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Abstraction

Introduction

As computing scientists and computer programmers, we should remember Sim-
plicity is good; complexity is bad.

The most effective weapon that we have in the fight against complexity is
abstraction. What is abstraction?

Abstraction is concentrating on the essentials and ignoring the details.

Sometimes abstraction is described as remembering the “what” and ignoring the
“how”.

Kinds of Abstraction

Large complex systems can only be made understandable by decomposing them
into modules. When viewed from the outside, from the standpoints of users,
each module should be simple, with the complexity hidden inside.

We strive for modules that have simple interfaces that can be used without
knowing the implementations. Here we use interface to mean any information
about the module that other modules must assume to be able to do their work
correctly.

Two kinds of abstraction are of interest to computing scientists: procedural
abstraction and data abstraction.

Procedural abstraction: the separation of the logical properties of an action
from the details of how the action is implemented.

Data abstraction: the separation of the logical properties of data from the
details of how the data are represented.

When we develop an algorithm following the top-down approach, we are practicing
procedural abstraction. At a high level, we break the problem up into several
tasks. We give each task a name and state its requirements, but we do not worry
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about how the task is to be accomplished until we expand it at a lower level of
our design.

When we code a task in a programming language, we will typically make each
task a subprogram (procedure, function, subroutine, method, etc.). Any other
program component that calls the subprogram needs to know its interface (name,
parameters, return value, assumptions, etc.) but does not need to know the
subprogram’s internal implementation details. The internal implementation can
be changed without affecting the caller.

In data abstraction, the focus is on the problem’s data rather than the tasks to
be carried out.

Procedures and Functions

Generally we make the following distinctions among subprograms:

• A procedure is (in its pure form) a subprogram that takes zero or more
arguments but does not return a value. It is executed for its effects, such
as changing values in a data structure within the program, modifying its
reference or value-result arguments, or causing some effect outside the
program (e.g., displaying text on the screen or reading from a file).

• A function is (in its pure form) a subprogram that takes zero or more
arguments and returns a value but that does not have other effects.

• A method is a procedure or function often associated with an object or
class in an object-oriented program. Some object-oriented languages use
the metaphor of message-passing. A method is the feature of an object
that receives a message. In an implementation, a method is typically a
procedure or function associated with the (receiver) object; the object may
be an implicit parameter of the method.

Of course, the features of various programming languages and usual practices for
their use may not follow the above pure distinctions. For example, a language
may not distinguish between procedures and functions. One term or another
may be used for all subprograms. Procedures may return values. Functions may
have side effects. Functions may return multiple values. The same subprogram
can sometimes be called either as a function or procedure.

Nevertheless, it is good practice to maintain the distinction between functions
and procedures for most cases in software design and programming.

In Haskell, the primary unit of procedural abstraction is the pure function.
Haskell also groups functions and other declarations into a program unit called a
module. A module explicitly exports selected functions and keep others hidden.
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Using Top-Down Stepwise Refinement

This section focuses on procedural abstraction. Later sections focus on data
abstraction.

A useful and intuitive design process for a small program is to begin with a
high-level solution and incrementally fill in the details. We call this process
top-down stepwise refinement. Here we introduce it with an example.

Developing a square root package

Consider the problem of computing the nonnegative square root of a nonnegative
number x. Mathematically, we want to find the number y such that

y ≥ 0 and y2 = x.

A common algorithm in mathematics for computing the above y is to use
Newton’s method of successive approximations, which has the following steps
for square root:

1. Guess at the value of y.
2. If the current approximation (guess) is sufficiently close (i.e. good enough),

return it and stop; otherwise, continue.
3. Compute an improved guess by averaging the value of the guess y and x/y,

then go back to step 2.

