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In Spring 2017, I continued to develop this module. This included adding
discussion of the tupling technique from chapter 12 of my Notes on Functional
Programming with Haskell and referring to examples used in other chapers.

I continue to develop this module in Summer and Fall 2017.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

Advisory: The HTML version of this document may require use of a browser
that supports the display of MathML. A good choice as of October 2017 is a
recent version of Firefox from Mozilla.

TODO:

• Add chapter goals and outcomes
• Make problem solving section less dependent on external references such

as the classic Bird and Wadler textbook. (Probably need to add new
examples to this and other chapters)

• Add exercises

7 More List Processing and Problem Solving

7.1 Chapter Introduction

TODO

7.2 Sequences

Haskell provides a compact notation for expressing arithmetic sequences.

An arithmetic sequence (or progression) is a sequence of elements from an
enumerated type (i.e., a member of class Enum) such that consecutive elements
have a fixed difference. Int, Integer, Float, Double, and Char are all predefined
members of this class.

• [m..n] produces the list of elements from m up to n in steps of one if m
<= n. It produces the nil list otherwise.

Examples:

– [1..5] =⇒ [1,2,3,4,5]
– [5..1] =⇒ []

This feature is implemented with Prelude function enumFromTo applied as
enumFromTo m n.
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• [m,m’..n] produces the list of elements from m in steps of m’-m. If m’ >
m then the list is increasing up to n. If m’ < m, then it is decreasing.

Examples:

– [1,3..9] =⇒ [1,3,5,7,9]
– [9,8..5] =⇒ [9,8,7,6,5]
– [9,8..11] =⇒ []

This feature is implemented with Prelude function enumFromThenTo applied
as enumFromThenTo m’ m n.

• [m..] and [m,m’..] produce potentially infinite lists beginning with m
and having steps 1 and m’-m respectively.

These features are implemented with Prelude functions enumFrom applied
as enumFrom m and enumFromThen applied as enumFromThen m m’.

Of course, we can provide our own functions for sequences. Consider the following
function to generate a geometric sequence.

A geometric sequence (or progression) is a sequence of elements from an ordered,
numeric type (i.e., a member of both classes Ord and Num) such that consecutive
elements have a fixed ratio.

geometric :: (Ord a, Num a) => a -> a -> a -> [a]
geometric r m n | m > n = []

| otherwise = m : geometric r (m*r) n

Example: geometric 2 1 10 =⇒ [1,2,4,8]

7.3 List Comprehensions

7.3.1 Syntax and semantics

The list comprehension is another powerful and compact notation for describing
lists. A list comprehension has the form

{ expression | qualifiers }

where expression is any Haskell expression.

The expression and the qualifiers in a comprehension may contain variables that
are local to the comprehension. The values of these variables are bound by the
qualifiers.

For each group of values bound by the qualifiers, the comprehension generates
an element of the list whose value is the expression with the values substituted
for the local variables.

There are three kinds of qualifiersthat can be used in Haskell: generators, filters,
and local definitions.
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1. A generator is a qualifier of the form

pat <- exp

where exp is a list-valued expression. The generator extracts each element
of exp that matches the pattern pat in the order that the elements appear
in the list; elements that do not match the pattern are skipped.

Example: [ n*n | n <- [1..5]] =⇒ [1,4,9,16,25]

2. A filter is a Boolean-valued expression used as a qualifier in a list compre-
hension. These expressions work like the filter function; only values that
make the expression True are used to form elements of the list comprehen-
sion.

Example:

• [ n*n | even n ] =⇒ (if even n then [n*n] else [])

Above variable n is global to this expression, not local to the comprehension.

3. A local definition is a qualifier of the form

let pat = expr

introduces a local definition into the list comprehension.

Example:

• [ n*n | let n = 2 ] =⇒ [4]

The real power of list comprehensions come from using several qualifiers separated
by commas on the right side of the vertical bar |.

