if (ie)

return ie→val();
}

return 1;
}

static ListNode ∗ removeLast(ListNode ∗ sz)
{

ListNode ∗ newsz = emptyList;
int i = sz→length()−1;
while (−−i >= 0)

newsz = new ListNode(sz→at(i), newsz);
return newsz;

}

void APLReduction::applyOp(Expr & target, APLValue ∗ arg)
{

// compute the size of the new expression
int rowextent = lastSize(arg→shape());
int extent = arg→size() / rowextent;
APLValue ∗ newval = new APLValue(removeLast(arg→shape()), extent);

while (−−extent >= 0) {
int start = (extent + 1) ∗ rowextent − 1;
int newint = arg→at(start);
for (int i = rowextent − 2; i >= 0; i−−)

newint = fun(arg→at(−−start), newint);
newval→atPut(extent, newint);
}

target = newval;
}

Figure 3.6: Implementation of the APL reduction function

46

static ListNode ∗ replaceLast(ListNode ∗ sz, int i)
{

ListNode ∗nz = new ListNode(new IntegerExpression(i), emptyList());
for (i = sz→length() − 1; −−i >= 0;)

nz = new ListNode(sz→at(i), nz);
return nz;

}

void CompressionFunction::applyOp(Expr& target, APLValue∗ left, APLValue∗
right)
{

if (left→shape()→length() >= 2) {
target = error("compression requires vector left arg");
return;
}

int lsize = left→size(); // works for both scalar and vec
int rsize = lastSize(right→shape());
if (lsize != rsize) {

target = error("compression conformability error");
return;
}

// compute the number of non-zero values
int i, nsize;
nsize = 0;
for (i = 0; i < lsize; i++)

if (left→at(i)) nsize++;

// now compute the new size
int rextent = right→size();
int extent = (rextent / lsize) ∗ nsize;

APLValue ∗ newval = new APLValue(replaceLast(right→shape(), nsize),
extent);

// now fill in the values
int index = 0;
for (i = 0; i <= rextent; i++)

if (left→at(i % lsize))
newval→atPut(index++, right→at(i));

target = newval;
}

Figure 3.7: The Compression function

47

void ShapeFunction::applyOp(Expr & target, APLValue ∗ arg)
{

int extent = arg→shape()→length();
ListNode ∗ newshape = new ListNode(new IntegerExpression(extent),

emptyList());
APLValue ∗ newval = new APLValue(newshape, extent);
while (−−extent >= 0) {

IntegerExpression ∗ ie = arg→shape()→at(extent)→isInteger();
if (ie)

newval→atPut(extent, ie→val());
else

target = error("impossible case in Shapefunction");
}

target = newval;
};

void RestructFunction::applyOp(Expr & target, APLValue ∗ left, APLValue ∗
right)
{

int llen = left→shape()→length();
if (llen >= 2) {

target = error("restruct requires vector left arg");
return;
}

llen = left→size(); // works for either scalar or vector
int extent = 1;
ListNode ∗ newShape = emptyList;
while (−−llen >= 0) {

newShape = new ListNode(new IntegerExpression(left→at(llen)),
newShape);

extent ∗= left→at(llen);
}

APLValue ∗ newval = new APLValue(newShape, extent);
int rsize = right→size();
while (−−extent >= 0)

newval→atPut(extent, right→at(extent % rsize));
target = newval;

}

Figure 3.8: The shape and reshape functions

48

void RavelFunction::applyOp(Expr & target, APLValue ∗ arg)
{

int extent = arg→size();
APLValue ∗ newval = new APLValue(extent);
while (−−extent >= 0)

newval→atPut(extent, arg→at(extent));
target = newval;

}

void IndexFunction::applyOp(Expr & target, APLValue ∗ arg)
{

if (arg→size() != 1) {
target = error("index function requires scalar argument");
return;
}

int extent = arg→at(0);
APLValue ∗ newval = new APLValue(extent);
while (−−extent >= 0)

newval→atPut(extent, extent + 1);
target = newval;

}

Figure 3.9: Ravel and Index

49

void CatenationFunction::applyOp(Expr& target, APLValue∗ left, APLValue∗
right)
{

ListNode ∗ lshape = left→shape();
ListNode ∗ rshape = right→shape();
int llen = lshape→length();
int rlen = rshape→length();
if (llen <= 0 || (llen != rlen)) {

target = error("catenation conformability error");
return;
}

// get the size of the last row in each structure
int lrow, rrow;
IntegerExpression ∗ ie = lshape→at(llen−1)→isInteger();
if (ie)

lrow = ie→val();
else

lrow = 1;
ie = rshape→at(rlen−1)→isInteger();
if (ie)

rrow = ie→val();
else

rrow = 1;

// build up the new size
int extent = lrow + rrow;
ListNode ∗ newShape = new ListNode(

new IntegerExpression(extent), emptyList());
llen = llen − 1;
while (−−llen >= 0) {

newShape = new ListNode(lshape→at(llen), newShape);
ie = lshape→at(llen)→isInteger();
if (ie)

extent ∗= ie→val();
}

APLValue ∗ newval = new APLValue(newShape, extent);

// now build the new values
int i, index, lindex, rindex;
index = lindex = rindex = 0;
while (index < extent) {

for (i = 0; i < lrow; i++)
newval→atPut(index++, left→at(lindex++));

for (i = 0; i < rrow; i++)
newval→atPut(index++, right→at(rindex++));

}

target = newval;
}

Figure 3.10: Implementation of the Catenation function

50

void TransposeFunction::applyOp(Expr& target, APLValue ∗ arg)
{

// transpose of vectors or scalars does nothings
if (arg→shape()→length() != 2) {

target = arg;
return;
}

// get the two extents
int lim1 = arg→shapeAt(0);
int lim2 = arg→shapeAt(1);

// build new shapes
ListNode ∗ newShape =

new ListNode(arg→shape()→at(1),
new ListNode(arg→shape()→at(0), emptyList()));

APLValue ∗ newval = new APLValue(newShape, lim1 ∗ lim2);

// now compute the values
for (int i = 0; i < lim2; i++)

for (int j = 0; j < lim2; j++)
newval→atPut(i ∗ lim1 + j,

arg→at(j ∗ lim2 + i));

target = newval;
}

Figure 3.11: The Transpose Function

3.3.7 Transpose

While real APL defines transpose for arbitrary dimension arrays, the transpose
presented here works only for arrays of dimension two or less. For vector and
scalars the transpose does nothing. Thus the only code required (Figure 3.11)
is to take the transpose of a two dimensional array.

3.3.8 Subscription

The Pascal interpreter provided by Kamin applies subscription to the first di-
mension of a multidimension value. In order to be consistent with the other
functions, my version does subscription along the last dimension. Neither is
exactly the same as the real APL version. The subscription code is shown in
Figure 3.12.

51

void SubscriptFunction::applyOp(Expr& target, APLValue ∗left, APLValue ∗right)
{

if (right→shape()→length() >= 2) {
target = error("subscript requires vector second arg");
return;
}

int rsize = right→size();
int lsize = lastSize(left→shape());
int extent = (left→size() / lsize) ∗ rsize;

APLValue ∗ newval = new APLValue(replaceLast(left→shape(), rsize),
extent);

for (int i = 0; i < extent; i++)
newval→atPut(i, left→at(

(i / rsize) ∗ lsize + (right→at(i % rsize)−1)));
target = newval;

}

Figure 3.12: The Subscription function

3.4 Initialization of the APL interpreter

The initialization code for the APL interpreter is shown in Figure 3.13.