To encode this algorithm in Haskell, we work top down to decompose the problem
into smaller parts until each part can be solved easily. We begin this top-down
stepwise refinement by defining a function with the type signature:

sqrtIter :: Double -> Double -> Double

We choose type Double (double precision floating point) to approximate the
real numbers. Thus we can encode step 2 of the above algorithm in Haskell as
follows:

sqrtIter guess x
| goodEnough guess x = guess
| otherwise = sqrtIter (improve guess x) x

We define sqrtIter to take two arguments–the current approximation guess
and number x for which we need the square root. We have two cases:

• When the current approximation guess is sufficiently close to x, we return
guess.

We abstract this decision into a separate function goodEnough with type
signature:

goodEnough :: Double -> Double -> Bool
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• When the approximation is not yet close enough, we reduce the problem
to another application of sqrtIter itself to an improved approximation.

We abstract the improvement process into a separate function improve
with type signature:

improve :: Double -> Double -> Double

To ensure termination of sqrtIter, the argument (improve guess x) on
the recursive call must get closer to a value that satisfies its base case.

The function improve takes the current guess and x and carries out step 3 of
the algorithm, thus averaging guess and x/guess, as follows:

improve :: Double -> Double -> Double
improve guess x = average guess (x/guess)

Here we abstract average into a separate function as follows:

average :: Double -> Double -> Double
average x y = (x + y) / 2

The new guess is closer to the square root than the previous guess. Thus the
algorithm will terminate assuming a good choice for function goodEnough, which
guards the base case of the sqrtIter recursion.

How should we define goodEnough? Given that we are working with the limited
precision of computer floating point arithmetic, it is not easy to choose an
appropriate test for all situations. Here we simplify this and use a tolerance of
0.001.

We thus postulate the following definition for goodEnough:

goodEnough :: Double -> Double -> Bool
goodEnough guess x = abs (square guess - x) < 0.001

In the above, abs is the built-in absolute value function defined in the standard
Prelude library. We define square as the following simple function (but could
replace it by just guess * guess):

square :: Double -> Double
square x = x * x

What is a good initial guess? It is sufficient to just use 1. So we can define an
overall square root function sqrt' as follows:

sqrt' :: Double -> Double
sqrt' x | x >= 0 = sqrtIter 1 x

(A square root function sqrt is defined in the Prelude library, so a different
name is needed to avoid the name clash.)
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Making the package a Haskell module

We can make this package into a Haskell module by putting the definitions in
a file (e.g., named Sqrt.hs) and adding a module header at the beginning as
follows:

module Sqrt
(sqrt')

where
-- give the definitions above for functions sqrt',
-- sqrtIter, improve, average, and goodEnough,

The header gives the module the name Sqrt and defines the names in parenthesis
as being exported to other modules that import this module. The other symbols
(e.g., sqrtIter, goodEnough) are local to (i.e., hidden inside) the module.

In the above Haskell code, the symbol “--” denotes the beginning of an end-
of-line comment. All text after that symbol is text ignored by the Haskell
compiler.

The Haskell module for the Square root case study is in file Sqrt.hs. Limited
testing code is in module TestSqrt.hs.

Top-down stepwise refinement

The program design strategy known as top-down stepwise refinement is a rel-
atively intuitive design process that has long been applied in the design of
structured programs in imperative procedural languages. It is also useful in the
functional setting.

In Haskell, we can apply top-down stepwise refinement as follows.

1. Start with a high-level solution to the problem consisting of one or more
functions. For each function, identify its type signature and functional
requirements (i.e., its inputs, outputs, and termination condition).

Some parts of each function are abstracted as “pseudocode” expressions or
as-yet-undefined function calls.

2. Choose one of the incomplete parts. Consider its type signature and
functional requirements. Refine the incomplete part by breaking it into
subparts or, if simple, defining it directly in terms of Haskell expressions
(including calls to the Prelude or other available library functions).

When refining an incomplete part, consider the various options according to
the relevant design criteria (e.g., time, space, generality, understandability,
elegance, etc.)
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The refinement of the function may require a refinement of the data being
passed. If so, back up in the refinement process and readdress previous
design decisions as needed.

If it not possible to design an appropriate refinement, back up in the
refinement process and readdress previous design decisions.

3. Continue step 2 until all parts are fully defined in terms of Haskell code
and data and the resulting set of functions meets all required criteria.