• Generators appearing later in the list of qualifiers vary more quickly than
those that appear earlier. Speaking operationally, the generation “loop”
for the later generator is nested within the “loop” for the earlier.

Example:

– [ (m,n) | m<-[1..3], n<-[4,5] ] =⇒ [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

• Qualifiers appearing later in the list of qualifiers may use values generated
by qualifiers appearing earlier, but not vice versa.

Examples:

– [ n*n | n<-[1..10], even n ] =⇒ [4,16,36,64,100]

– [ (m,n) | m<-[1..3], n<-[1..m] ] =⇒ [ (1,1), (2,1),
(2,2), (3,1), (3,2), (3,3)]

• The generated values may or may not be used in the expression.

Examples:

– [ 27 | n<-[1..3]] =⇒ [27,27,27]
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– [ x | x<-[1..3], y<-[1..2]] =⇒ [1,1,2,2,3,3]

7.3.2 Translating list comprehensions

List comprehensions are syntactic sugar. We can translate them into core Haskell
features by applying the following identities.

1. For any expression e,

[ e | True ]

is equivalent to:

[ e ]

2. For any expression e and qualifier q,

[ e | q ]

is equivalent to:

[ e | q, True ]

3. For any expression e, boolean b, and and sequence of qualifiers Q,

[ e | b, Q ]

is equivalent to:

if b then [ e | Q ] else []

4. For any expression e, pattern p, list-valued expression l, sequence of
qualifiers Q, and fresh variable ok,

[ e | p <- l, Q ]

is equivalent to:

let ok p = [ e | Q ] -- p is a pattern
ok _ = []

in concatMap ok l

5. For any expression e, declaration list D, and sequence of qualifiers Q,

[ e | let D, Q ]

is equivalent to:

let D in [ e | Q ]

Function concatMap and boolean value True are as defined in the Prelude.

As we saw in a previous chapter, concatMap applies a list-returning function to
each element of an input list and then concatenates the resulting list of lists into
a single list. Both map and filter can be defined in terms of concatMap.
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Consider the list comprehension:

~~~{.haskell}
[ n*n | n<-[1..10], even n ]

~~~

a. Apply identity 4:

let ok n = [ n*n | even n ]
ok _ = []

in concatMap ok [1..10]

b. Apply identity 2:

let ok n = [ n*n | even n, True ]
ok _ = []

in concatMap ok [1..10]

c. Apply identity 3:

let ok n = if (even n) then [ n*n | True ]
ok _ = []

in concatMap ok [1..10]

d. Apply identity 1:

let ok n = if (even n) then [ n*n ]
ok _ = []

in concatMap ok [1..10]

7.3.3 Strings of spaces

Consider a function spaces that takes a number and generates a string with
that many spaces.

spaces :: Int -> String
spaces n = [ ' ' | i<-[1..n]]

Note that when n < 1 the result is the empty string.

7.3.4 Prime number test

Consider a Boolean function isPrime that takes a nonzero natural number and
determines whether the number is prime. (Remember that a prime number is a
natural number whose only natural number factors are 1 and itself.)

isPrime :: Int -> Bool
isPrime n | n > 1 = (factors n == [])

where factors m = [ x | x<-[2..(m-1)], m `mod` x == 0 ]
isPrime _ = False
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7.3.5 Squares of primes

Consider a function sqPrimes that takes two natural numbers and returns the
list of squares of the prime numbers in the inclusive range from the first up to
the second.

sqPrimes :: Int -> Int -> [Int]
sqPrimes m n = [ x*x | x<-[m..n], isPrime x ]

Alternatively, this function could be defined using map and filter as follows:

sqPrimes' :: Int -> Int -> [Int]
sqPrimes' m n = map (\x -> x*x) (filter isPrime [m..n])

7.3.6 Doubling positive elements

We can use a list comprehension to define (our, by now, old and dear friend) the
function doublePos, which doubles the positive integers in a list.

doublePos5 :: [Int] -> [Int]
doublePos5 xs = [ 2*x | x<-xs, 0 < x ]