52

initialize()
{

// initialize global variables
reader = new APLreader;

// initialize the statement environment
Environment ∗ cmds = commands;
cmds→add(new Symbol("define"), new DefineStatement);

// initialize the value ops environment
Environment ∗ vo = valueOps;
vo→add(new Symbol("set"), new SetStatement);
vo→add(new Symbol("+"), new APLScalarFunction(PlusFunction));
vo→add(new Symbol("-"), new APLScalarFunction(MinusFunction));
vo→add(new Symbol("*"), new APLScalarFunction(TimesFunction));
vo→add(new Symbol("/"), new APLScalarFunction(DivideFunction));
vo→add(new Symbol("max"), new APLScalarFunction(scalarMax));
vo→add(new Symbol("or"), new APLScalarFunction(scalarOr));
vo→add(new Symbol("and"), new APLScalarFunction(scalarAnd));
vo→add(new Symbol("="), new APLScalarFunction(scalarEq));
vo→add(new Symbol("<"), new APLScalarFunction(LessThanFunction));
vo→add(new Symbol(">"), new APLScalarFunction(GreaterThanFunction));
vo→add(new Symbol("+/"), new APLReduction(PlusFunction));
vo→add(new Symbol("-/"), new APLReduction(MinusFunction));
vo→add(new Symbol("*/"), new APLReduction(TimesFunction));
vo→add(new Symbol("//"), new APLReduction(DivideFunction));
vo→add(new Symbol("max/"), new APLReduction(scalarMax));
vo→add(new Symbol("or/"), new APLReduction(scalarOr));
vo→add(new Symbol("and/"), new APLReduction(scalarAnd));
vo→add(new Symbol("compress"), new CompressionFunction);
vo→add(new Symbol("shape"), new ShapeFunction);
vo→add(new Symbol("ravel"), new RavelFunction);
vo→add(new Symbol("restruct"), new RestructFunction);
vo→add(new Symbol("cat"), new CatenationFunction);
vo→add(new Symbol("indx"), new IndexFunction);
vo→add(new Symbol("trans"), new TransposeFunction);
vo→add(new Symbol("[]"), new SubscriptFunction);
vo→add(new Symbol("print"), new UnaryFunction(PrintFunction));

}

Figure 3.13: APL interpreter initialization

53

Chapter 4

The Scheme Interpreter

After all the code required to generate the APL interpreter of Chapter 3, the
Scheme interpreter is simplicity in itself. Of course, this has more to do with
the similarity of Scheme to the basic Lisp interpreter of Chapter 2 than with
any differences between APL and Scheme.

To implement Scheme it is only necessary to provide an implementation of
the lambda function. This is accomplished by the class Lambda, shown in Fig-
ure 4.1. The actual implementation of lambda uses the same class UserFunction
we have seen in previous chapters.

Initialization of the Scheme interpreter differs slightly from the code used
to initialize the Lisp interpreter (Figure 4.2). The define command is no longer
recognized, having been replaced by the set/lambda pair. The built-in arithmetic
functions are now considred to be global symbols, and not value-ops. Indeed,
there are no comands or value-ops in this language.

54

class LambdaFunction : public Function {
public:

virtual void apply(Expr &, ListNode ∗, Environment ∗);
};

void LambdaFunction::apply(Expr & target, ListNode ∗ args, Environment ∗ rho)
{

if (args→length() != 2) {
target = error("lambda requires two arguments");
return;
}

ListNode ∗ argNames = args→head()→isList();
if (! argNames) {

target = error("lambda requires list of argument names");
return;
}

target = new UserFunction(argNames, args→at(1), rho);
}

Figure 4.1: The class Lambda

55

initialize()
{

// initialize global variables
reader = new LispReader;

// initialize the value of true
Symbol ∗ truesym = new Symbol("T");
true = truesym;
false = emptyList();

// initialize the command environment
// there are no command or value-ops as such in scheme

// initialize the global environment
Environment ∗ ge = globalEnvironment;
ge→add(new Symbol("if"), new IfStatement);
ge→add(new Symbol("while"), new WhileStatement);
ge→add(new Symbol("set"), new SetStatement);
ge→add(new Symbol("begin"), new BeginStatement);
ge→add(new Symbol("+"), new IntegerBinaryFunction(PlusFunction));
ge→add(new Symbol("-"), new IntegerBinaryFunction(MinusFunction));
ge→add(new Symbol("*"), new IntegerBinaryFunction(TimesFunction));
ge→add(new Symbol("/"), new IntegerBinaryFunction(DivideFunction));
ge→add(new Symbol("="), new BinaryFunction(EqualFunction));
ge→add(new Symbol("<"), new BooleanBinaryFunction(LessThanFunction));
ge→add(new Symbol(">"), new

BooleanBinaryFunction(GreaterThanFunction));
ge→add(new Symbol("cons"), new BinaryFunction(ConsFunction));
ge→add(new Symbol("car"), new UnaryFunction(CarFunction));
ge→add(new Symbol("cdr"), new UnaryFunction(CdrFunction));
ge→add(new Symbol("number?"), new BooleanUnary(NumberpFunction));
ge→add(new Symbol("symbol?"), new BooleanUnary(SymbolpFunction));
ge→add(new Symbol("list?"), new BooleanUnary(ListpFunction));
ge→add(new Symbol("null?"), new BooleanUnary(NullpFunction));
ge→add(new Symbol("primop?"), new BooleanUnary(PrimoppFunction));
ge→add(new Symbol("closure?"), new BooleanUnary(ClosurepFunction));
ge→add(new Symbol("print"), new UnaryFunction(PrintFunction));
ge→add(new Symbol("lambda"), new LambdaFunction);
ge→add(truesym, truesym);
ge→add(new Symbol("nil"), emptyList());

}

Figure 4.2: Initialization of the Scheme Interpreter

56

Chapter 5

The SASL interpreter

The SASL interpreter is largely constructed by removing features from the
Scheme interpreter, such as while loops and so on, and changing the imple-
mentation of the cons function to add delayed evaluation. Figure 5.1 shows the
class hierarchy for the classes added in this chapter.

5.0.1 Thunks

Delayed evaluation is provided by adding a new expression type, called the
thunk. Figure 5.2 shows the data structure used to represent this type of value.
Every thunk maintains a boolean value indicating whether the thunk has been
evaluated yet, an expression (representing either the unevaluated or evaluated
expression, depending upon the state of the boolean flag), and a context in
which the expression is to be evaluated. Thunks print either as three dots, if
they have not yet been evaluated, or as the printed representation of their value,
if they have.

Here we finally see an overridden definition for the method touch. You will
recall that this method was defined in Chapter 1, and that all other expressions
merely return their value as the result of this expression. Thunks, on the other
hand, will evaluate themselves if touched, and then return their new evaluated
result. With the addition of this feature many of the definitions we have pre-
sented in earlier chapters, such as the definitions of car and cdr, hold equally
well when given thunks as arguments.

Since thunks can represent lists, symbols, integers and so on, the predicate
methods isSymbol and the like must be redefined as well. If the thunk repre-
sents an evaluated value, these simply return the result of testing that value
(Figure 5.3).

57

Expression Function
A
A
AThunk

A
A
AUserFunction LazyFunction

�
�
�
SaslConsFunction

LambdaFunction

Figure 5.1: Class Hierarchy for expressions in the SASL interpreter

5.1 Lazy Cons

The SASL cons function differs from the Scheme version in producing a list node
containing a pair of thunks, rather than a pair of values (Figure 5.4). Class
SaslConsFunction must now be a subclass of Function and not BinaryFunction,
because it must grab its arguments before they are evaluated. Thus it must
itself check to see that only two arguments are passed to the function.

5.2 Lazy User Functions

User defined functions must be provided with lazy evaluation semantics as well.
This is accomplished by defining a new class LazyFunction (Figure 5.5). Lazy
functions act just like user functions from previous chapters, only they do not
evaluate their arguments. Thus the function body is evaluated by the method
apply, rather than passing the evaluated arguments on to the method applyWith-
Args. The lambda function from the previous chapter is modified to produce an
instance of LazyFunction, rather than UserFunction.