For as long as possible, we should stay with terminology and notation that is
close to the problem being solved. We can do this by choosing appropriate
function names and signatures and data types. (In later chapters, we examine
Haskell’s rich set of builtin and user-defined types.)

For stepwise refinement to work well, we must be willing to back up to earlier
design decisions when appropriate. We should keep good documentation of the
intermediate design steps.

The stepwise refinement method can work well for small programs, but it may
not scale well to large, long-lived, general purpose programs. In particular,
stepwise refinement may lead to a module structure in which modules are tightly
coupled and not robust with respect to changes in requirements. A combination
of techniques may be needed to develop larger software systems.

Using Data Abstraction

A design technique that can help make a program robust with respect to change
in the data is to use data abstraction. As in the previous subsection, let’s begin
with an example.

Rational number arithmetic

For this example, let’s implement a group of Haskell functions to perform rational
number arithmetic, assuming that the Haskell library does not contain such a
data type.

In mathematics we usually write rational numbers in the form x
y where x and y

are integers and y 6= 0.

For now, let’s assume we have a special type Rat to represent rational numbers
and a constructor function

makeRat :: Int -> Int -> Rat

to create a rational number instance from its numerator x and denominator y.
That is, makeRat x y constructs rational number x

y .

Further, let us assume we have selector functions numer and denom with signatures
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numer, denom :: Rat -> Int

that each take a Rat argument and return the numerator and denominator,
respectively. That is, they satisfy the equalities:

numer (makeRat x y) == x
denom (makeRat x y) == y

We consider how to implement rational numbers in Haskell later, but for now
let’s look at rational arithmetic using the constructor and selector functions
above.

Given the knowledge of rational arithmetic from mathematics, we can define the
operations for unary negation, addition, subtraction, multiplication, division,
and equality.

negRat :: Rat -> Rat
negRat x = makeRat (- numer x) (denom x)

addRat, subRat, mulRat, divRat :: Rat -> Rat -> Rat
addRat x y = makeRat (numer x * denom y + numer y * denom x)

(denom x * denom y) -- x + y
subRat x y = makeRat (numer x * denom y - numer y * denom x)

(denom x * denom y) -- x - y
mulRat x y = makeRat (numer x * numer y)

(denom x * denom y) -- x * y
divRat x y = makeRat (numer x * denom y)

(denom x * numer y) -- x / y

eqRat :: Rat -> Rat -> Bool
eqRat x y = (numer x) * (denom y) == (numer y) * (denom x)

Above we give the type signatures for all four functions in the same type
declaration by listing them separated by commas.

These functions all use the type Rat, constructor function makeRat, and selector
functions numer and denom assumed above. They do not depend upon any
specific representation for rational numbers.

The above six functions work on rational numbers as a data abstraction defined
by the type Rat, constructor function makeRat, and selector functions numer
and denom.

The goal of a data abstraction is to separate the logical properties of data from
the details of how the data are represented.

Rational number data representation

Now, how can we represent rational numbers?
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For this package, we define a type synonym Rat to denote this type:

type Rat = (Int, Int)

For example, (1,7), (-1,-7), (3,21), and (168,1176) all represent 1
7 .

As with any value that can be expressed in many different ways, it is useful to
define a single canonical (or normal) form for representing values in the rational
number type Rat.

It is convenient for us to choose a rational number representation (x,y) that
satisfies the following property, which we call an invariant:

y > 0, x and y are relatively prime, and zero is denoted uniquely by
(0,1).

By relatively prime, we mean that the two integers have no common divisors
except 1.

By invariant, we mean that the logical assertion always holds for every rational
number created by makeRat and manipulated only by the operations in the
RationalCore and Rational modules.

This representation has the advantage that the magnitudes of the numerator x
and denominator y are kept small, thus reducing problems with overflow arising
during arithmetic operations.