7.3.7 Concatenating a list of lists of lists

Consider a program superConcat that takes a list of lists of lists and concatenates
the elements into a single list.

superConcat :: [[[a]]] -> [a]
superConcat xsss = [ x | xss<-xsss, xs<-xss, x<-xs ]

Alternatively, this function could be defined using Prelude functions concat and
map and functional composition as follows:

superConcat' :: [[[a]]] -> [a]
superConcat' = concat . map concat

7.3.8 First occurrence in a list

Consider a function position that takes a list and a value of the same type. If
the value occurs in the list, position returns the position of the value’s first
occurrence; if the value does not occur in the list, position returns 0.

Strategy: Solve a more general problem first, then use it to get the specific
solution desired.

In this problem, we generalize the problem to finding all occurrences of a value
in a list. This more general problem is actually easier to solve.
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positions :: Eq a => [a] -> a -> [Int]
positions xs x = [ i | (i,y)<-zip [1..length xs] xs, x == y]

Function zip is useful in pairing an element of the list with its position within
the list. The subsequent filter removes those pairs not involving the value x.
The “zipper” functions can be very useful within list comprehensions.

Now that we have the positions of all the occurrences, we can use head to get
the first occurrence. Of course, we need to be careful that we return 0 when
there are no occurrences of x in xs.

position :: Eq a => [a] -> a -> Int
position xs x = head ( positions xs x ++ [0] )

Because of lazy evaluation, this implementation of position is not as inefficient
as it first appears. The function positions will, in actuality, only generate the
head element of its output list.

Also because of lazy evaluation, the upper bound length xs can be left off the
generator in positions. In fact, the function is more efficient to do so.

7.4 Problem Solving

I approach computing science with the following philosophy:

• Programming is the essence of computing science.

• Problem solving is the essence of programming.

Here I consider programming as the process of analyzing a problem and for-
mulating a solution suitable for execution on a computer. The solution should
be correct, elegant, efficient, and robust. It should be expressed in a manner
that is understandable, maintainable, and reusable. The solution should balance
generality and specificity, abstraction and concreteness.

In my view, programming is far more than just coding. It subsumes the concerns
of algorithms, data structures, and software engineering. It uses programming
languages and software development tools. It uses the intellectual tools of
mathematics, logic, linguistics, and computing science theory. Etc.

7.4.1 Polya’s insights

The mathematician George Polya (1887–1985), a Professor of Mathematics at
Stanford University, said the following in the preface to his book Mathematical
Discovery: On Understanding, Learning and Teaching Problem Solving.

Solving a problem means finding a way out of a difficulty, a way
around an obstacle, attaining an aim which was not immediately at-
tainable. Solving problems is the specific achievement of intelligence,
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and intelligence is the specific gift of mankind: solving problems can
be regarded as the most characteristically human activity. . . .

Solving problems is a practical art, like swimming, or skiing, or
playing the piano: you learn it only by imitation and practice. . . . if
you wish to learn swimming you have to go into the water, and if
you wish to become a problem solver you have to solve problems.

If you wish to derive the most profit from your effort, look out for
such features of a problem at hand as may be useful in handling the
problems to come. A solution that you have obtained by your own
effort or one that you have read or heard, but have followed with
real interest and insight, may become a pattern for you, a model that
you can imitate with advantage in solving similar problems. . . .

Our knowledge about any subject consists of information and know-
how. If you have genuine bona fide experience of mathematical work
on any level, elementary or advanced, there will be no doubt in your
mind that, in mathematics, know-how is much more important than
mere possession of information. . . .

What is know-how in mathematics? The ability to solve problems—
not merely routine problems but problems requiring some degree of
independence, judgment, originality, creativity. Therefore, the first
and foremost duty . . . in teaching mathematics is to emphasize
methodical work in problem solving.

What Polya says for mathematics holds just as much for computing science.

In his book How to Solve It, Polya states four phases of problem solving. These
steps are important for programming as well.