58

class Thunk : public Expression {
private:

int evaluated;
Expr value;
Env context;

public:
Thunk(Expression ∗, Environment ∗);

virtual void free();
virtual void print();
virtual Expression ∗ touch();
virtual void eval(Expr &, Environment ∗, Environment ∗);

virtual IntegerExpression ∗ isInteger();
virtual Symbol ∗ isSymbol();
virtual Function ∗ isFunction();
virtual ListNode ∗ isList();

};

void Thunk::print()
{

if (evaluated)
value()→print();

else
printf("...");

}

Expression ∗ Thunk::touch()
{

// if we haven’t already evaluated, do it now
if (! evaluated) {

evaluated = 1;
Expression ∗ start = value();
if (start)

start→eval(value, valueOps, context);
}

Expression ∗ val = value();
if (val)

return val→touch();
return val;

}

Figure 5.2: Definition of Thunks

59

void Thunk::eval(Expr & target, Environment ∗ valusops, Environment ∗ rho)
{

touch();
value()→eval(target, valusops, rho);

}

ListNode ∗ Thunk::isList()
{

// if its evaluated try it out
if (evaluated) return value()→isList();

// else it’s not
return 0;

}

Symbol ∗ Thunk::isSymbol()
{

if (evaluated) return value()→isSymbol();
return 0;

}

Function ∗ Thunk::isFunction()
{

if (evaluated) return value()→isFunction();
return 0;

}

IntegerExpression ∗ Thunk::isInteger()
{

if (evaluated) return value()→isInteger();
return 0;

}

Figure 5.3: Thunk predicates

60

class SaslConsFunction : public Function {
public:

virtual void apply(Expr & target, ListNode ∗ args, Environment ∗);
};

void SaslConsFunction::apply(Expr & target, ListNode ∗ args, Environment ∗ rho)
{

// check length
if (args→length() != 2) {

target = error("cons requires two arguments");
return;
}

// make thunks for car and cdr
target = new ListNode(new Thunk(args→at(0), rho),

new Thunk(args→at(1), rho));
}

Figure 5.4: The Sasl Lazy Cons function

61

class LazyFunction : public UserFunction {
public:

LazyFunction(ListNode ∗ n, Expression ∗ b, Environment ∗ c)
: UserFunction(n, b, c) {}

virtual void apply(Expr &, ListNode ∗, Environment ∗);
};

// convert arguments into thunks
static ListNode ∗ makeThunks(ListNode ∗ args, Environment ∗ rho)
{

if ((! args) || (args→isNil()))
return emptyList;

Expression ∗ newcar = new Thunk(args→head(), rho);
return new ListNode(newcar, makeThunks(args→tail(), rho));

}

void LazyFunction::apply(Expr & target, ListNode ∗ args, Environment ∗ rho)
{

// number of args should match definition
ListNode ∗ anames = argNames;
if (anames→length() != args→length()) {

error("argument length mismatch");
return;
}

// convert arguments into thunks
ListNode ∗ newargs = makeThunks(args, rho);

// make new environment
Env newrho = new Environment(anames, newargs, context);

// evaluate body in new environment
if (body())

body()→eval(target, valueOps, newrho);
else

target = 0;

newrho = 0;
}

Figure 5.5: The implementation of lazy functions

62

Chapter 6

The CLU interpreter

The CLU interpreter is created by introducing a new datatype, the cluster, and
three new types of functions. Constructors create new instances of a cluster,
selectors access a portion of a cluster state, and modifiers change a portion of a
cluster state. Figure 6.1 shows the class hierarchy for the classes added in this
chapter.

6.1 Clusters

A cluster simply encapsulates a series of names and values, hiding them from
normal examination. The most natural way to do this is for a cluster to maintain
an environment (Figure 6.2). The predicate isCluster returns this environment
value.

To create a cluster requires a constructor function. The constructor is pro-
vided with a list of names of the elements in the internal representation of the
cluster, and simply insures that the arguments it is provided with match in
number of the names it maintains.

6.2 Selectors and Modifiers

To access or modify the elements of a constructor requires functions called se-
lectors or modifiers. Each of these maintain as their state the name of the field
they are responsible for. When invoked with a constructor, the access or change
their given field.

63

Expression Function
A
A
ACluster

A
A
ABinaryFunction Modifier

�
�
�
UnaryFunction Selector

Constructor�
�
�
�
�
�
ClusterDef

Figure 6.1: Class Hierarchy for the CLU interpreter

6.3 Defining clusters

It thus remains only to give the (rather lengthy) definition of the function that
generates constructor information from the textual description. (We do not say
generates clusters themselves, for that is the responsibility of the constructor
functions). This function is shown in Figure 6.4. It rips apart a cluster definition
and does the right things (need a better description here, but I don’t have time
to write it now). (Need to point out that cluster functions have an internal and
an external name, and these are put of different environments). (I suppose an
alternative would have been to introduce a new datatype for two part names,
which when evaluated would look up their second part in the cluster provided
by their first part).

64

class Cluster : public Expression {
private:

Env data;
public:

Cluster(ListNode ∗ names, ListNode ∗ values)
{ data = new Environment(names, values, 0); }

virtual void free()
{ data = 0; }

virtual void print()
{ printf("<userval>"); }

virtual Environment ∗ isCluster()
{ return data; }

};

class Constructor : public Function {
private:

List names;
public:

Constructor(ListNode ∗ n);
virtual void free();
virtual void applyWithArgs(Expr &, ListNode ∗, Environment ∗);

};

void Constructor::applyWithArgs(Expr &target, ListNode ∗args, Environment
∗rho)
{

ListNode ∗ nmes = names;
if (args→length() != nmes→length()) {

target = error("wrong number of args passed to constructor");
return;
}

target = new Cluster(nmes, args);
}

Figure 6.2: The definition of a cluster value

65

class Selector : public UnaryFunction {
private:

Expr fieldName;
public:

Selector(Symbol ∗ name);
virtual void free();
virtual void applyWithArgs(Expr &, ListNode ∗, Environment ∗);

};

void Selector::applyWithArgs(Expr & target, ListNode ∗ args, Environment ∗ rho)
{

Environment ∗ x = args→head()→isCluster();
if (! x) {

target = error("selector given non-cluster");
return;
}

Symbol ∗s = fieldName()→isSymbol();
if (!s)

error("impossible case in selector, no symbol");
target = x→lookup(s);
if (! target())

error("selector cannot find symbol:", s→chars());
}

class Modifier : public BinaryFunction {
private:

Expr fieldName;
public:

Modifier(Symbol ∗ name);
virtual void free();
virtual void applyWithArgs(Expr &, ListNode ∗, Environment ∗);

};

void Modifier::applyWithArgs(Expr & target, ListNode ∗ args, Environment ∗ rho)
{

Environment ∗ x = args→head()→isCluster();
if (! x) {

target = error("selector given non-cluster");
return;
}

// set the result to the value
target = args→at(1);
x→set(fieldName()→isSymbol(), target());

}

Figure 6.3: Selectors and Modifiers for clusters66

void ClusterDef::apply(Expr & target, ListNode ∗ args, Environment ∗ rho)
{

Expr setprefix = new Symbol("set-");

// must have at least name, rep and one def
if (args→length() < 3) {

target = error("cluster ill formed");
return;
}

// get name
Symbol ∗ name = args→head()→isSymbol();
args = args→tail();
if (! name) {

target = error("cluster missing name");
return;
}

// now make the environment in which cluster will execute
Environment ∗ inEnv = new Environment(emptyList, emptyList, rho);

// next part should be representation
ListNode ∗ rep = args→head()→isList();
args = args→tail();
if (! rep) {

target = error("cluster missing rep");
return;
}

Symbol ∗s = rep→at(0)→isSymbol();
if (! (s && (∗s == "rep"))) {

target = error("cluster missing rep");
return;
}

rep = rep→tail();

// make the name into a constructor with the representation
inEnv→add(name, new Constructor(rep));

Figure 6.4: The cluster recognition function

67

// now run dow the rep list, making accessor functions
while (! rep→isNil()) {

s = rep→head()→isSymbol();
if (! s) {

target = error("ill formed rep in cluster");
return;
}

inEnv→add(s, new Selector(s));
catset(inEnv, setprefix()→isSymbol(), "",

s, new Modifier(s));
rep = rep→tail();
}

// remainder should be define commands
while (! args→isNil()) {

ListNode ∗ body = args→head()→isList();
if (! body) {

target = error("ill formed cluster");
return;
}

s = body→at(0)→isSymbol();
if (! (s && (∗s == "define"))) {

target = error("missing define in cluster");
return;
}

s = body→at(1)→isSymbol();
if (! s) {

target = error("missing name in define");
return;
}

// evaluate body to define new function
Expr temp;
body→eval(temp, commands, inEnv);
// make outside form
catset(rho, name, "$", s, inEnv→lookup(s));
temp = 0;

// get next function
args = args→tail();
}

// what do we return?
target = 0;
setprefix = 0;

}

static void catset(Environment ∗ rho, Symbol ∗ left, char ∗ mid,
Symbol ∗ right, Expression ∗ val)

{ char buffer[120];

// catenate the two symbols
strcpy(buffer, left→chars());
strcat(buffer, mid);
strcat(buffer, right→chars());

// now put the new value into rho
rho→add(new Symbol(buffer), val);

}

Figure 6.5: The cluster recognition function (continued)

68

Chapter 7

The Smalltalk interpreter

As with chapter 3, with the Smalltalk interpreter I have also made a number of
changes. These include the following:

• I have changed the syntax for message passing. The first argument in a
message passing expression is an object, which is defined (for implemen-
tation purposes) as a type of function. The second argument must be
the message selector, a symbol. This change is not only produces a syn-
tax that is slightly more Smalltalk-like, but it more closely reinforces the
critical object-oriented idea that the interpretation of a message depends
upon the receiver for that message.