We thus provide a function for constructing rational numbers in this canonical
form. We define constructor makeRat as follows.

makeRat :: Int -> Int -> Rat
makeRat x 0 = error ( "Cannot construct a rational number "

++ showRat (x,0) ++ "\n" )
makeRat 0 _ = (0,1)
makeRat x y = (x' `div` d, y' `div` d)

where x' = (signum' y) * x
y' = abs' y
d = gcd' x' y'

Above we use features of Haskell we have not used in the previous examples:

• Instead of leaving the (x,0) case undefined, we define an explicit error
call that returns a custom error message as a String.

• To concatenate two strings, we use the infix ++ (read “append”) operator.
(We discuss ++ in the chapter on lists.)

• Putting backticks (`) around an alphanumeric function name enables us
to use that function as an infix operator. The function div denotes integer
division. Above the `div` operator denotes the integer division function
used in an infix manner.
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• The where clause introduces x', y', and d as a local definitions within
the body of makeRat. It can be called from within makeRat but not from
outside the function. In contrast, sqrtIter in the Square Root example is
at the same level as sqrt', so it can be called by other functions (in the
same Haskell module at least).

The where feature allows us to introduce new definitions in a top-down
manner–first using a symbol and then defining it.

• Instead of defining the types of the local definitions x', y', and d, we use
type inference.

These parameterless functions could be declared

x', y', d :: Int

but it was not necessary because Haskell can infer the types from the types
involved in their defining expressions.

Type inference can be used more broadly in Haskell, but explicit type
declarations should be used for any function called from outside.

The function signum' (similar to the more general function signum in the
Prelude) takes an integer and returns the integer -1, 0, or 1 when the number is
negative, zero, or positive, respectively.

signum' :: Int -> Int
signum' n | n == 0 = 0

| n > 0 = 1
| n < 0 = -1

The function abs' (similar to the more general function abs in the Prelude)
takes an integer and returns its absolute value.

abs' :: Int -> Int
abs' n | n >= 0 = n

| n < 0 = -n

The function gcd' (similar to the more general function gcd in the Prelude)
takes two integers and returns their greatest common divisor.

gcd' :: Int -> Int -> Int
gcd' x y = gcd'' (abs' x) (abs' y)

where gcd'' x 0 = x
gcd'' x y = gcd'' y (x `rem` y)

Prelude operation rem returns the remainder from dividing its first operand by
its second.

Given makeRat defined as above, we can define numer and denom as follows:

numer, denom :: Rat -> Int
numer (x,_) = x
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denom (_,y) = y

Finally, to allow rational numbers to be displayed in the normal fractional
representation, we include function showRat in the package. We use function
show, found in the Prelude, here to convert an integer to the usual string format
and use the list operator ++ to concatenate the two strings into one.

showRat :: Rat -> String
showRat x = show (numer x) ++ "/" ++ show (denom x)

Unlike Rat, makeRat, numer, and denom, function showRat (as implemented)
does not use knowledge of the data representation, but it is used by makeRat.
We could optimize it slightly by allowing it to access the structure of the tuple
directly.

Modularization

There are three groups of functions in this package:

1. the six public rational arithmetic functions negRat, addRat, subRat,
mulRat, divRat, and eqRat

2. the public type Rat, public constructor function makeRat, public selector
functions numer and denom, and string conversion function showRat

3. the private utility functions called only by the second group, but just
reimplementations of Prelude functions anyway

As we have seen, Rat, makeRat, numer, denom, and showRat are the interface to
the data abstraction that hides the information about the representation of the
data. We can encapsulate this group of functions in a Haskell module as follows.
This source code must also be in a file named RationalCore.hs.

module RationalCore
(Rat, makeRat, numer, denom, showRat)

where
-- Rat, makeRat, numer, denom, showRat definitions

We can encapsulate the utility functions in a separate module, which would
enable them to be used by several other modules.

However, given that the only use of the utility functions is within the data
representation module, we choose not to separate them at this time. We leave
them in the data abstraction module. Of course, we could also eliminate them
and use the corresponding Prelude functions directly.