1. Understand the problem.

2. Devise a plan.

3. Carry out the plan, checking each step.

4. Reexamine and reconsider the solution. (And, of course, reexamine the
understanding of the problem, the plan, and the way the plan was carried
out.)

7.4.2 Problem-solving strategies

There are many problem-solving strategies applicable to programming in general
and functional programming in particular. We have seen some of these in the
earlier chapters and will see others in later chapters. In this section, we highlight
some of the general techniques.
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7.4.2.1 Solve a more general problem first

That is, we solve a “harder” problem than the specific problem at hand, then
use the solution of the “harder” problem to get the specific solution desired.

Sometimes a solution of the more general problem is actually easier to find
because the problem is simpler to state or more symmetrical or less obscured by
special conditions. The general solution can often be used to solve other related
problems.

Often the solution of the more general problem can actually lead to a more
efficient solution of the specific problem.

We have already seen one example of this technique: finding the first occurrence
of an item in a list.

First, we devised a program to find all occurrences in a list. Then we selected
the first occurrence from the set of all occurrences. (Lazy evaluation of Haskell
programs means that this use of a more general solution differs very little in
efficiency from a specialized version.)

We have also seen several cases where we have generalized problems by adding
one or more accumulating parameters. These “harder” problems can lead to
more efficient tail recursive solutions.

For example, consider the tail recursive Fibonacci program we developed in a
previous chapter. We added two extra arguments to the function.

fib2 :: Int -> Int
fib2 n | n >= 0 = fibIter n 0 1

where
fibIter 0 p q = p
fibIter m p q | m > 0 = fibIter (m-1) q (p+q)

Another approach is to use the tupling technique. Instead of adding extra
arguments, we add extra results.

For example, in the Fibonacci program fastfib below, we compute (fib n,
fib (n+1)) instead of just fib n. This is a harder problem, but it actually
gives us more information to work with and, hence, provides more opportunity
for optimization. (We formally derive this solution in a later chapter.)

fastfib :: Int -> Int
fastfib n | n >= 0 = fst (twofib n)

twofib :: Int -> (Int,Int)
twofib 0 = (0,1)
twofib n = (b,a+b)

where (a,b) = twofib (n-1)
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7.4.2.2 Solve a simpler problem first

After solving the simpler problem, we then adapt or extend the solution to solve
the original problem.

Often the mass of details in a problem description makes seeing a solution
difficult. In the previous technique we made the problem easier by finding a
more general problem to solve. In this technique, we move in the other direction:
we find a more specific problem that is similar and solve it.

At worst, by solving the simpler problem we should get a better understanding
of the problem we really want to solve. The more familiar we are with a problem,
the more information we have about it, and, hence, the more likely we will be
able to solve it.

At best, by solving the simpler problem we will find a solution that can be easily
extended to build a solution to the original problem.

Consider a program to convert a positive integer of up to six digits to a string
consisting of the English words for that number. For example, 369027 yields
the string:

three hundred and sixty-nine thousand and twenty-seven

To deal with the complexity of this problem, we can work as follows:

a. Solve the problem of converting a two-digit number to words. (The single
digit numbers and numbers in teens are special cases.)

b. Then extend the two-digit solution to three digits.
c. Then extend three-digit solution to to six digits.

See Section 4.1 of the classic Bird/Wadler textbook for the details of this problem
and a solution.

The process of generalizing first-order functions into higher-order functions is
another example of this “solve a simpler problem first” strategy. Recall how we
motivated the development of the higher-order library functions such as map,
filter, and foldr. Also consider the function generalization approach used in
the cosequential processing case study.

7.4.2.3 Reuse off-the-shelf solutions to standard subproblems

We have been doing this all during this semester, especially since we began began
studying polymorphism and higher-order functions.

The basic idea is to identify standard patterns of computation (e.g., standard
prelude functions such as length, take, zip, map, filter, foldr) that will solve
some aspects of the problem and then combine (e.g., using function composition)
these standard patterns with your own specialized functions to construct a
solution to the problem.
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We have seen several examples of this in these notes and the homework assign-
ments.