• Integers are objects, and respond to messages. The most obvious effect of
this is to restore infix syntax for arithmetic operations, since (3 + 4) is
interpreted (Smalltalk-like) as the message “+” being passed to the object
3 with argument 4.

• The initial environment is very spare. There are only the two classes
Object and Integer, which respond to the messages subclass, method and
new, and integer instances that respond to arithmetic messages.

• The if command is a message sent to integers (0 for false and non-zero for
true). This is also more Smalltalk-like. The following expression sets z to
the minimum of x and y.

((x < y) if (set z x) (set z y))

• The only non-message statements are the assignment statement set and
the begin statement. (Note - there is no loop. I couldn’t think of a good
way to do this within the syntax given using message passing (no blocks!)
but I don’t think this will be too great a problem; recursion can be used
in most cases where looping is used currently).

69

Expression Function�
�
�
�
�
�
Symbol SmalltalkSymbol

A
A
AUserFunction method SubclassMethod��

NewMethod
�
�
�
IntegerBinaryMethod

@@IfMethod
A
A
AMethodMethod

�
�
�
Object IntegerObject

Figure 7.1: Expression class hierarchy for Smalltalk interpreter

A class hierarchy for the classes added in this chapter is shown in Figure 7.1.

7.1 Objects and Methods

An object is an encapsulation of behavior and state. That is, an object main-
tains, like a cluster, certain state information accessible only within the object.
Similarly objects maintain a collection of functions, called methods, that can
be invoked only via message passing. Internally, both these are represented by
environments (Figure 7.2). The methods environment contains a collection of
functions, and the data environment contains a collection of internal variables.
Objects are declared as a subclass of function so that normal function syntax
can be used for message passing. That is, a message is written as

(object message arguments)

Methods are similar to conventional functions (and are thus subclasses of
UserFunction) in that they have an argument list and body. Unlike conventional
functions they have a receiver (which must always be an object) and the envi-
ronment in which the method was created, as well as the environment in which
the method is invoked. Thus methods define a new message doMethod that
takes these additional arguments.

A subtle point to note is that the creation environment in normal functions
is captured when the function is defined. For objects this environment cannot
be defined when the methods are created, but must wait until a new instance
is created. Our implementation waits even longer, and passes it as part of the
message passing protocol.

The mechanism of message passing is defined by the function apply in class
Object (Figure 7.3). Messages require a symbol for the first argument, which

70

class Object : public Function {
private:

Env methods;
Env data;
friend class SubclassMethod;

public:
Object(Environment ∗ m, Environment ∗ d);

virtual void print();
virtual void free();
virtual void apply(Expr &, ListNode ∗, Environment ∗);

// methods used by classes to create new instances
// note these are invoked only on classes, not simple instances
ListNode ∗ getNames();
Environment ∗ getMethods();

};

class Method : public UserFunction {
public:

Method(ListNode ∗anames, Expression ∗ bod) ;

virtual void doMethod(Expr&, Object∗, ListNode∗,
Environment∗, Environment∗);

virtual Method ∗ isMethod();
};

Figure 7.2: Classes for Object and Method

71

must match a method for the object. This method is then invoked. Similarly
Figure 7.3 shows the execution of normal methods (that is, those methods other
than the ones provided by the system). The execution context is set for the
method, and the receiver is added as an implicit first argument, called self in
every method. The method is then invoked as if it were a conventional function.

7.2 Classes

Classes are simply objects. As such, they respond to certain messages. In
our Smalltalk interpreter there are initially two classes, Object and Integer. The
class Object is a superclass of Integer, and is typically the superclass of most user
defined classes as well. There are initially three messages that classes respond
to:

• subclass. This message is used to create new classes, as subclasses of
existing classes. Any arguments provided are treated as the names of
instance variables (local state) to be generated when instances of the new
classes are created. The new class is returned as an object, and is usually
immediately assigned to a global variable. The syntax for new classes is
thus similar to the following:

(set Foo (Object subclass x y z))

which creates a new class with three instance variables, and assigns this
class to the variable Foo. Subclasses can also access instance variables
defined in classes.

It is legal to subclass from class Integer, although the results are not useful
for any purpose.

• new. This message, which takes no arguments, is used to create a new
instance of the receiver class. The new instance is returned as the result
of the method, as in the following:

(set newfoo (Foo new))

Although the class Integer responds to the message new, no useful value
is returned. (Real Smalltalk has something called metaclasses that can
be used to prevent certain classes from responding to all messages. Our
Smalltalk doesn’t).

• method. This message is used to define a new method for a class. Following
the keyword method the syantx is the same as a normal function definition.
Within a method the pseudo-variable self can be used to represent the
receiver for the method.

72

void Object::apply(Expr & target, ListNode ∗ args, Environment ∗ rho)
{

// need at least a message
if (args→length() < 1) {

target = error("ill formed message expression");
return;
}

Symbol ∗ message = args→head()→isSymbol();
if (! message) {

target = error("object needs message");
return;
}

// now see if message is a method
Environment ∗ meths = methods;
Expression ∗ methexpr = meths→lookup(message);
Method ∗ meth = 0;
if (methexpr) meth = methexpr→isMethod();
if (! meth) {

target = error("unrecognized method name: ", message→chars());
return;
}

// now just execute the method (take off message from arg list)
meth→doMethod(target, this, args→tail(), data, rho);

}

void Method::doMethod(Expr& target, Object∗ self, ListNode∗ args,
Environment ∗ctx, Environment ∗rho)

{
// change the execution context
context = ctx;

// put self on the front of the argument list
List newargs = new ListNode(self, args);

// and execute the function
apply(target, newargs, rho);

// clean up arg list
newargs = 0;

}

Figure 7.3: Implementation of Message Passing

73

(Integer method square () (self * self))

Classes are represented in the same format as other objects. They act as
if they held two instance variables; names, which contains a list of instance
variable names for the class, and methods, which contains the table of method
definitions for the class. Note that these are held in the data area for the class.
(A picture might help here...).

The implementation of the method subclass is shown in Figure 7.4. The
instance variables for the parent class is obtained, and the new instance variables
for the class added to them. Inheritance is implemented by creating a new empty
method table, but having it point to the method table for the parent class. Thus
a search of the method table for the newly created class will automatically search
the parent class if no overriding method is found. These two values are inserted
as data values in the new class object. The methods a class responds to will
be exactly the same as those of the parent class (thus all classes respond to the
same messages).

The implementation of the method new, shown in Figure 7.5, gets the list of
instance variables associated with the class. A new environment is then created
that assigns an empty value to each variable. Using the method table stored in
the data area for the class object a new object is then created.

The method used to respond to the method command is shown in Figure 7.6.
This is very similar to the function used to break apart the define command in
Chapter 1. The only significant difference includes the addition of the receiver
self as an implicit first parameter in the argument list, and the fact that the
function is placed in a method table, rather than in the global environment.

7.3 Symbols and Integers

Symbols in Smalltalk have no property other than they evaluate to themselves,
and are guaranteed unique. They are easily implemented by subclassing the
existing class Symbol (Figure 7.7), and modifying the reader/parser to recognize
the tokens. (Unlike symbols in real Smalltalk, our symbols are not objects and
will not respond to any messages).

Integers are also redefined as objects, and a built-in method IntegerBina-
ryMethod, similarly to IntegerBinaryFunction, is created to simplify the arith-
metic methods.