Similarly, negRat, addRat, subRat, mulRat, divRat, and eqRat use the core
data abstraction and, in turn, extend the interface to include rational number
arithmetic operations. We can encapsulate these in another Haskell module that
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imports the module giving the data representation. This module must be in a
file named Rational.hs.

module Rational
( Rat, makeRat, numer, denom, showRat, -- from RatioalCore
negRat, addRat, subRat, mulRat, divRat, eqRat )

where
import RationalCore
-- negRat, addRat, subRat, mulRat, divRat, eqRat definitions

Other modules that use the rational number package can import module
Rational.

This modular approach to program design and implementation offers the potential
of scalability and robustness with respect to change.

The key to this information-hiding approach to design is to identify the aspects
of a software system that are most likely to change from one version to another
and make each a design secret of some module.

The secret of the RationalCore module is the rational number data represen-
tation used. The secret of the Rational module itself is the methods used for
rational number arithmetic.

Alternative rational number data representation

In the rational number data representation above, constructor makeRat creates
pairs in which the two integers are relatively prime and the sign is on the
numerator. Selector functions numer and denom just return these stored values.

An alternative representation is to reverse this approach, as shown in the following
module (in file RationalDeferGCD.hs.)

module RationalDeferGCD
(Rat, makeRat, numer, denom, showRat)

where

type Rat = (Int,Int)

makeRat :: Int -> Int -> Rat
makeRat x 0 = error ( "Cannot construct a rational number "

++ showRat (x,0) ++ "\n" )
makeRat 0 y = (0,1)
makeRat x y = (x,y)

numer :: Rat -> Int
numer (x,y) = x' `div` d

where x' = (signum' y) * x
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y' = abs' y
d = gcd' x' y'

denom :: Rat -> Int
denom (x,y) = y' `div` d

where x' = (signum' y) * x
y' = abs' y
d = gcd' x' y'

showRat :: Rat -> String
showRat x = show (numer x) ++ "/" ++ show (denom x)

This approach defers the calculation of the greatest common divisor until a
selector is called.

The invariant for this rational number representation requires that, for (x,y),

y 6= 0 and zero is represented uniquely by (0,1).

Furthermore, function numer and denom satisfy the equalities

numer (makeRat x y) == x'
denom (makeRat x y) == y'

where y' > 0, x' and y' are relatively prime, and x
y = x’

y’ .

Question:

What are the advantages and disadvantages of the two data repre-
sentations?

Like module RationalCore, the design secret for module RationalDeferGCD is
the rational number data representation.

Regardless of which approach is used, the definitions of the arithmetic and
comparison functions do not change. Thus the Rational module can import
data representation module RationalCore or RationalDeferGCD.

Figure 1 shows the dependencies among the modules we have examined in the
rational arithmetic case study.

We can consider the RationalCore and RationalDeferGCD modules as two con-
crete instances (Haskell modules) of a more abstract module we call RationalRep
in the diagram.

The module Rational relies on the abstract module RationalRep for an imple-
mentation of rational numbers. In the Haskell code above, there are really two
versions of the Haskell module Rational that differ only in whether they import
RationalCore or RationalDeferGCD.

We could also replace alias Rat by a user-defined type to get another alternative
definition of RationalRep, as long as the interface functions do not have to work
with types other than Int.
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Figure 1. Module Dependencies for Rational Arithmetic Case Study
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Modular Design and Programming

Now let’s step back from the rational arithmetic case study and consider the
general issues of data abstraction and modular design and programming.

Software engineering pioneer David Parnas defines a module as “a work assign-
ment given to a programmer or group of programmers” [Parnas 1978]. This is a
software engineering view of a module.

In a programming language like Haskell, a module is also a program unit defined
with a construct or convention. This is a programming language view of a module.

Ideally, a language’s module features should support the software engineering
module methods.

Information-hiding modules

According to Parnas, the goals of modular design are to [Parnas 1972]:

1. enable programmers to understand the system by focusing on one module
at a time (i.e., comprehensibility).

2. shorten development time by minimizing required communication among
groups (i.e., independent development).