See section 4.2 of the classic Bird/Wadler textbook for a case study that develops
a package of functions to do arithmetic on variable length integers. The functions
take advantage of several of the standard prelude functions.

7.4.2.4 Solve a related problem

After solving the related problem, we then transform the solution of the related
problem to get a solution to the original problem.

Perhaps we can find an entirely different problem formulation (i.e., stated in
different terms) for which we can readily find a solution. Then that solution can
be converted into a solution to the problem at hand.

For example, we can recast a problem in terms of mathematical or logical
frameworks (e.g., sets, relations, graphs, finite state machines, grammars, or
algebraic structures), solve the corresponding problem in those terms, and then
interpret the result for the original problem. The simplification provided by the
frameworks may reveal solutions that are obscured in the details of the problem.
We can also take advantage of the theory and techniques that have been found
previously for the mathematical frameworks.

Consider the problem of breaking a string of text into the list of its component
lines.

This is not trivial. However, the “inverse” problem is trivial. All that is needed
to convert a list of lines to a string of text is to insert linefeed characters between
the lines.

We can first solve the inverse problem (line-folding) and then use it to calculate
what the line-breaking program must be. (See Section 4.3 of the Bird/Wadler
textbook and a later chapter in this course.)

7.4.2.5 Separate concerns

That is, we partition the problem into logically separate problems, solve each
problem separately, then combine the solutions to the subproblems to construct
a solution to the problem at hand.

As we have seen in the above strategies, when a problem is complex and difficult
to attack directly, we search for simpler, but related, problems to solve, then
build a solution to the complex problem from the simpler problems.

We have seen examples of this approach in earlier chapters and homework
assignments. We separated concerns when we used stepwise refinement to
develop a square root function, data abstraction in the rational number case
study, and function pipelines.
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Consider the development of a program to print a calendar for any year in
various formats. We can approach this problem by first separating it into two
independent subproblems:

a. building a calendar
b. formatting the output

After solving each of these simpler problems, the more complex problem can
be solved easily by combining the two solutions. (See Section 4.5 of the classic
Bird/Wadler textbook for the details of this problem and a solution.)

7.4.2.6 Divide and conquer

This is a special case of the “solve a simpler problem first” strategy. In this
technique, we must divide the problem into subproblems that are the same as
the original problem except that the size of the input is smaller.

This process of division continues recursively until we get a problem that can
be solved trivially, then we combined we reverse the process by combining the
solutions to subproblems to form solutions to larger problems.

Examples of divide and conquer from earlier chapters include the logarithmic
exponentiation function expt3 and the merge sort function msort.

Another common example of the divide and conquer approach is binary search.
(See Section 6.4 of the classic Bird/Wadler textbook.)

There are, of course, other strategies that can be used to approach problem
solving.

7.5 Exercises

1. Show the list (or string) yielded by each of the following Haskell list
expressions. Display it using fully specified list bracket notation, e.g.,
expression [1..5] yields [1,2,3,4,5].

a. [7..11]

b. [11..7]

c. [3,6..12]

d. [12,9..2]

e. [ n*n | n <- [1..10], even n ]

f. [ 7 | n <- [1..4] ]

g. [ x | (x:xs) <- [Did, you, study?] ]

h. [ (x,y) | x <- [1..3], y <- [4,7] ]
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i. [ (m,n) | m <- [1..3], n <- [1..m] ]

j. take 3 [ [1..n] | n <- [1..] ]

2. Translate the following expressions into expressions that use list compre-
hensions. For example, map (*2) xs could be translated to [ x*2 | x
<- xs ].

a. map (\x -> 2*x-1) xs

b. filter p xs

c. map (ˆ2) (filter even [1..5])

d. foldr (++) [] xss

e. map snd (filter (p . fst) (zip xs [1..]))
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7.7 Terms and Concepts

TODO
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