Control flow is implemented as a message to integers. (In real Smalltalk
control flow is implemented as messages, but to different objects). If the receiver
is zero the first argument to the if method is returned, otherwise the second
argument is returned.

74

void SubclassMethod::doMethod(Expr& target, Object∗ self, ListNode ∗args,
Environment ∗ctx, Environment ∗rho)

{

// the argument list is added to the list of variables
ListNode ∗ vars = self→getNames();
while (! args→isNil()) {

vars = new ListNode(args→head(), vars);
args = args→tail();
}

// the method table is empty, but points to inherited method table
Environment ∗ newmeth = new Environment(emptyList, emptyList,

self→getMethods());

// make the new data area
Environment ∗ newEnv = new Environment(emptyList, emptyList, rho);
newEnv→add(new Symbol("names"), vars);
newEnv→add(new Symbol("methods"), newmeth);

// now make the new object
Environment ∗ meths = self→methods;
target = new Object(meths, newEnv);

}

ListNode ∗ Object::getNames()
{

Environment ∗ datavals = data;
Expression ∗ x = datavals→lookup(new Symbol("names"));
if ((! x) || (! x→isList())) {

error("impossible case in Object::getNames");
return 0;
}

return x→isList();
}

Figure 7.4: Implementation of the subclass method

75

void NewMethod::doMethod(Expr& target, Object∗ self, ListNode ∗args,
Environment ∗ctx, Environment ∗rho)

{
// get the list of instance names
ListNode ∗ names = self→getNames();

// cdr down the list, making a list of values (initially zero)
ListNode ∗ values = emptyList;
for (ListNode ∗p = names; ! p→isNil(); p = p→tail())

values = new ListNode(new IntegerExpression(0), values);

// make the new environment for the names
Environment ∗ newenv = new Environment(names, values, rho);

// make the new object
target = new Object(self→getMethods(), newenv);

}

Figure 7.5: The method new

7.4 Smalltalk reader

The Smalltalk reader subclasses the reader class so as to recognize integers and
symbols (Figure 7.9).

7.5 The big bang

To initialize the interpreter we must create the objects Object and Integer. (Need
more explanation here, but I’ll just give the code for now).

76

void MethodMethod::doMethod(Expr& target, Object∗ self, ListNode ∗args,
Environment ∗ctx, Environment ∗rho)

{
if (args→length() != 3) {

target = error("method definition requires three arguments");
return;
}

Symbol ∗ name = args→at(0)→isSymbol();
if (! name) {

target = error("method definition missing name");
return;
}

ListNode ∗ argNames = args→at(1)→isList();
if (! argNames) {

target = error("method definition missing arg names");
return;
}

// put self on front of arg names
argNames = new ListNode(new Symbol("self"), argNames);

// get the method table for the given class
Environment ∗ methTable = self→getMethods();

// put method in place
methTable→add(name, new Method(argNames, args→at(2)));

// yield as value the name of the function
target = name;

}

Figure 7.6: The method method

77

class SmalltalkSymbol : public Symbol {
public:

virtual void eval(Expr & target, Environment ∗, Environment ∗)
{ target = this; }

};

static Env IntegerMethods;

class IntegerObject : public Object {
private:

Expr value;
public:

IntegerObject(int v) : Object(IntegerMethods, 0)
{ value = new IntegerExpression(v); }

virtual void print()
{ if (value()) value()→print(); }

virtual void free()
{ value = 0; }

virtual IntegerExpression ∗ isInteger()
{ if (value()) return value()→isInteger(); return 0; }

};

Figure 7.7: Symbols and Integers in Smalltalk

78

void IfMethod::doMethod(Expr & target, Object ∗ self,
ListNode ∗ args, Environment ∗ ctx, Environment ∗ rho)

{
if (args→length() != 2) {

target = error("wrong number of args for if");
return;
}

IntegerExpression ∗ cond = self→isInteger();
if (! cond) {

target = error("impossible!", "no cond in if");
return;
}

if (cond→val())
args→at(0)→eval(target, valueOps, rho);

else
args→at(1)→eval(target, valueOps, rho);

}

Figure 7.8: Implementation of the if method

79

Expression ∗ SmalltalkReader::readExpression()
{

// see if it’s an integer
if (isdigit(∗p))

return new IntegerObject(readInteger());

// might be a signed integer
if ((∗p == '-') && isdigit(∗(p+1))) {

p++;
return new IntegerObject(− readInteger());
}

// or it might be a symbol
if (∗p == '#') {

char token[80], ∗q;

for (q = token; ! isSeparator(∗p);)
∗q++ = ∗p++;

∗q = '\0';
return new SmalltalkSymbol(token);
}

// anything else, do as before
return Reader::readExpression();

}

Figure 7.9: The Smalltalk reader

80

initialize()
{

// initialize global variables
reader = new SmalltalkReader;

// the only commands are the assignment command and begin
Environment ∗ vo = valueOps;
vo→add(new Symbol("set"), new SetStatement);
vo→add(new Symbol("begin"), new BeginStatement);

// initialize the global environment
Environment ∗ ge = globalEnvironment;

// first create the object “Object”
Environment∗ objMethods = new Environment(emptyList, emptyList, 0);
Environment∗ objClassMethods = new Environment(emptyList, emptyList,

objMethods);
objClassMethods→add(new Symbol("new"), new NewMethod);
objClassMethods→add(new Symbol("subclass"), new SubclassMethod);
objClassMethods→add(new Symbol("method"), new MethodMethod);
Environment ∗ objData = new Environment(emptyList, emptyList, 0);
objData→add(new Symbol("names"), emptyList());
objData→add(new Symbol("methods"), objMethods);
ge→add(new Symbol("Object"),

new Object(objClassMethods, objData));

// now make the integer methods
IntegerMethods = new Environment(emptyList, emptyList, objMethods);
Environment ∗ im = IntegerMethods;
// the integer methods are just as before
im→add(new Symbol("+"), new IntegerBinaryMethod(PlusFunction));
im→add(new Symbol("-"), new IntegerBinaryMethod(MinusFunction));
im→add(new Symbol("*"), new IntegerBinaryMethod(TimesFunction));
im→add(new Symbol("/"), new IntegerBinaryMethod(DivideFunction));
im→add(new Symbol("="), new IntegerBinaryMethod(IntEqualFunction));
im→add(new Symbol("<"), new IntegerBinaryMethod(LessThanFunction));
im→add(new Symbol(">"), new IntegerBinaryMethod(GreaterThanFunction));
im→add(new Symbol("if"), new IfMethod);
ge→add(new Symbol("Integer"),

new Object(objClassMethods, objData));
}

Figure 7.10: Initializing the Smalltalk interpreter

81

Chapter 8

The Prolog interpreter

As with chapters 3 and 7, I have in this chapter taken great liberties with the
syntax used by Kamin in his interpreter. However, unlike chapters 3 and 7,
where my intent was to make the interpreters closer in spirit to the original
language, my intent here is to simplify the interpreter. Specifically, I wanted to
build on the base interpreter, just as we have done for all other languages. I
am able to do this by adopting continuations as the fundamental basis for my
implementation, and by basing the code on slightly different primitives.

The language used by this interpreter has the following characteristics:

• As in real prolog, the only basic objects are symbols. I’ve even tossed
out integers, just to simplify things. Symbols have no meaning other than
their uniqueness. Those symbols beginning with lower case letters are
atomic, while those beginning with upper case letters are variables.

• There are two basic statement types, the define statement we have seen
all through the interpreters, and a new statement called query. The later
is used to form questions.

• The bodies of functions or queries can be composed of four types of rela-
tions:

– (print x) which if x is defined prints the value of x and is successful,
and if x is not defined is not successful.

– (:=: x y) which attempts to unify x and y, which can be either
variables or symbols. The order of arguments is unimportant.

– (and rel1 rel2 ...) which can take any number of relational arguments
and is successful if all the relations are successful. Relations are tried
in order.

82

– (or rel1 rel2 ...) which can take any number of relational arguments
and is successful if one one of the relations is successful. They are
tried in order.