3. make the software system flexible by limiting the ‘number of modules
affected by significant changes (i.e., changeability).

Parnas advocates the use of a principle called information hiding to guide
decomposition of a system into appropriate modules (i.e. work assignments).
He points out that the connections among the modules should have as few
information requirements as possible [Parnas 1972].

In the Parnas approach, an information-hiding module:

• forms a cohesive unit of functionality separate from other modules

• hides a design decision (its secret) from other modules

• encapsulates an aspect of system likely to change (its secret)

Aspects likely to change independently of each other become secrets of separate
modules. Aspects unlikely to change can become interactions (connections)
among modules.

This approach supports the goal of changeability (goal 2). When care is taken
to design the modules as clean abstractions with well-defined and documented
interfaces, the approach also supports the goals of independent development
(goal 1) and comprehensibility (goal 3).
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Information hiding has been absorbed into the dogma of contemporary object-
oriented programming. However, information hiding is often oversimplified as
merely hiding the data and their representations [Weiss 2001].

The secret of a well-designed module may be much more than that. It may include
such knowledge as a specific functional requirement stated in the requirements
document, the processing algorithm used, the nature of external devices accessed,
or even the presence or absence of other modules or programs in the system
[Parnas 1972, 1979, 1985]. These are important aspects that may change as the
system evolves.

Interfaces

It is important for information-hiding modules to have well-defined and stable
interfaces.

According to Britton et al, an interface is a “set of assumptions . . . each
programmer needs to make about the other program . . . to demonstrate the
correctness of his own program” [Britton 1981].

An interface includes the type signature of each function (i.e., name, arguments,
and return value) and the constraints on the environment and argument values
(e.g., the invariants).

An abstract interface is an interface that does not change when one module
implementation is substituted for another [Britton 1981; Parnas 1978]. It
concentrates on module’s essential aspects and obscures incidental aspects that
vary among implementations.

Information-hiding modules and abstract interfaces enable us to design and
build software systems with multiple versions. The information-hiding approach
seeks to identify aspects of a software design that might change from one version
to another and to hide them within independent modules behind well-defined
abstract interfaces.

We can reuse the software design across several similar systems. We can reuse
an existing module implementation when appropriate. When we need a new
implementation, we can create one by following the specification of the module’s
abstract interface.

Haskell information-hiding modules

As we have seen, in Haskell the module construct can be used to encapsulate an
information-hiding module. The features exported form part of the interface to
the module. One module can import another module, specifying its dependence
on the interface of the other module.
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We define each Haskell module in a separate file. The Haskell compiler can
compile a module independently of others except that the modules it depends on
must be previously compiled. The Haskell build and package management tools
cabal-install and stack support Haskell modules as their primary units.

The interface of a Haskell module consists of the names and type signatures of
its exported types and functions plus the constraints on the functions and the
expected properties of the “objects” manipulated.

In the Rational Arithmetic case study, we defined two information-hiding mod-
ules:

1. “RationalRep”, whose secret is how to represent the rational number data
and whose interface consists of the data type Rat, operations (functions)
makeRat, numer, denom, and showRat, and the constraints on these types
and functions

2. “Rational”, whose secret is how to implement the rational number
arithmetic and whose interface consists of operations (functions) negRat,
addRat, subRat, mulRat, divRat, and eqRat, the other module’s interface,
and the constraints on these types and functions

We developed two distinct Haskell modules, RationalCore and RationalDeferGCD,
to implement the “RationalRep” information-hiding module. We developed one
distinct Haskell module, Rational, to implement the “Rational” information-
hiding module. Haskell module Rational can be paired (i.e., by chaning the
import statement) either of the other two variants of “RationalRep”.

Unfortunately, Haskell 2010 has a relatively weak module system that does not
support multiple implementations as well as we might like. There is no way to
declare that multiple Haskell modules have the same interface other than copying
the common code into each module and documenting the interface carefully. We
must also have multiple versions of Rational that differ only in which other
module is imported.