For example, suppose sam is the father of alice, and alice is the mother of
sally. We might encode this in a parent database as follows:
→ (define parent (X Y)

(or
(and (:=: X alice) (:=: Y sally))
(and (:=: X sam) (:=: Y alice))

))
The query statement can then be used to ask queries of the database. For

example, we can find out who is the parent of alice as follows:
→ (query (and (parent X alice) (print X)))
sam
ok

Or we can find the child of alice with the following:
→ (query (and (parent alice X) (print X)))
sally
ok

If we ask a question that does not have an answer, the response not-ok is
printed.
→ (query (and (parent fred X) (print X)))
not ok

Prolog style rules can be introduced using the same form we have been using
for functions.
→ (define grandparent (X Y)

(and (parent X Z) (parent Z Y)))
→ (query (and (grandparent A B) (print A) (print B)))
sam
sally
ok

There is no built-in way to force a relation to cycle through all alternatives.
However, this is easily accomplished by making a relation that will always fail,
for example trying to unify apples with oranges:
→ (define fail () (:=: apples oranges))

We can then use this to print out all the parents in our database. Notice
that not-ok is printed, since we eventually fail.
→ (query (and (parent X Y) (print X) (fail)))
sam
alice
not ok

Note - although it might appear the use of and’s and or’s is more powerful
than writing rules in horn clauses, in fact they are identical; although horn

83

clauses will often require the introduction of unnecessary names. I myself find
this formulation more natural, although I’m not exactly unbiased.

Unification of two unknown symbols works as expected. If any symbol sub-
sequently becomes defined, the other is defined as well.
→ (define same (X Y) (:=: X Y))
→ (query (and (same A B) (:=: A sally) (print B)))
sally
ok

I will divide the discussion of the implementation into three parts. These
are unification, symbol management, and backtracking.

8.1 Unification

Unification is the basis for logic programming. Using unification, unbound vari-
ables can be bound together. As we saw in the last example, this is more than
simple assignment. If two unknown variables are unified together and subse-
quently one is bound, the other should be bound also. Unification also differs
from assignment in that it can be “undone” during the process of backtracking.

Unification is most easily implemented by introducing a level of indirection.
Prolog values will be represented by a new type of expression, called PrologValue
(Figure 8.1). Instances of this class maintain a data value, which is either
undefined (that is, null), a symbol, or another prolog value. The prolog reader
is modified so as to return a prolog value were formerly a symbol was returned.
(Also the reader will no longer recognize integers, which are not used in our
simplified interpreter).

A prolog value that contains a symbol is used to represent the prolog symbol
of the same name. A prolog value that contains an empty data value represents
a currently unbound value. Finally a prolog value that points to another prolog
value represents the unification of the first value with the second. Whenever we
need the value of a prolog symbol, we first run down the chain of indirections to
get to the bottom of the sequence. (This is done automatically by the overridden
method isSymbol, which will yield the symbol value behind arbitrary levels of
indirection if a prolog value represents a symbol.)

The unification algorithm is shown in Figure 8.2. For reasons we will return
to when we discuss backtracking, the algorithm takes three arguments. The
first is a reference to a pointer to a prolog value. If the unification process
changes the value of either the the two other arguments, the pointer in the first
argument is set to the altered value.

The unification process divides naturally into three parts. If either argu-
ment is undefined, it is changed so as to point to the other arguments. This is
true regardless of the state of the other argument. This is how two undefined
variables can be unified - the first is set to point to the second. If the second
is subsequently changed, the first will still indirectly point to the new value.

84

class PrologValue : public Expression {
private:

Expr data;

public:
PrologValue(Expression ∗ d) { data = d; }

virtual void free() { data = 0; }
virtual void print();
virtual void eval(Expr &, Environment ∗, Environment ∗);
virtual Symbol ∗ isSymbol();
virtual PrologValue ∗ isPrologValue() { return this; }

int isUndefined() { return data() == 0; }
void setUndefined() { data = 0; }
PrologValue ∗ indirectPtr();
void setIndirect(PrologValue ∗v) { data = v; }

};

Figure 8.1: The class declaration for prolog values

Suppose it is, however, the first that is subsequently changed? In that case the
next portion of the unification algorithm is entered. If both arguments are de-
fined and either one is an indirection, then we simply try to unify the next level
down in the pointer chains. (Note: Lots of pictures would make this clearer,
but I don’t have time right now..). If neither argument is undefined nor an
indirection, they both must be symbols. In that case, unification is successful if
and only if they have the same textual representation.

8.2 Symbol Management

The only significant problem here is that symbolic constants must evaluate to
themselves and that symbolic variables can be introduced without declaration.
We see the latter in sequences such as:
→ (define grandparent (X Y)

(and (parent X Z) (parent Z Y)))
→ (query (and (grandparent A B) (print A) (print B)))
sam
sally
ok

Here the variable Z suddenly appears without prior use. The solution to both
of these problems is found in the code used to respond to the eval request for a
Prolog value. This code is shown in Figure 8.3. The virtual method isSymbol

85

static int unify(PrologValue ∗& c, PrologValue ∗ a, PrologValue ∗ b)
{

// if either one is undefined, set it to the other
if (a→isUndefined()) {

c = a;
a→setIndirect(b);
return 1;
}

if (b→isUndefined()) {
c = b;
b→setIndirect(a);
return 1;
}

// if either one are indirect, run down chain
PrologValue ∗ indirval;
indirval = a→indirectPtr();
if (indirval)

return unify(c, indirval, b);
indirval = b→indirectPtr();
if (indirval)

return unify(c, a, indirval);

// both must now be symbolic, work if the same
c = 0;
Symbol ∗ as = a→isSymbol();
Symbol ∗ bs = b→isSymbol();
if ((! as) || (! bs))

error("impossible", "unification of non-symbols");
else if (strcmp(as→chars(), bs→chars()) == 0)

return 1;
return 0;

}

Figure 8.2: The Unification process

86

runs down any indirection links, returning the symbol data value if the last
value in a chain of indirections represents a symbolic constant. If a symbol is
found, we first look to see if the symbol is bound in the current environment.
If so we simply return its binding1. If not, if the symbol begins with a lower
case letter it evaluates to itself, and so we simply return it. If it is not a
symbolic constant, than it is a new symbolic variable, and we add a binding
to the current environment to indicate that the value is so-far undefined. Thus
new symbols are added to the current environment as they are encountered,
instead of generating error messages as they did in previous interpreters.

8.3 Backtracking

The seem to be two general approaches to implementing logic programming
languages. The technique used by most modern prolog systems is called the
WAM, or Warren Abstract Machine. The WAM performs backtracking by not
popping the activation frame stack when a procedure is terminated, and saving
enough information to restart the procedure in a record called the “choice point”.
Since in our interpreters calling a function is performed by recursively calling
evaluation routines inside the interpreter, the activation stack for the users
program is held in part in the activation stack for the interpreter itself. Thus
it is difficult for us to manipulate the activation record stack directly. The
alternative technique, which is actually historically older, is to build up an
unevaluated expression that represents what it is you want to do next before
you ever start execution. This is called a continuation, and we were introduced
to this idea in the chapter on Scheme. When we are faced with a choice, we can
then try one alternative and the continuation, and if that doesn’t work try the
next.

In general continuations are simply arbitrary expressions representing “what
to do next”. In our case they will always return a boolean value, indicating
whether they are to be considered successful or not. We will sometimes refer to
the continuation as the “future”, since it represents the calculation we want to
perform in the future.

In order to illustrate how backtracking can be implemented using continua-
tion, let us consider the following invocation of our family database:
(query (and (grandparent sam A) (print A)))

There are two important points to note. The first is that the general ap-
proach will be a two step process, construct the future that represents the
calculation we want to do, then do it. The second point is that the details are
exceedingly messy; you should be eternally grateful that it is the computer that
is performing this task, and not you.

1Checking for bindings before checking the first letter allows rules to begin with lower case
letters, which seems to be more natural to most programmers.

87

Symbol ∗ PrologValue::isSymbol()
{

PrologValue ∗ iptr = indirectPtr();
if (iptr)

return iptr→isSymbol();
if (! isUndefined())

return data()→isSymbol();
return 0;

}

void PrologValue::eval(Expr&target, Environment∗valueOps, Environment∗rho)
{

Symbol ∗ s = isSymbol();
if (s) {

char ∗ p = s→chars();
Expression ∗ r = rho→lookup(s);
if (r) {

target = r;
return;
}

// symbol is not known
// if lower case, eval to itself
if ((∗p >= 'a') && (∗p <= 'z')) {

// symbols eval to themselves
target = this;
return;
}

// else make a new symbol
target = new PrologValue(0);
rho→add(s, target());
return;
}

target = this;
return;

}

Figure 8.3: Evaluation of a prolog symbol

88

To begin, the continuation that represents what it is we want to do after
evaluating the query is the null continuation, an expression that merely returns
true. In order to try to keep track of the multiple levels of evaluation, let us
write this as follows:
(and (grandparent sam A) (print A)) [true]

This says that we want to evaluate the and relation, and then do the calcu-
lation given by the bracketed expression.

Consider now the meaning of and. The and expression should evaluate the
first relation, and if successful evaluate the second, and finally if that is successful
evaluate the future given to the original expression. What then is the “future”
of the first relation? It is simply the second relation and the original future.
That is, the calculation we want to perform if the first relation is successful is
simply the following:
(print A) [true]

We can wrap this in a bracket in order to make a continuation in our form
out of it. Using this as the future for the first relation gives us the following:
(grandparent sam A) [(print A) [true]]

We are in effect turning the calculation inside out. We have replaced the
and conjunction with a list of expressions to evaluate in the future.

The invocation of the grandparent relation causes the expression to be re-
placed by the function definition, with the arguments suitably bound to the
parameters. That is, the effect is the same as:2

(and (parent sam Z) (parent Z A)) [(print A) [true]]
We have already analyzed the meaning of the and relation. The future we

want to provide for the first relation is the expression yielded by:
(parent Z A) [(print A) [true]]

As before, we can expand the invocation of the parent relation by replacing
it by its definition, making suitable transformations of the argument values.
(or

(and (:=: Z alice) (:=: A sally))
(and (:=: Z sam) (:=: A alice)))

[(print A) [true]]
The or relation should try each alternative in turn, passing it as the future

the continuation passed to the or. If any is successful we should return success,
otherwise the or should fail. Thus we can distribute the future to each clause
of the or, and rewrite it as follows:3

if (and (:=: Z alice) (:=: A sally))
[(print A) [true]]

2We will use textual replacement of the parameters by the arguments in our example,
although in practice the effect is achieved via a level of indirection provided by environments,
as in all the interpreters we have studied.

3The fact that we are replacing or by a conditional may seem odd, but the more important
point is that we have moved the evaluation of the future down to each of the arguments to
the or expression.

89

then return true
else if (and (:=: Z sam) (:=: A alice)))

[(print A) [true]]
then return true
else return false

If we perform the already-defined transformations on the and relations we
obtain the following:
if (:=: Z alice) [(:=: A sally) [(print A) [true]]]
then return true
else if (:=: Z sam) [(:=: A alice) [(print A) [true]]]
then return true
else return false

Recall that this was all performed just to construct the continuation for the
first clause in an earlier expression. Thus the expression we are now working on
is as follows:
(parent sam Z) [

if (:=: Z alice) [(:=: A sally) [(print A) [true]]]
then return true
else if (:=: Z sam) [(:=: A alice) [(print A) [true]]]
then return true
else return false]
We before, we can expand the call on parent by its definition:4

(or
(and (:=: sam alice) (:=: Z sally))
(and (:=: sam sam) (:=: Z alice)))

[if (:=: Z alice) [(:=: A sally) [(print A) [true]]]
then return true
else if (:=: Z sam) [(:=: A alice) [(print A) [true]]]
then return true
else return false]
Once again distributing the future along each argument of the or expression

yields:
if (and (:=: sam alice) (:=: Z sally))

[if (:=: Z alice) [(:=: A sally) [(print A) [true]]]
then return true
else if (:=: Z sam) [(:=: A alice) [(print A) [true]]]
then return true
else return false]

then return true
else if (and (:=: sam sam) (:=: Z alice))

[if (:=: Z alice) [(:=: A sally) [(print A) [true]]]
then return true

4I warned you about the messy details!

90

else if (:=: Z sam) [(:=: A alice) [(print A) [true]]]
then return true
else return false]

else return false
Performing yet one more time the transformations on the and relations yields:

if (:=: sam alice) [(:=: Z sally)
[if (:=: Z alice) [(:=: A sally) [(print A) [true]]]
then return true
else if (:=: Z sam) [(:=: A alice) [(print A) [true]]]
then return true
else return false]]

then return true
else if (:=: sam sam) [(:=: Z alice)

[if (:=: Z alice) [(:=: A sally) [(print A) [true]]]
then return true
else if (:=: Z sam) [(:=: A alice) [(print A) [true]]]
then return true
else return false]

then return true
else return false

This is the final continuation that is constructed by the query expression.
The most important feature of this expression is that it can be evaluated in
a forward fashion, without backtracking. Having generated it, the next step
is execution. Contrast this with the description we provided earlier. First
an attempt is made to unify the symbols sam and alice. This fails, and thus
the continuation for the first conditional is ignored. Next an attempt is made
to unify the symbols sam and sam. This is successful, and thus we evaluate
the continuation to the next expression. The continuation unifies Z and alice,
binding the left-hand variable to the right-hand symbol. The continuation for
that expression then trys to unify Z and alice, which is successful. Thus variable
A is bound to sally, and is printed.5

Having described the general approach our interpreter will follow, we will
now go on to provide the specific details.

Our continuations are built around a new datatype, which we will call the
Continuation. A continuation should be thought of as an unevaluated boolean
expression. The continuation performs some action, which may or may not
succeed. The success of the action is indicated by the boolean value returned.
The class Continuation is shown in Figure 8.4. The routine used to invoke a
relation is the virtual method withContinuation, which takes as argument the
future for the continuation.

5Observant readers will have noted that some of the conditionals could have been evaluated
during the construction of the continuation. This is true, and is an important optimization
in real systems.

91

class Continuation : public Expression {
public:

virtual int withContinuation(Continuation ∗);
virtual void print() { printf("<future>"); }
virtual Continuation ∗ isContinuation() { return this; }

};

static Continuation ∗ nothing; // the null continuation

int Continuation::withContinuation(Continuation ∗ future)
{

// default is to always work
return 1;

}

Figure 8.4: The class Continuation

Initially there is nothing we want to do in the future. So the initial relation
simply ignores its future, does nothing and always succeeds. In fact, in our
implementation we maintain a global variable called nothing to hold this relation.
You can think of this variable as maintaining the relation [true].

The simplest relation is the one correspond to the command to print. When
a print relation is created, the value it will eventually print is saved as part
of the relation. If the argument passed to the print relation is, following any
indirection, a symbolic value than it is printed out, and the future passed to
the relation is invoked. If the argument was not a symbol, or if the future
calculation was unsuccessful, then the relation indicates its failure by returning
a zero value. The code to accomplish this is shown in Figure 8.5.

Next let us consider the unification relation. As with printing, the two ex-
pressions representing the elements to be unified are saved when the unification
operator is encountered during the construction of the future. When we invoke
this relation the two arguments are unified, using the algorithm we have previ-
ously described. If this unification is successful the relation attempts to evaluate
the future continuation. Only if both of these are successful does the relation
return one. If either the unification fails or the future fails then the binding
created by the unify procedure is undone and failure is reported. (Figure 8.6).

Next consider the or relation (Figure 8.7). This relation takes some number
of argument relations. It tries each in turn, followed by the future it has been
provided with. If any succeeds then it returns a true value, otherwise if all fail
it returns a failure indication.

It is in the or relation that backtracking occurs, although it is difficult to
tell from the code shown here. Recall that the unification algorithm undoes the
effect of any assignment if the continuation passed to it cannot be performed.

92

class PrintContinuation : public Continuation {
private:

Expr val;

public:
PrintContinuation(Expression ∗ x) { val = x; }
virtual void free() { val = 0; }
virtual int withContinuation(Continuation ∗);

};

int PrintContinuation::withContinuation(Continuation ∗ future)
{

// see if we are a symbol, if so print it out
Symbol ∗ s = val()→isSymbol();
if (s) {

printf("%s\n", s→chars());
return future→withContinuation(nothing);
}

return 0;
}

Figure 8.5: The print relation

Thus the future that is passed to the or relation may be invoked several times
before we finally find a sequence of assignments that works.