Together the Glasgow Haskell Compiler (GHC) release 8.2 (July 2017) and
the Cabal-Install package manager release 2.0 (August 2017) support a new
extension, the Backpack mixin package system. This new system remedies
the above shortcoming. In this new approach, we would define the abstract
module “RationalRep” as a signature file and require that RationalCore and
RationalDeferGCD conform to it.

Further discussion of this new module system is beyond the scope of this chapter.

Invariants

As we saw in the Rational Arithmetic case study, a module that provides a data
abstraction must ensure that the objects it creates and manipulates maintain
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their integrity–always have a valid structure and state. An invariant for the data
abstraction can help us design and implement such objects.

Invariant: A logical assertion that must always true for every “object” created
by the public constructors and manipulated only by the public operations
of the data abstraction.

Often, we separate an invariant into two parts.

Interface invariant: An invariant stated in terms of the public features and
abstract properties of the “object”.

Implementation (representation) invariant: A detailed invariant giving
the required relationships among the internal features of the implementation
of an “object”

An interface invariant is a key aspect of the abstract interface of a module. It is
useful to the users of the module, as well to the developers.

In the Rational Arithmetic case study, the interface invariant for the “Rational-
Rep” abstract module is the following.

For all integers x and nonzero integers y,

~~~{.haskell}
numer (makeRat x y) == x'
denom (makeRat x y) == y'

~~~

where y' > 0, x' and y' are relatively prime, x
y = x’

y’ and if x' = 0,
then y' = 1.

An implementation invariant guides the developers in the design and implemen-
tation of the internal details of a module. It relates the internal details to the
interface invariant.

We can state an implementation invariant for the RationalCore module as
follows.

For all integers x and nonzero integers y,

~~~{.haskell}
makeRat x y == (x',y')

~~~

where y' > 0, x' and y' are relatively prime, x
y = x’

y’ and if x' = 0,
then y' = 1.

The implementation invariant implies the interface invariant. Although makeRat
does quite a bit of work, numer and denom are simple.

We can state an implementation invariant for the RationalDeferGCD module as
follows.
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For all integers x and nonzero integers y,

~~~{.haskell}
makeRat x y == (x,y)

~~~

In this module implementation, makeRat is trivial, thus numer and denom must
do most of the work to establish the interface invariant.

We will return to the invariant concepts in later chapters.

Design criteria for interfaces

What makes a good interface for an information-hiding module?

In designing an interface for a module, we should also consider the following
criteria. Of course, some of these criteria conflict with one another; a designer
must carefully balance the criteria to achieve a good interface design.

Note: These are general principles; they are not limited to Haskell or func-
tional programming. In object-oriented languages, these criteria apply to class
interfaces.

• Cohesion: All operations must logically fit together to support a single,
coherent purpose. The module should describe a single abstraction.

• Simplicity: Avoid needless features. The smaller the interface the easier
it is to use the module.

• No redundancy: Avoid offering the same service in more than one way;
eliminate redundant features.

• Atomicity: Do not combine several operations if they are needed indi-
vidually. Keep independent features separate. All operations should be
primitive, that is, not be decomposable into other operations also in the
public interface.

• Completeness: All primitive operations that make sense for the abstrac-
tion should be supported by the module.

• Consistency: Provide a set of operations that are internally consistent in

– naming convention (e.g., in use of prefixes like “set” or “get”, in
capitalization, in use of verbs/nouns/adjectives),

– use of arguments and return values (e.g., order and type of arguments),
– behavior (i.e., make operations work similarly).

Avoid surprises and misunderstandings. Consistent interfaces make it easier
to understand the rest of a system if part of it is already known.

The operations should be consistent with good practices for the specific
language being used.
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• Reusability: Do not customize modules to specific clients, but make them
general enough to be reusable in other contexts.

• Robustness with respect to modifications: Design the interface of an
module so that it remains stable even if the implementation of the module
changes. (That is, it should be an abstract interface for an information-
hiding module as we discussed above.)