The and relation is perhaps the most interesting. To understand this let us
first take the case of only two relations, which we will call rel1 and rel2. Let f
represent the continuation we wish to evaluate if the and relation is successful.
What then is the future we should pass to the first relation? If the first relation is
successful, we want to evaluate the second relation and then the continuation.
Thus the future for the first relation is the composition of the future for the
second relation and the original continuation. This can be written as rel2(f),
but we must make it into a continuation, we we create a new datatype called
a CompositionContinuation. Interestingly, this composition relation ignores its
continuation, and is merely executed for its side effect. This is the future we
want to pass to the first relation. We can generalize this to any number of
arguments. For example the and of three arguments should return the value
produced by rel1([rel2([rel3([f])])]), and so on.

The composition step is performed by the datatype ComposeContinuation,
shown in Figure 8.8. As in our description, when a composition relation is
evaluated it ignores the future it is provided with and merely returns the first
relation provided with the second relation as its future. Having defined this,
the and relation is a simple recursive invocation.

93

class UnifyContinuation : public Continuation {
private:

Expr left;
Expr right;

public:
UnifyContinuation(Expression ∗ a, Expression ∗ b)

{ left = a; right = b; }
virtual void free()

{ left = 0; right = 0; }
virtual int withContinuation(Continuation ∗);

};

int UnifyContinuation::withContinuation(Continuation ∗ future)
{

PrologValue ∗ a = left()→isPrologValue();
PrologValue ∗ b = right()→isPrologValue();

// the following shouldn’t ever happen, but check anyway
if ((!a) || (!b)) {

error("impossible", "missing prolog values in unification");
return 0;
}

// now try unification
PrologValue ∗ c = 0;
if (unify(c, a, b) && future→withContinuation(nothing))

return 1;

// didn’t work, undo assignment and fail
if (c)

c→setUndefined();
return 0;

}

Figure 8.6: The unification relation

94

class OrContinuation : public Continuation {
private:

List relArgs;
public:

OrContinuation(ListNode ∗ args) { relArgs = args; }
virtual void free() { relArgs = 0; }
virtual int withContinuation(Continuation ∗);

};

int OrContinuation::withContinuation(Continuation ∗ future)
{

ListNode ∗ args;
// try each alternative in turn
for (args = relArgs; ! args→isNil(); args = args→tail()) {

Continuation ∗ r = args→head()→isContinuation();
if (! r) {

error("or argument is non-relation");
return 0;
}

if (r→withContinuation(future)) return 1;
}

// nothing worked
return 0;

}

Figure 8.7: The or relation

95

class ComposeContinuation : public Continuation {
private:

Expr left;
Expr right;

public:
ComposeContinuation(Expression ∗ a, Expression ∗ b)

{ left = a; right = b; }
virtual void free()

{ left = 0; right = 0; }
virtual int withContinuation(Continuation ∗);

};

int ComposeContinuation::withContinuation(Continuation ∗ future)
{

Continuation ∗ a = left()→isContinuation();
Continuation ∗ b = right()→isContinuation();
if ((! a) || (! b)) {

error("compose with non relations??");
return 0;
}

return a→withContinuation(b);
}

class AndContinuation : public Continuation {
private:

List relArgs;
public:

AndContinuation(ListNode ∗ args)
{ relArgs = args; }

virtual void free()
{ relArgs = 0; }

virtual int withContinuation(Continuation ∗);
};

int AndContinuation::withContinuation(Continuation ∗ future)
{

ListNode ∗ args;
args = relArgs;
Continuation ∗ newrel = future;
for (int i = args→length()−1; i >= 0; i−−)

newrel = new ComposeContinuation(args→at(i), newrel);

Expr p = newrel; // for gc purposes
int result = newrel→withContinuation(nothing);
p = 0;
return result;

}

Figure 8.8: The and relation

96

class UnifyOperation : public BinaryFunction {
public:

virtual void applyWithArgs(Expr & target, ListNode ∗ args,
Environment ∗)
{ target = new UnifyContinuation(args→at(0), args→at(1)); }

};

class PrintOperation : public UnaryFunction {
public:

virtual void applyWithArgs(Expr & target, ListNode ∗ args,
Environment ∗)
{ target = new PrintContinuation(args→at(0)); }

};

class AndOperation : public Function {
public:

virtual void applyWithArgs(Expr & target, ListNode ∗ args,
Environment ∗)
{ target = new AndContinuation(args); }

};

class OrOperation : public Function {
public:

virtual void applyWithArgs(Expr & target, ListNode ∗ args,
Environment ∗)
{ target = new OrContinuation(args); }

};

Figure 8.9: Building the Relations

You may have noticed that the class Continuation is not a subclass of class
Function, and yet we have been discussing continuations as if they were func-
tions. This is easily explained. Recall that evaluating a relation in our approach
is a two-step process. First the relation is constructed, and in the second step
the future is brought to life. The functional parts of each of the four relation-
building operations are concerned only with the first part of this task. These
are all trivial functions, shown in Figure 8.9.

The query statement is responsible for the construction and execution of the
continuation corresponding to its argument. The function implementing the
query statement is shown in Figure 8.10. A new environment is created prior
to evaluating the arguments so that bindings created for new variables do not
get entered into the global environment. Then the continuation is constructed,

97

void QueryStatement::apply(Expr&target, ListNode∗args, Environment∗rho)
{

if (args→length() != 1) {
target = error("wrong number of args to query");
return;
}

// we make a new environment to isolate any new variables defined
Env newrho = new Environment(emptyList, emptyList, rho);

args→at(0)→eval(target, valueOps, newrho);

Continuation ∗ f = 0;
if (target())

f = target()→isContinuation();
if (! f) {

target = error("query given non-relation");
return;
}

if (f→withContinuation(nothing))
target = new Symbol("ok");

else
target = new Symbol("not ok");

newrho = 0; // force memory management
}

Figure 8.10: Implementation of the query statement

simply by evaluating the argument. If this process is successful, the continuation
is then executed, and if the continuation is successful the symbol ok is yielded
as the result (and thus printed by the read-eval-print loop). If the continuation
is not successful the symbol not-ok is generated.

The initialization function for the prolog interpreter (Figure 8.11) is one of
the shortest we have seen. It is only necessary to create the two commands
define and query, and the four relational-building operations.

98

initialize()
{

// create the reader/parser
reader = new PrologReader;

// make the empty relation
nothing = new Continuation;

// make the operators that are legal inside of relations
Environment ∗ rops = valueOps;
rops→add(new Symbol("print"), new PrintOperation);
rops→add(new Symbol(":=:"), new UnifyOperation);
rops→add(new Symbol("and"), new AndOperation);
rops→add(new Symbol("or"), new OrOperation);

// initialize the commands environment
Environment ∗ cmds = commands;
cmds→add(new Symbol("define"), new DefineStatement);
cmds→add(new Symbol("query"), new QueryStatement);

}

Figure 8.11: Initialization of the Prolog interpreter

99

Possible Future Changes

The following list represents a few of the ideas that occurred to me as I was
developing these interpreters for how things might be done differently. These
are presented in no particular order. (Nor as any particularly grave criticism of
the Kamin interpreters - I still think the book as a whole is very good).

• The C++ versions of the interpreters have an annoying habit of dumping
core when an error occurs. Need to track this down and fix it.

• I would remove the while statement from the chapter 2 lisp interpreter.
Students who do not have previous experience with Lisp often have a
difficult time learning to program in a recursive fashion. For them the
while statement is a crutch, and without it they would be forced to use
the more Lisp-like features of the language.

• I would add functionals (called operators in APL) to chapter 3. Specifi-
cally I would make reduction take the function as an argument, and add
inner and outer product. This would allow an easier transition to func-
tional programming in the next section.

• I might be tempted to add a chapter before chapter 3 on Setl. This is
another example of a language using large values, and allows a new and
different problem domain to be discussed (namely logic).

• It would be nice to add call/cc to the scheme interpreter, but I don’t
exactly see how to do this right now. This is not quite as critical now that
the Prolog interpreter uses continuations for its execution.

• I would remove the keyword “rep” from the CLU syntax, as it is unnec-
essary and its elimination simplifies the implementation.

100