• Convenience: Where appropriate, provide additional operations (e.g.,
beyond the complete primitive set) for the convenience of users of the
module. Add convenience operations only for frequently used combinations
after careful study.

We must trade off conflicts among the criteria. For example, we must balance:

• completeness versus simplicity
• reusability versus simplicity
• convenience versus consistency, simplicity, no redundancy, and atomicity

We must also balance these design criteria against efficiency and functionality.

Exercises

TODO: Add more exercises for the techniques and features introduced in this
section. Make sure what is here still make sense.

For each of the following exercises, develop and test a Haskell function or set of
functions.

1. Develop a Haskell module (or modules) for line segments on the two-
dimensional coordinate plane using the rectangular coordinate system.

We can represent a line segment with two points–the starting point and
the ending point. Develop the following Haskell functions:

• constructor newSeg that takes two points and returns a new line
segment

• selectors startPt and endPt that each take a segment and return its
starting and ending points, respectively

We normally represent the plane with a rectangular coordinate system.
That is, we use two axes–an x axis and a y axis–intersecting at a right
angle. We call the intersection point the origin and label it with 0 on both
axes. We normally draw the x axis horizontally and label it with increasing
numbers to the right and decreasing numbers to the left. We also draw the
y axis vertically with increasing numbers upward and decreasing numbers
downward. Any point in the plane is uniquely identified by its x-coordinate
and y-coordinate.
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Define a data representation for points in the rectangular coordinate system
and develop the following Haskell functions:

• constructor newPtFromRect that takes the x and y coordinates of a
point and returns a new point

• selectors getx and gety that takes a point and returns the x and y
coordinates, respectively

• display function showPt that takes a point and returns an appropriate
String representation for the point

Now, using the various constructors and selectors, also develop the Haskell
functions for line segments:

• midPt that takes a line segment and returns the point at the middle
of the segment

• display function showSeg that takes a line segment and returns an
appropriate String representation

Note that newSeg, startPt, endPt, midPt, and showSeg can be imple-
mented independently from how the points are represented.

2. Develop a Haskell module (or modules) for line segments that represents
points using the polar coordinate system instead of the rectangular coordi-
nate system used in the previous exercise.

A polar coordinate system represents a point in the plane by its radial
coordinate r (i.e., the distance from the pole) and its angular coordinate t
(i.e., the angle from the polar axis in the reference direction). We sometimes
call r the magnitude and t the angle.

By convention, we align the rectangular and polar coordinate systems by
making the origin the pole, the positive portion of the x axis the polar
axis, and let the first quadrant (where both x and y are positive) be
the smallest positive angles in the reference direction. That is, with a
traditional drawing of the coordinate systems, we measure and the radial
coordinate r as the distance from the origin measure the angular coordinate
t counterclockwise from the positive x axis.

Using knowledge of trigonometry, we can convert among rectangular coor-
dinates (x,y) and polar coordinates (r,t) using the equations:

x = r * cos(t)
y = r * sin(t)
r = sqrt(x^2 + y^2)
t = arctan2(y,x)

Define a data representation for points in the polar coordinate system and
develop the following Haskell functions:
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• constructor newPtFromPolar that takes the magnitude r and angle t
as the polar coordinates of a point and returns a new point

• selectors getMag and getAng that each take a point and return the
magnitude r and angle t coordinates, respectively

• selectors getx and gety that return the x and y components of the
points (represented here in polar coordinates)

• display functions showPtAsRect and showPtAsPolar to convert the
points to strings using rectangular and polar coordinates, respectively,

Functions newSeg, startPt, endPt, midPt, and showSeg should work as
in the previous exercise.

3. Modify the solutions to the previous two line-segment module exercises to
enable the line segment functions to be in one module that works properly
if composed with either of the two data representation modules. (The
solutions may have already done this.)

4. Modify the solution to the previous line-segment exercise to use the Back-
pack module system.

5. Modify the modules in the previous exercise to enable the line segment
module to work with both data representations in the same program.

6. Modify the solution to the Rational Arithmetic case study to use the
Backpack module system.
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I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.
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